Dickson, dos Reis , & Waters, 19 ISBN 0 7325 0588 7

SOME STABLE ALGORITHMS IN RUIN THEORY
AND THEIR APPLICATIONS
David CM Dickson, Th: )I,Jniversity of Melbourne
Alfredo D Egidio dacj;dReis, ISEG, Lisbon
Howard R Waters, Heriot%anatt University, Edinburgh

RESEARCH PAPER NUMBER 19
May 1995

Centre for Actuarial Studies
Department of Economics
The University of Melbourne



Some Stable Algorithms in Ruin Theory
and their Applications

by

David C M Dickson
The University of Melbourne

Alfredo D Egidio dos Reis
ISEG, Lisbon

and

Howard R Waters
Heriot-Watt University, Edinburgh

Abstract

In this paper we present a stable recursive algorithm for the calculation of the
probability of ultimate ruin in the classical risk model. We also present stable
recursive algorithms for the calculation of the joint and marginal distributions of
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for these distributions.
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1. Introduction

In this paper we present recursive algorithms for the (approximate) numerical
calculation of various quantities for a classical surplus process. These quantities
are the probability of ultimate ruin, the distribution of the severity of ruin, the
moments of the severity of ruin, the distribution of the surplus immediately prior
to ruin and the joint distribution of the surplus immediately prior to ruin and
the severity of ruin. Recursive algorithms for the calculation of some of these
quantities have already appeared in the actuarial literature, particularly for the
probability of ultimate ruin. However, not all of these algorithms are numerically
stable. The stability of recursive algorithms has been discussed by Panjer and
Wang [1993] and, in their words, “For unstable recursions, alternative methods of
evaluation merit further research”. The main purpose of this paper is to present
stable algorithms. In addition we present bounds and approximations to the
(defective) distributions of the severity of ruin and the surplus immediately prior
to ruin, and for the (defective) joint distribution of these two quantities.

Our general method for producing algorithms is to approximate the classical
surplus process by a discrete process (discrete time and discrete claim amount
distribution) and then to derive an algorithm for the appropriate quantity for the
discrete model. The discrete model we will be using is an example of a compound
binomial model, studies of which have already appeared in the actuarial literature
(Gerber [1988], Shiu [1989], Willmot [1992] and Dickson [1994]). Hence, although
in this paper we will regard our algorithms as providing approximations to, for
example, the probability of ultimate ruin for a (continuous time) classical surplus
process, we could have chosen to regard them as providing exact values for a
compound binomial model.

In the next section we introduce the basic continuous time surplus model, the
discrete approximation to the basic model and some notation. In Section 3 we
discuss the probability of ultimate ruin. In particular, we discuss the stability of
some algorithms which have appeared in the actuarial literature, present a new
stable algorithm and discuss numerical examples. In Section 4 we consider the
calculation of the distribution of the severity of ruin. In Section 5 we use the
algorithm presented in Section 4 to derive an algorithm for the calculation of
the moments of the severity of ruin. Both the probability of ruin and, perhaps
to a lesser extent, the severity of ruin are of obvious interest. Qur reasons for
considering also the moments of the severity of ruin are that these moments
are of some interest in their own right and that these moments can be used to
calculate the moments of durations of negative surplus, as shown by dos Reis
[1993). Finally, in Section 6 we discuss the distribution of the surplus prior to
ruin and the joint distribution of the surplus immediately prior to ruin and the
severity of ruin.



2. Models and Notation

Let {U(u,t)}:>0 be a classical continuous time surplus process, so that

N(t)
Ulu,t)y=u+tct— Y Xi
i=1

where:

u is the insurer’s initial surplus,
c is the insurer’s rate of premium income per unit time,

N(t) is the number of claims in the time interval (0,t] and has a Poisson(\t)
distribution, and,

{Xi}32, is a sequence of i.i.d. random variables representing the individual
claim amounts.

Throughout this paper we adopt the convention that 39 , = 0.

We denote by P(z) the distribution function of X;. We assume that P(z) =0
for z < 0, so that all claim amounts are non-negative. We assume that the mean
of X;, which we denote py, is finite and that any other moments of X; which we
require are also finite. We assume that ¢ > Ap;.

We define 6 to be such that

so that # is the insurer’s premium loading factor.
Without loss of generality, we make the following two assumptions

c=landp, =1

We will refer to the process described above as our “basic process”.

We want to produce a discrete approximation to this basic process but before
doing so it is convenient to rescale the basic process by multiplying all monetary
amounts by some positive number # and taking a new time unit to be 8~! times
the original time unit so that the premium income per unit time for the rescaled
process is still 1. In all our numerical examples 3 will be 100.

Now let {X4:}%2, be a sequence of i.i.d. random variables whose (common)
distribution is approximately the same as that of AX; and which are distributed
on the non-negative integers. We denote the probability function of Xy; by f(k)
so that

f(k‘) = Pr(Xd,,- = k), k= 0, 1,2,...
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Let Ny(t) be defined to be N(8'¢) so that {Na(t)}s>0 is a Poisson process with
parameter A\3~!. Now consider the discrete time surplus process {Us(u,n)},

defined as
Na(t)

Us(u,n)y =u+n— > X,
=1
so that the premium income per unit time is 1 and the initial surplus is u. The
implied premium loading factor for this discrete surplus process will be denoted
04 and is given by the formula

1= (14 02)A87 E[X4;)

Note that if E[{X;;] = B then 8; = §. We will always choose 3 and the distribution
of X4 to be such that 0, is positive. Let S; denote the aggregate claims over the
first time period for the discrete model. We will denote by Hy(k) and hy(k) the
distribution function and probability function, respectively, of Sy, so that

k N,(1)
Hy(k) = Zhd(j) = Pr(Sy < k) = Pr( Z Xai <k)fork=0,1,2,...
3=0 i=1

Then it is clear that for any integer n, Uy(Bu, fn) will have approximately
the same distribution as U(u,n). It should also be clear that by increasing the
value of B we ought to be able to improve this approximation.

