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Summary The smoothness term of the multi-dimensional Whittaker graduation objective
function is considered. Its form is limited by the fact that a smoothness measure should remain
invariant under orthogonal coordinate transformations. A smoothness measure satisfying this
requirement is constructed. It treats all polynomials of degree < in # dimensions as smooth.
It is based on #-th order differences, but is otherwise independent of 7 and # if m is odd.
If m is even, it depends on both m and 7. The Bayesian interpretations of Whittaker

graduation made in recent years have been extended to the multi-dimensional case.

Keywords  Multi-dimensional Whittaker graduation, smoothness, Bayesian.
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1 Introduction

Whittaker graduation was devised by Whittaker (1923) and introduced into the actuarial
literature by Henderson (1932). Since then, it has appeared in a number of standard actuarial
texts, e.g. London (1985).

All of the early treatments involved a one-dimensional sequence of observations as the subject

of graduation. Typically, a sequence of empirical mortality rates by age was involved.

Two-dimensional Whittaker graduation was introduced by McKay and Wilkin (1977) and
extended by Knorr (1984) and Lowrie (1993). Most the extension has been concerned with

generalisation of the smoothness criterion:

. to an environment in which the observations subject to graduation lie within a space of
arbitrary dimension;
. smoothness is measured in terms of differences (of the graduated response) of arbitrary

order, and differences which are mixed in an arbitrary manner in the axes with respect

to which they are taken.
The most recent contribution (Broffitt, 1996):
. interprets and discusses the inclusion of such mixed differences; and
. gives matrix formulas for their construction.
..The present paper makes use of certain symmetry properties which it will often be useful for a
-multi-dimensional smoothness criterion to satisfy. These properties remove a large part of the

arbitrariness from the selection of difference terms to. be included in the criterion, and

considerably simplify its matrix construction.
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A second strand of development of Whittaker graduation, concerned with its interpretation in

a Bayesian context, was begun by Taylor (1992) and developed by Verrall (1993). The findings
of the present paper are interpreted in this context.

2 Notation and terminology

21 Whittaker graduation

Consider points xeR”, Euclidean #-space. It will be assumed that the x form a regular lattice L

in the sense that
x = (%", %% ., x"), (2.1)

with

i
x =r,r+l s

For reasons which will appear shortly, the contravariant notation x* is used here in preference

to x,.
Let f: L-R, and call the f{x) observations.
The objective is to find Whittaker smoothed values W(x) corresponding to f{x).

Define

E = E w(x)[flx) - W], : (2.2)

for a suitable set of weights w(x). Here, as elsewhere, summations run over xeL unless

. otherwise indicated.
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Define

S=EEai

.. joe
X ’I""m

8 A A WP, (2.3)

where the &, ; are real constants and A, is the is the forward difference operator taken in the
"
direction of the £~th coordinate of x. The indexes %)5 - %, €ach run over the range 0 to #,

with the convention that A, is the identity operator.

It will sometimes be useful to write this in the form

$=%8,
x X

with

x

S, = T o A ..o W

bty

Define

F =E + kS, ' (2.4)

where 0 < £ < o,

Whittaker graduation is carried out by choosing the W(x) in such a way as to minimise the
objective function F. This function consists of a linear combination of the error criterion E
and the smoothness criterion §. The combination is effected by means of the tuning constant
or relativity constant 4.

As defined here, there is one redundant degree of freedom in the definition of % and the a’.