3. The Probability of Ultimate Ruin

Let T be the time to ruin for the basic process, starting from initial surplus u,
so that

T inf{t: U(u,t) < 0}
T | o if U(u,t) >0forallt>0

The probability of ultimate ruin for the basic process, 1(u), and its complement,
the probability of ultimate survival, §(u), are defined as follows

Y(u) =1—6(u) = Pr(T < 0)

We are interested in the probability of ruin for our discrete process. However,
since we will always take the initial surplus for the discrete process to be an
integer we need to define “ruin” carefully. We will use two definitions of ruin for
our discrete process, depending on whether or not a surplus of zero, other than
at time zero, is regarded as ruin. Accordingly we define

T, — min{n : Us(u,n) < 0 for some positive integer n
4= oo if Uy(u,n) >0 for all n
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T — min{n : Uy(u,n) < 0 for some positive integer n
¢ 7 | oo if Uy(u,n) > 0 for all n

Ya(u) = Pr(Ty < o0)
$3(u) = Pr(T} < o)

with 64(u) = 1 —4(u) and 63(u) = 1 — 3(u) denoting the corresponding proba-
bilities of ultimate survival. We need to define the defective probability function
of the severity of ruin for the discrete model. Foru =0,1,2,...andy =1,2,3, ...,
we define

gd(U,y) = PT(Td < 0o and Ud(u,Td) = —y)
Foru=0,1,2,... and y = 0,1, 2, ..., we define

91(w,y) = Pr(T§ < oo and Uy(u,T) = —y)

It 1s immediate that

Yi(u) =1g(u—1) foru=1,2,3,... (3.1)
and that
a5(u,y) = ga(u—1,y+1) foru=1,2,3,..., and y = 0,1,2, ... (3.2)
It is well known that '
64(0) = 0/[(1 + 04)ha(0)] (3-3)
62(0) = 6a/(1 + 64) (3.4)

See, for example, Dickson and Waters [1991, Section 7.1]. We need the following
formula for g4(0, y)

94(0,y) = (1 — Ha(y))/ha(0) for y = 1,2,3, ... (3-5)
This can be proved by noting first that
91(0,y) =1 — Ha(y) (3-6)

(this follows from Dickson and Waters [1992, formula (3.5)]) and then condition-
ing on the aggregate claims in the first time period

93(0,y) = ha(0)g3(1,y) + ha(y + 1)

Using (3.6) and (3.2), and rearranging, gives (3.5).
Dickson and Waters [1991, formula (7.2)] presented the following formula for
the calculation of é4(u) for positive integer values of u

5a(u) = El(o_) (5d(u —1)— ?;hd(i)ad(u - i)) (3.7)
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This formula can be used recursively starting from formula (3.3). We can then
use (3.1) to calculate é3(u), with §3(0) given by (3.4).

In the context of a compound binomial model, this formula has been put
forward by Gerber [1988, formulae (6) and (7)], Willmot [1993, see the remark
following formula (3.3)] and Dickson {1994, formulae (5.1) and (5.2)]. Unfortu-
nately, the recursive scheme based on this formula is not stable. See Dickson and
Waters [1991, Sections 7.2 and 7.3] and Panjer and Wang [1993, Section 11.5].

As an alternative to formula (3.7) we propose the following formula:

§4(u) = 6:(0) + ; 94(0, E)ba(u — F) (3.8)

Formula (3.8) can be used to calculate §;(u) recursively for u = 1,2, 3, ..., starting
from (3.3), and using (3.5).

The derivation of (3.8) is elementary. Starting from surplus u, ruin does
not occur if either the surplus never falls below u (64(0)) or falls below u for
the first time to u — k, where k = 1,2,..,u, (94(0, k)) but ruin does not occur
subsequently from this new level (64(u — k)). The important feature of (3.8) is
that it is stable. In fact, Theorem 7 of Panjer and Wang [1993] shows that it is,
in their terminology, strongly stable.

By choosing a distribution for X,; that is, in some sense, a good approxima-
tion to that of 8X;, we can use (3.8) to provide a good approximation to 8(u).
For reasons explained by Dickson and Waters [1991, Section 8], §5(8u) is usually
a better approximation to §(u) than is §;(Bu). However, we can also use the
discrete model to provide upper and lower bounds for §(u).

Result 1
Let X4; be defined as follows:

Xe;=kifk—1<BX;<kfork=12,..

Then for any u > 0
63([Bu]) < 6(u)
where [Bu] is the integer part of Bu.
Proof
Suppose ruin occurs for the basic process at time ¢, where (n—1)/8 < t < n/8,
for some positive integer n. Then for the basic process

N(n/B)

u+n/f— E X:<1/8

Hence
Bu+n—B(Xy+ Xo+ ... + Xn(nyg) <1



Hence for the discrete process

[ﬂu] +n - (Xd,l <+ Xd,z + ...+ Xd,Nd(ﬂ)) <1
and so Uy([Bu],n) < 0. Hence

Pa([Bu]) = ¥ (u)
and the result follows.

Result 2
Let X4; be defined as follows

Xg; =k—1ifk—1<pX;<kfork=12,.. K
=Kif8X;> K

for some positive integer K, which could be co. Then for any u« > 0

63({Bu}) = 8(u)
where {Bu} is the least integer greater than or equal to Su.

Proof
Suppose ruin occurs for the discrete process at time n, regarding hitting zero
as ruin, starting from initial surplus {fu}. Then:

{Bu}+n— (Xaa+ Xaz + ... + Xanym) <0

Hence
Putn—B(Xi+ Xo+ ...+ Xn(nyp) <0

Hence

utn/B—(Xi+ X+ ...+ Xn(nyg) <0

and so the basic process is ruined at or before time n/8 starting from initial
surplus u. Hence

Ya({Bu}) < ¥(u)
and the result follows.

Comment: The use of the recursive scheme based on formula (3.8) requires
knowledge of the premium loading factor for the discrete model, 8,. This is equiv-
alent to knowing E[X4;]. When applying Result 2 it may be possible to calculate
E[X4,} for K = oo, i.e. it may be possible to sum the appropriate infinite series.
If not, K can be chosen to be suitably large, but still finite, and E[Xy;], can
be calculated by direct summation. The calculation of F[Xy;], and hence of 8,
for the lower bound in Result 1 may not be quite as simple. If the appropriate
infinite series cannot be summed, we can use the fact that for the discrete model

E[X1] <14+ BE[X]]|=1+8
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and hence

B0 -1
ba2 7 + 8
and hence 148

Now note that since g4(0, k) is known for all k, the values of §4(u), for positive
integer values of u are all proportional to 64(0). Hence, using the right hand side
of (3.9) as an approximation to §4(0) in formula (3.8) will produce approximations
to 64([Bu]) which are lower bounds (and which are lower than the correct values
of 84([Bu]) by the same factor for all u) and hence lower bounds for §(u).

3.1. Examples

In the numerical examples at the end of this section we will compare numerical
results produced by formulae (3.3) and (3.8) (and the relationship between 6,(u)
and 63(u)) with those produced by a different recursive algorithm. This alterna-
tive algorithm is called “Method 1” by Dufresne and Gerber [1989] and attributed
by them to Goovaerts and De Vylder [1984] and Panjer [1986]. “Method 1” is a
stable recursive scheme since it is based on Panjer’s recursion for a compound ge-
ometric distribution, which Panjer and Wang [1993, Section 9] show to be stable.
It also has the advantage that it produces upper and lower bounds for ¥(u). It
requires an interval of discretisation to be chosen. In our examples we will take
this to be the unit interval for the rescaled basic process, which is equivalent to
an interval of length A~ for the basic process. Recall that 8 = 100 in all our
examples.

3.1.1. Example 1

We assume that individual claim amounts for the basic process have an exponen-
tial distribution (with mean 1) and that # = 0.1. In this case we can calculate
the exact value of §(u), which is given by

1 Ou
6(u)=1- mexp{—rra}



Table 1

See Example 1, Section 3, for details.

(1) (2) (3) (4) (5) (6) (7)
0.08636 0.09091 0.09545 0.0000 0.09091 0.09091 0.0000
0.23128 0.24204 0.25264 -0.0006 0.24142 0.24267 0.0006
0.35321 0.36805 0.38251 -0.0006 0.36701 0.36910 0.0005
0.45580 0.47311 0.48982 -0.0005 0.47181 0.47442 0.0004
0.54212 0.56070 0.57848 -0.0005 0.55925 0.56216 0.0003
0.61475 0.63373 0.65173 -0.0004 0.63222 0.63525 0.0002
0.83756 0.85243 0.86591 -0.0003 0.85121 0.85365 -0.0002
40 0.97112 0.97605 0.98012 -0.0001 0.97565 0.97644 -0.0002
60 0.99486 0.99611 0.99705 0.0000 0.99601 0.99621 -0.0001
80 0.99909 0.99937 0.99956 0.0000 0.99935 0.99939 0.0000
100 0.99984 0.99990 0.99994 0.0000 0.99989 0.99990 0.0000

DD b=
S o PSS BN O

The columns of Table 1 show for the values of u indicated:

(1) A lower bound for §(u) calculated as in Result 1. In this example it is

easy to show that the premium loading factor for the discrete process, 6,
is (1+6)8(1 — ™01y — 1 =0.094518.

(2) An approximation to §(u) based on formula (3.8). The discretisation of the
rescaled individual claim amounts for this approximation uses the method
of De Vylder and Goovaerts [1988]. This method preserves the mean of the
distribution so that 8; = 6 = 0.1.

(3) An upper bound for §(u) calculated as in Result 2 with K = co. The value
of 83 can be shown to be (1 + 8)8(e*%* —1) — 1 = 0.105518.

(4) The relative percentage difference between the approximation in (2) and the
correct value for 6(u), i.e. 100 x (approzimation — correct value)/correct
value.

(5) A lower bound for §(u) calculated using “Method 1”.
(6) An upper bound for §(u) calculated using “Method 1”.

(7) The relative percentage difference between the average of the values in (5)
and (6) and the correct value for §(u).



3.1.2. Example 2

Now assume individual claim amounts have a Pareto(2,1) distribution (so that
its mean is 1).

Table 2

See Example 2, Section 3 for details.