2.2 Tensor notation

Tensor notation is the natural vehicle for the multi-dimensional framework considered here.
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The Euclidean metric tensor is

8, = & = 1ifi=j;

= 0 otherwise,

fors,7 =1, 2, ..., n

The Einstein summation convention will be used throughout. Thus, a repetition of a suffix

within a tensor product indicates summation over that suffix, e.g. for tensors A‘y and B,

A.B =Y A B
Y i y

The metric tensor effects raising and lowering of suffixes, e.g. for a tensor TZm,

8, Tom = Doy (2.5)
In particular,
i _ ik
61. =& 6@.
=1ifs =7 (2.6)
= 0 otherwise.
Define
hedy B b
jl“'-’i =9 5.0 2.7)

With the summation convention, (2.2) becomes
E = [fx!, ., 2") - W(D, ., M| wiel, ..., 2%y )

X [f(yla > }’”) - W(y 1) ooy yn)]) (2.8)
where w(x?, .., y”) is the tensor given by

w(x, y) = w(x) for x =y,
- 0, otherwise. o . @29)
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It is convenient to write (2.8) in the simple form:

E = [flx) - W(x)] wxy) [fy) - W), (2.10)

where W(x) now assumes the dual role of denoting (1) the evaluation of W at %, and (2) the

tensor W with generic argument x.

Let Aj(y) be interpreted as the tensor which, when multiplied by W(x), acts as a forward

difference operator at y ,
AG) W(x) = WO, oy +1, 9™ - WY o 9, p?). (2.11)

Note that (2.11) does not involve x on the right and sometimes may be conveniently denoted
by just Aj nHw.

Write

Ki,...i,,,(y) = Ail(y)...A‘.m(y) [no summation over y]. (2.12)
By (2.5),

K < g g g K, (2.13)

ceey

With these understandings, (2.3) may be put in the form:
S=e ;, K ;0 WK () W, (2.14)
which may be simplified further, thus:

S = a, K(y)W K (y) W, (2.15)

where I denotes the -fold suffix ’.1 ...im.

A tensorT]I will be called orthogonal if

T Ty = & (2.16)
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If the index I is lowered, and the indexes J and K raised in (2.16), the following alternative
form is obtained:

T] Ty = &) (2.17)

For a tensor T]I, T will denote its contraction:
T = TII , (2.18)

provided that there is no ambiguity. Note that T is a scalar since the double appearance of T
in (2.18) implies that all suffixes are summed out.

3 Preliminary resuilts

Proposition 3.1. For fixed m, let W(x) be a polynomial of degree < m with coefficient A,

of (Y, and choose a as follows:

o o =1 e =4, = =4 ;

4yt m> (3 1)
= 0, otherwise.
Then
2
S, = (m!)? A (3:2)
1
Proof. By direct evaluation from the definition of Sx. 0O

Proposition 3.2. With W(x) defined as in Proposition 3.1 and peL chosen arbitrarily, S,

is invariant under transformations x° - yf - Aji (! -1 ) with Aji orthogonal.
-Proof. - See Appendix A. O

Proposition 3.3. Let A]I be an orthogonal tensor and let T{; be any tensor compatible
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with A{( for multiplication. Define

Uy = A7 Ty Ag. (3.3)

Proof. U= Uy = 45 T{Ag = 8 Ty (by orthogonality) = T/ = T. o
4 Smoothness

Consider the case # = 1, graduation in 1 dimension. In (2.3), %15 - 1, are each restricted to

the set {0, 1}, giving

S, = § B, (& W) (4.1)
=0

Typically, one chooses BP =0,p<m and B = 1, to obtain
8, = [A&" W(x)] (4.2)

Now consider the case #>1. By (4.2), smoothness measured just in the direction of the i -th
axis may reasonably be measured by [A:" W(.x:)]2 . A possibility for S, is therefore some kind of

average of these various directional differences over ¢ = 1, 2, ..., .

Moreover, it is desirable for S, to be independent of the (Cartesian) coordinate system chosen
at x, i.e. for S, to be invariant under orthogonal transformations of coordinates with origin

taken at x.

The restriction of W{.) to the lattice domain L is inconvenient in the context of orthogonal
- “transformations, since they do not fix L. For the purpose of the present section, it will be
assumed that W: R” - R.
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The question of invariance under orthogonal transformation is considered in Appendix B. In

particular, Appendix B.2 constructs a smoothness measure as follows.