(1) (2) (3) (4) (5) (6)
0.08182 0.09091 0.09803 0.09091 0.09091 0.09091
0.17874 0.18977 0.20337 0.18952 0.19003 0.18978
0.22726 0.25024 0.26744 0.24992 0.25057 0.25024
0.27107 0.29785 0.31767 0.29750 0.29821 0.29785
0.30810 0.33795 0.35983 0.33758 0.33833 0.33796
0.34045 0.37287 0.39642 0.37249 0.37325 0.37287
0.46090 0.50186 0.53055 0.50148 0.50224 0.50186
40 0.60339 0.65211 0.68446 0.65179 0.65242 0.65211
60 0.68750 0.73935 0.77244 0.73911 0.73960 0.73935
80 0.74276 0.79598 0.82888 0.79579 0.796174 0.79598
100 0.78135 0.83514 0.86755 0.83499 0.83529 0.83514

DN =
S o PN OIa

The columns of Table 2 show for the values of u indicated

(1) A lower bound for §(u) calculated as in Result 1. The value of 8; has been
bounded below as described in the Comment following Result 2, so that its
value has been taken to be 0.089109.

(2) An approximation to §(u) based on formula (3.8). The discretisation of the
rescaled individual claim amounts for this approximation uses the method
of De Vylder and Goovaerts [1988], so that 3 = § = 0.1.

(3) An upper bound for §(u) calculated as in Result 2 with K = 35,000. The
value of 8; can be shown to be 0.108683.

(4) A lower bound for §(u) calculated using “Method 1”.
(5) An upper bound for §(u) calculated using “Method 1”.
(6) The average of the values in (4) and (5).
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3.1.3. Comments on Examples 1 and 2

From Table 1 it can be seen that the numerical results provided by (3.8) and by
“Method 1” are very accurate - recall that columns (4) and (7) give the percentage
relative errors - at least for exponential claim amounts. For Pareto individual
claim amounts we cannot check the accuracy of the two methods, since the exact
values are not known, but we can see from Table 2 that the two methods give
remarkably similar answers, agreeing to 4 decimal places in all cases and 5 in
most. The bounds produced by “Method 1” are closer than those produced by
Results 1 and 2.

4. The probability and severity of ruin

In this section we present a stable recursive algorithm for the approximate numer-
ical calculation of the probability and severity of ruin for our basic process. Using
a different approach, we also derive lower and upper bounds for this quantity.

Let G(u,y) denote the probability that ruin occurs for our basic process, given
initial surplus u, and that the deficit at the time of ruin is less than y, so that
foru>0andy >0

G(u,y) =Pr(T < oo and U(y,T) > —y)

Using the discrete approximation to our basic process, an approximation to

G(u,y) is G3(Bu, By) where
Gi(u,y) =Pr(T; <oo and U(u,T}) > —y)

Dickson and Waters [1992, Section 3] presented the following formula for the
calculation of Gj(u,y) for u =0,1,2,...and y = 1,2,3, ...

G;(u_i'la y) = 7;(1—1(_0‘)' (GZ(ua y) - zu: hd(])G;(u +1- ja y) + Hd(u) - Hd(u + y))

1=1

This formula allows recursive calculation of G%(u,y) starting from

Gi(0,) = $(1~ Hli)

Although this algorithm provides very good approximations for moderate values

of u, it is unstable. An alternative approach to calculating G%(u,y) is as follows.
Define, for v =0,1,2,... and y = 1,2,3, ...,

Gi(u,y) =Pr(Ty < co and Uy(u,Ty) > —y)
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Then for u =0,1,2,...

Caluyy) = 3 ga(wi) = S giu+ Lj—1) = Gi(u+Ly)  (&1)

i=1 7j=1

We can calculate G4(u,y) for v =1,2,3,... and y = 1,2, 3, ... from the following
formula:

Ga(yy) = Ga0,u+3) = Ga0,u) + 3. 0a(0, MGalu— ky) (4.2

This formula follows by considering the level of the surplus process on the first
occasion that the surplus falls below its initial level (if this ever occurs). We can
calculate G4(0,y) in a recursive manner from (3.5) and hence can also calculate
Ga(u,y) recursively. Once again, by Theorem 7 of Panjer and Wang [1993], this
is a stable recursive algorithm.

We will give an example to illustrate the use of this algorithm at the end of
this section. Before doing so we show how to derive lower and upper bounds for
G(u,y). The method does not involve the discrete approximation to the basic
process. For the remainder of this section we will make the additional assumption
that P(z) is absolutely continuous and we will denote its density function by p(z).

Let g(u,y) denote the derivative of G(u,y) with respect to y. It is well known
that

A
9(0,y) = —(1 - P(y)) (4.3)
(see, for example, Gerber et al [1987]). We can write

o.1) = 575 (i /“p(y+z>¢(u—z)dz+g(o,u+y)—¢(u)g(o,y)) (4.4)

(see Panjer and Willmot [1992] or Dickson and dos Reis [1994]) and it follows by
integrating (4.4) over y that

G(u,y)

5 ([ 9= 2lo0,2) - 0,2 + i
+ 60,1 +3) = G0,4) ~ Y(w)G0.))

- o (z [ b= 2)l0(0,2) - 9(0,2 +y))d

r=0

1 G(0,u +y) - G(O,u) — ¢(u)G(o,y)) (4.5)

Now let ¥!(u) and ¥*(u) denote lower and upper bounds respectively for 1 (u),
calculated, for example, by one of the methods in the previous section.
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From (4.5), a lower bound for G(u,y) is G'(u,y) where
Gu) = 555( S v —n [ 7600, ~ 00, + i
+ G0.u+1) = 6(0,0) = PG0.))

1 S { -7 r -— r
_ m(zwu GO, 7 +1) — G(0,1)]

r=0

- ”il ¥ (u=r)[GO,r +y +1) - G(0,r +y)]

1 G(0,u+ ) = G(0,u) — PG, y>)

and an upper bound is G*(u,y) where

Gwy) = g5 9= = DGO +1) - G0

r=0

_ §¢h(u_r— DGO,r +y+1) - G(0,r +y)]

+ G(0,u +y) — G(0,u) — ¥'(u)G(0, y))

Since it is always possible to compute G(0, y), either because (4.3) can be inte-
grated in closed form or because we can integrate (4.3) numerically to any degree
of accuracy we choose, we can always compute these bounds for G(u,y). In our
examples we will calculate bounds for the rescaled basic process, with 8 = 100.

4.1. Examples

4.1.1. Example 3

Table 3 shows bounds and exact values for, and approximations to, G(u,y) when
the individual claim amount distribution is exponential with mean 1, § = 0.1 and
the bounds for (u) have been calculated using “Method 1” as described in the
previous section. The key to Table 3 is as follows:

(1) gives the value of G!(u,y),
(2) gives the exact value of G(u,y), (see, for example, Dickson [1992]),
(3) gives the approximation to G(u,y), calculated from the recursive algorithm

b

(4) gives the approximation to G(u,y), calculated by averaging the lower and
upper bounds, and
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(5) gives the value of G*(u,y).

Table 3

See Example 3, Section 4, for details

y=1

y=3

y=>5

u=20 (1)
(2)
(3)
(4)
(5)

0.077091
0.093278
0.093034
0.093279
0.109468

0.115884
0.140217
0.140119
0.140219
0.164554

0.121134
0.146570
0.146549
0.146572
0.172009

u=60 (1)
(2)
(3)
(4)
(3)

0.001179
0.002458
0.002451
0.002458
0.003738

0.001772
0.003694
0.003692
0.003695
0.005619

0.001852
0.003862
0.003861
0.003863
0.005874

u=100 (1)
(2)
(3)
(4)
(5)

0.000009
0.000065
0.000065

0.000065

0.000121

0.000013
0.000097
0.000097
0.000097
0.000182

0.000014
0.000102
0.000102
0.000102
0.000190

4.1.2. Example 4

Table 4 shows bounds for, and approximations to, G(u,y) when the individual
claim amount distribution is Pareto(2,1), § = 0.1 and the bounds for %(u) have
been calculated using “Method 1” as described in the previous section. The key

to Table 4 is as follows:

(1) gives the value of G'(u,y),
(2) gives the approximation to G(u, y), calculated from the recursive algorithm

(3) gives the approximation to G(u,y), calculated by averaging the lower and

upper bounds, and

(4) gives the value of G*(u,y).
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Table 4

See Example 4, Section 4, for details

y=1 y=2>5 y=10
u=20 (1) 0.075914 0.204566 0.274804
(2) 0.079821 0.211242 0.282126
(3) 0.079990 0.211347 0.282184
(4) 0.084065 0.218128 0.289563
v=100 (1) 0.011382 0.033331 0.047841
(2) 0.012918 0.035929 0.050693
(3) 0.012945 0.035948 0.050705
(4) 0.014509 0.038566 0.053569
v =200 (1) 0.003056 0.009230 0.013560
(2) 0.003593 0.010137 0.014554
(3) 0.003601 0.010142 0.014558
(4) 0.004146 0.011054 0.015555

4.1.3. Comments on Examples 3 and 4

(i) In each example, the two approximations to G(u, y) are close to each other.
We can see in Example 3 that for smaller values of u, the approximation
based on the bounds is slightly superior, but for large values of u both
approximations give values very close to the true value.

(ii) The calculation of G'(u,y) and G*(u,y) is not recursive so that separate
calculations are required for each combination of u and y. The calculation
of G4(u,y) using (4.2) is recursive in u, and so is more convenient if values
are required for several values of u.

5. Moments of the severity of ruin

In this section we are interested in the moments of the severity of ruin for the
basic process. For this process, let Y be a defective random variable denoting
the severity of ruin. The k-th unconditional moment of Y is given by

B(Y*u)= [~ y*g(u,y)dy (5.1)

and the conditional moment is found by dividing this quantity by 1 (u).

We can use results from the previous two sections to obtain approximations
to these moments.

Let Y; and Y denote the deficit at the time of ruin for the discrete process,
the distinction being that, for the latter, a suplus of zero, other than at time
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zero, is regarded as ruin. The unconditional moments of these defective random
variables are given by

E(Yf|u) = Zy 9a(w,y)  and  E(Y;¥|u) = Zy i(4,y)

We will approximate (5.1) by 8~*E(Y;*|Bu). We will derive a recursive algorithm
for E(Yf|u) and then use this to calculate E(Y;*|u). In our examples we will
consider only the first three moments.

Since gj(u,y) = gg(u—1,y+1) foru=1,2,3,...and y = 0,1,2, ..., it follows
that foru=1,2,3,..

E(Y{lu) = E(Yilu—1)—tha(u—1)
E(Yi*lu) = E(Ylu-1)=2E(Ylu—1)+a(u—1)
EY?lw) = E(Ylu—1)=3E(Y|u~1)+3E(Ylu —1) — pha(u—1)

For © = 0 we have

E(Y[|0)

> yg3(0,y)
y=0

= iy(l — Hy(y

= 1(E(S) - E(S)

Similarly

E(Y;?10) = 3E(S3) — FE(ST) + $E(S))
and '

E(Y;?|0) = % (S2) = 3E(S3) + 3E(S])
with

E(Yf|0) = ha(0) 1E(Y;*0)  fork=1,2,3,...
From (4.2) it is easy to see that foru=1,2,3,...and y =1,2,3, ...

gd(ua 3/) = gd(O, u+ y) + Z gd(O, k)gd(u - k, y)
k=1
and so

E(Yflu) = Zy 94(0, u+y)+zy Zyd(O k)ga(u — k,y)

y=1 y=1 k=1

Zu(w) + 3 94(0, K)E(YE ] — k) (5.2)
k=1
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where -~
Ti(u) =Y y*94(0,u + y)

y=1
Assuming ¥ (u) is known, (5.2) is a stable recursion formula for E(Y;"|u) Note
that £¢(0) = E(Yf|0), which is known. We can calculate X (u) recursively for
u=1,23,... as follows:

Di(u+1) = Ei(u) - %a(0) + Ga(0,u)
Tau+1) = Ep(u)—2%;(u+ 1) — 4(0) + G4(0, w)
Ts(u+1) = Ta(u) —38(u+1)— 3 (u+1) — 94(0) + G4(0,u)

Unfortunately, these recursion formulae are unstable. In our examples we have
applied these formulae but have constrained them to satisfy the following inequal-
ities:

0 < Yp(u+1) < Eg(u) for k=1,2,3 and u=0,1,2,....

Tr(u) < Tep1(u) fork=1,2 and v=0,1,2,....

5.1. Examples

We have used the method of this section to calculate the conditional moments of
the severity of ruin in two cases: firstly, when individual claim amounts have an
exponential distribution with mean 1 and, secondly, when they have a Pareto(4,3)
distribution. Thus, we have calculated

BE(Y;*|Bu)/¥3(Bu)

and we regard this as an approximation to the conditional moment E(Y*|u)/4(u)
for the basic process.

The calculation of E(Y;*|0) requires E(S%*!) to be finite. For this reason, we
have calculated just the first two conditional moments of the severity of ruin for
the Pareto(4,3) distribution. For the exponential distribution, where E(S%¥*1) is
finite for all k, we have calculated the first three moments.

Panjer and Lutek [1983] describe a method which may provide a discretisation
of the rescaled individual claim amount distribution that preserves the moments
of the original distribution. Because we need values of E(S¥*!) we have adopted
this discretisation method for this section only. Panjer and Lutek [1983] mention
the possibility of obtaining negative values for probabilities under this method.
In the examples below we used the software Mathematica and specified a high
numerical precision for all calculationsin the discretisation procedure. In this way
we obtained positive values for all probabilities in the discretised distribution.
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5.1.1. Example 5

When the individual claim amount distribution is exponential, so too is the distri-
bution of the severity of ruin given that ruin occurs. In particular, E(Y*|u)/4(u)
is independent of u. Hence, when the individual claim amount is exponential,

E(Y|u)/p(u) = 1
E(Y?lu)/¢(u) = 2
E(Y?lu)/4(u) = 6

The method of this section gives the following results for § = 0.1:

. . 0.9995 foru=0,2,3,4,...,100
ﬂ_lE()/:i WU)/%(ﬂU) = { 0.9996 foru =1

B2E(Y;?|Bu)/¢y(Bu) =  2.0082 foru=0,1,2,...,100
BE(Y|Bu)/$3(Bu) =  6.0518 foru=0,1,2, ... 100

In this example it was necessary to apply the constraints described above in the
calculation of the functions 3" (u), for £ = 1,2, 3.

5.1.2. Example 6
Now suppose that the individual claim amounts have a Pareto(4,3) distribution.

The method of this section gives the results in Table 5 for § = 0.1.

Table 5
See Example 6, Section 5, for details
u_ BE(Y}|Bu)/$i(Bu) BAE(Y;?|Bu)/vi(Bw)

0 1.4995 9.0123
40 3.7585 111.85
80 5.8098 432.11
120 11.670 1,868.1
160 27.067 7,098.8
200 52.985 18,892

Using formula (4.3) and (5.1) and the fact that ¢(0) = 1/(1 + 8), it is easy to
show that E(Y'|0)/4(0) = 1.5 and E(Y?2|0)/%(0) = 9 in this example. It is not
possible to check the accuracy of the results in this example, other than when
u = 0. It is, however, interesting to note that the conditional moments of Y
increase with u.

In this example there was no need to apply the constraints described above
in the calculation of the functions ¥;(u), for k = 1,2, 3.
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6. Distributions for the surplus prior to ruin

In this section we present stable recursive algorithms for the approximate numer-
ical calculation of the (defective) distribution of the surplus immediately prior to
ruin, and for the (defective) joint distribution of the surplus immediately prior to
ruin and the severity of ruin for our basic process. We will also apply the ideas
introduced in Section 4 to derive bounds for these distributions.

Define U(T) to be the surplus immediately prior to ruin for our basic process
and for u > 0 and z > 0 define

F(u,z) = Pr(T < 00 and U(u,T) < z)

so that F(u,z) is the probability that ruin occurs (from initial surplus u) and
that the surplus immediately prior to ruin is less than z.

Using the discrete approximation to our basic process, an approximation to
F(u,z) is Fj(Bu,Bz) where for u=0,1,2,... and z = 1,2, 3, ...

Fj(u,z) = Pr(T; < oo and Uy(u,T; — 1) < z)

Dickson [1992] presents the following formulae for the calculation of F}(u,z)
forz=1,2,3,...:

.wwﬂo=5§5(ww—lmy—fwan—ﬁfmuﬁuu—zm)
' j=u i=1
foru=0,1,2,...,z and
1 u-1
Fi(u,z) = 7a(0) (FJ(U —-1,2)- ?:: ha(§)Fi(u — J, x))
foru==z+1,2+4+2,243,... We can use these formula to calculate Fj(u,z)

recursively starting from

wmw=§a~mm) (6.1)

This algorithm provides good approximations for moderate values of u but is
unstable. To provide an alternative method of calculating Fj(u,z) we require
the following definitions. For u = 0,1,2,... and z = 1,2, 3, ..., define

Fy(u,z) = Pr(Ts < 0o and Uy(u, Ty — 1) < )
and foru=10,1,2,..., 2=0,1,2,... and y = 1,2,3, ..., define

fa(u,z,y) = Pr(Ty < o0, Ug(u,Ty) =y and Uy(u, Ty — 1) = x)
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Now for u =1,2,3,... and z = 1, 2,3, ...
Fi(u,z) = Fy(u - 1,z — 1) (6.2)

We can find Fy(0,z) by conditioning on the aggregate claim amount in the first
time period. We have

F3(0,2) = ha(0)F}(1,2) + 1 — hy(0)

Substituting (6.1) for F§(0,z) and Fy4(0,z—1) for F3(1,z), and rearranging leads
to

Fi(0,) = s i 1— Hy(j)) (6.3)

We can calculate Fy(u,z) for z = 1,2,3,... from the following formulae. For
©v=1,2,3,..,z-1

r—u-1 oo

Fy(u,z) = ng(O,])Fd(u—J, )+ X Y fu(0,s,y) (6.4)

1=1 s=0 y=u+1

and foru=z,z+1,z+2,..

Fa(u,2) = 3. 9a(0,5) Falu — j, 2) (6.5)

i=1

Formula (6.5) follows by considering the first occasion on which the surplus falls
below its initial level (if this ever occurs). The first term of (6.4) comes from
the same consideration. The second term in (6.4) comes from considering the
situation when ruin occurs on the first occasion that the surplus falls below its
initial level. In this case the surplus must be no more than £ — u — 1 above its
initial level at time 7y — 1 in order for the surplus at that time to be less than z.
From Gerber (1988, equation (35)], it follows that f(0,z,y) = ha(z+y+1)/h(0).
Substituting this expression in (6.4) we find that for u =1,2,3,...,z — 1

(u,z) = ng(o J)Fa(u - j,z) + Z 94(0, ) (6.6)

i=1 Jj=u+1

Formulae (6.6) and (6.5), used in this order, provide a stable recursive algorithm
for calculating Fy(u,z) with the initial value Fy(0,z) given by (6.3). We will
illustrate the use of this algorithm later in this section.

Let us now consider how to calculate bounds for F'(u, z). Dickson [1992] shows

that
$(0) — G(0, z)
1—1(0)

1 - G(0,z)

F(u,z) = = %(0)

p(u) -

for0<u<z
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and

F(u,z) = G(u —z,z) - 1—1_—_6%1(;(()6—';)—(1,&(11 —z)—¢(u)) foru>=z
Then for 0 < u < z, a lower bound for F(u,z) is F'(u,z), where
_1-G(0,2) _ ¥(0) - G(0,z)
and an upper bound is F*(u,z) where
_ 1— G(Oa :II) _ ¢(0) — G(O,.’L‘)

For u > z, a lower bound for F(u,z) is F'(u,z) where

1-G(0,z)

Flu,z) = G'u —z,z) — = (0)

(¥ (u — z) — $!(u))

and an upper bound is F*(u,z) where
1 -G(0,z)
1 —(0)

These bounds are easily calculated by the methods described in Sections 3 and
4,

F*u,z) = G*(u ~ z,2) - (%'(u — 2) — $*(w))

Now define
F(u,z,y) = Pr(T < 00, U(u,T) > —y and U(x, T) < z)

so that F(u, z,y) gives the (defective) joint distribution of the severity of ruin and
the surplus immediately prior to ruin for our basic process. Using the discrete ap-
proximation to our basic process, an approximation to F'(u, z,y) is F}(8u, 8z, By)
where

Fi(u,z,y) = Pr(T] < oo, Uy(u,T;) > —y and Uy(u, Tj — 1) < z)

foru=10,1,2,..., 2 =1,2,3,... and y = 1,2,3,... . We can compute values of
Fj(u,z,y) by first computing values of F,(u,z,y) where

Fy(u,z,y) = Pr(T; < o0, Us(u,Ty) = —y and Uy(u, Ty — 1) < z)

since

F;(u7zay)=F(U’_lax_1,y) (67)
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foru=1,2,3,..,2=123,..and y = 1,2,3,... . We can calculate F,(u,z,y)
through a stable recursive algorithm. The starting value for the algorithm is

Fd(()’m y szd(oajws)

For computational purposes we can write this as

Fi02,9) = 05y 22 (ly +5) = Hul) (69)

An alternative way of writing (6.8) is
Fy(0,2,y) = Fy(0,z) + G4(0,y) — Ga(0,z + y)

which corresponds to the expression for F(0, z,y) for our basic process given by
Dickson and dos Reis [1994, equation (2.1)].

Foru=1,2,3,...,z — 1 we can use the same reasoning that we used to write
formula (6.4) to write

r—u-1 uty
Fy(u,z,y) = ng (0,5)Fa(u = jyz, )+ D D fa0,s,5)

=0 j=u+1

= ng(oaj)Fd(u "jaxay) + Z (gd(oaj) - gd(O’j + y)) (69)
Jj=1 j=u+1
(6.10)
Similarly to (6.5), foru = z,z+ 1,z + 2, ...

Fd(uvzsy)= ng(O,j)Fd(u—j,x,y) (611)

i=1

Formulae (6.9) and (6.10), with (6.8) as a starting value, give a stable recursive
algorithm for calculating Fy(u,z,y). An application of this algorithm is given at
the end of this section.

Finally, let us consider bounds for F(u,z,y). Dickson and dos Reis [1994]
show that

F(u,z,y) = G(u,y) + E ;(G(O z)-G0,z4+y)) for0<u<z

and
Flu,z,y) = G(u,y)—Gu—z,z+y)+Gu— z,z)

Y(u —z) — P(u)
+ 5(0) (G(0,z) — G0,z +y)) foru>=zx
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Then for 0 < u < z, a lower bound for F(u,z,y) is F'(u,z,y), where

! l 8" (u)
F (u,x,y) =G (u’y) + 6(0) (G(O,IE) - G(va + y))

and an upper bound is F(u, z,y), where

&'(w)
3(0)

FMu,z,y) = G*u,y) + —=-(G(0,2) — G(0,z +y))

For u > z, a lower bound for F(u,z,y) is F'(u,z,y), where

Fllu,z,y) = G'(u,y)— G*'u—z,z +y)+ G'(u — z, )
+ G(0,2)(¥'(u — ) — $*(u))/8(0)
+G(0,z +y))(¥'(w) — ¥*(u — 2))/8(0)

and an upper bound is F*(u,z,y), where

Fh(uvmv y) = Gh(u’y) - Gl(u —-z,z+ y) + Gh(u - a:,x)
+ G0, 2)(¥"(u — z) ~ 9'(u))/6(0)
+ G(0,z + y))(¥"(u) — ¢'(u — 2))/6(0)

6.1. Examples
6.1.1. Example 7

Table 6 shows some bounds and approximations to F'(u,z) when the individual
claim amount distribution is Pareto(2,1), the premium loading factor, 6, is 0.1
and the bounds for (u) and G(u, y) have been calculated as in Sections 3 (using

“Method 1”) and 4. The key to Table 6 is as follows:

(1) gives the value of F'(u,z),

(2) gives the approximation to F(u,z) calculated from the recursive algorithm

for Fy(u, z),

(3) gives the approximation to F(u,z) calculated by averaging F'(u,z) and

F*(u,z), and
(4) gives the value of F*(u,z).
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Table 6
See Example 7, Section 6, for details

z=25 z=10 z=15
u=10 (1) 0.161668 0.287422 0.393461
(2) 0.169434 0.287847 0.393936
(3) 0.169869 0.288154 0.394084
(4) 0.178070 0.288886 0.394706
u=230 (1) 0.064448 0.107883 0.139130
(2) 0.072663 0.116525 0.148012
(3) 0.072851 0.116654 0.148110
(4) 0.081254 0.125426 0.157089
u=250 (1) 0.035739 0.060270 0.077271
(2) 0.042324 0.067322 0.084765
(3) 0.042434 0.067398 0.084823
(4) 0.049130 0.074526 0.092375

6.1.2. Example 8

Table 7 shows some bounds, approximations and exact values for F(u, z, y) when
the individual claim amount distribution is exponential with mean 1, the premium
loading factor, 6, is 0.1 and the bounds for 1)(u) and G(u, y) have been calculated
as in Sections 3 (using “Method 1”) and 4. The key to Table 7 is as follows:

(1) gives the value of F!(u,z,y),
(2) gives the exact value of F(u,z,y),

(3) gives the approximation to F(u,z,y) calculated from the recursive algo-
rithm for Fy(u,z,y),

(4) gives the approximation to F(u,z,y), calculated by averaging F!(u, z, Y)
and Fh(u,z,y), and

(5) gives the value of F*(u,z,y).
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~ Table 7

See Example 8, Section 6, for details

u=20 (1) -0.070275 -0.021141 0.000549
(2) 0.023040 0.109159 0.139331
(3) 0.022529 0.108601 0.139137
(4) 0.023041 0.109161 0.139333
(5) 0.116357 0.239464 0.278116
u=60 (1) -0.006932 -0.008188 -0.008862
(2) 0.000607 0.002876 0.003671
(3) 0.000594 0.002862 0.003666
(4) 0.000607 0.002877 0.003672
(5) 0.008147 0.013942 0.016206
u=100 (1) -0.000317 -0.000417 -0.000467
(2) 0.000016 0.000076 0.000097
(3) 0.000016 0.000075 0.000097
(4) 0.000016 0.000076 0.000097
(5) 0.000349 0.000569 0.000661

6.1.3. Comments on Examples 7 and 8

(1)

(i)

(iii)

In each case, the approximations are close together, and we can see from
Example 8 that the approximations are close to the true values. As with the
approximations to G(u, y) when the individual claim amount distribution is

exponential, approximations to F(u, z,y) based on the bounds are slightly
better for small values of u.

Example 8 illustrates that the lower bound for F'(u, z,y) can be negative, as
can be the lower bound for F'(u,z). Thus, the bounds themselves may be of
little practical value. However, averaging the bounds produces reasonable
approximations since this process simply averages bounds for the functions
¥(-) and G(-,-), and the bounds for F(u,z) and F(u,z,y) depend on the
bounds for these functions.

We have seen in Example 1 that averaging bounds for (u) gives an excellent
approximation to ¥ (u). Hence, when u < z the average of the bounds for
F(u,z) should be a very good approximation to F(u,z) since these bounds
are linear functions of the bounds on ¥(u).
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