First choose # orthogonal axes for the #-dimensional space under consideration, with origin
at fixed but arbitrary x. Choose % (n even) or Y4 (n-1) (n odd) pairs of these axes to define
planes of rotation. Without loss of generality, suppose that these are the xx2- % 3x%-, etc.

planes.

Now define the directional difference operator A 40 38 the forward difference operator along
the line obtained by rotating the x4 -axis counter-clockwise through an angle 0 about x in

the - plane, ie.

A Wix) = Wix',...x™ + cos 8, % +sin 0,..,8%) - W(x),..x"), (4.3)

x4 x¥for an arbitrary function W: R” - R.
Take the quantity:

Y [y [, WL 4 0, (4.4)

and define S, as its symmetrization (symmetric sum or average) with respect to the choice of
planes of rotation (still holding the choice of # coordinate axes fixed). Appendix B.2 shows this
quantity to be invariant under orthogonal transformations of the #- space.

Appendix B.2 also establishes the following key result.

Proposition 4.1. Consider functions W: R” ~ R which may be put in the following form

by suitable choice of coordinate axes:

Wix) = Al(x‘l)’” + A2+ Lk A (x™)" + other terms, (4.5)

30/09/96 04:48PM SN\GAMSONM\GENERAL\GI17.66



where the “other terms” are of degree <m.

Let y!, ..., " be the coordinates obtained from %l .., %" byan orthogonal transformation
about a fixed but arbitrary point x. In the new coordinates, the function (4.5) takes the general

form:
W) =v,. . _yil_yi’...yi"‘ + terms of lesser degree, (4.6)
1

1. ‘2 ...1”'

with each index ir running from 1 to ».

For m = 2p, (4.6) may be put in the alternative form:
Wiy) = VZ;’ yi’...yif yj’...yjf + terms of lesser order. 4.7)
?

For such functions W{.), S, as defined above is (up to constant multipliers):

S, = Vv, m odd; (4.8)
= B,,()* + (1 - B,,) V) V}, m even, (4.9)
where
B =2 x _(ﬁ/l)l[ m)/[zm),m,nevcn;
it n! Yo m

= 2012 M( " )/(M),m even, # odd.
m

(n-1)! Yom (4.10)

The index I is of order m in (4.8) (see (4.6)), and the indexes I and J are each of order Yom
in (4.9) (see (4.7)). O

Note that, for W{.) given by (4.6),

v, ;= ALA W), (4.11)

s

ie.
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v, = A7 W(y), (4.12)

if A7 is written as an abbreviation for the operator in (4.11).

Similarly, when W({.) takes the form (4.7),
v, = Ay W). _ (4.13)
Substitution of (4.12) and (4.13) in (4.8) and (4.9) yields:

S, = [A7 Wx)] [&F Wx)], m odd; (4.14)

= B,,[A7 W@ + (1-B,)[A7 W(x)] [A7W(x)}, m even, (4.15)

where the coordinate system y has been replaced by x in the argument of W, since S, is

independent of the choice of (orthogonal) coordinates.

This leads one to adopt (4.14) and (4.15) as the definition of the smoothness measure S,
Proposition 4.2. Let the smoothness measure S, at % be defined by (4.14) and (4.15) for
any function W: R” ~ R. Then, for the particular polynomial functions W{(.) discussed in

Proposition 4.1, S, reproduces the measure defined as the symmetrized (4.4). i

Example Consider the case # = m = 2. By (4.10), B,, = %, and so by (4.15),

S, = W[AL, W) + A, W)
+{lah, WP + oo, WP + (83, ) 416)

This value of S, is inserted into the Whittaker criterion (2.4).
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5 Bayesian interpretation

Taylor (1992) provided the following interpretation of Whittaker graduation in the case # = 1.

Suppose that
fix) ~ N(W), o*/w(x)), (5.1)
A"W(x) ~ N(0, 72). (5.2)

Then the Bayesian estimate of W(x), conditional on fix), is given by Whittaker graduation

with relativity constant

k= o/ (5.3)

The arguments extend to the multi-dimensional case as follows.
Inthecase W: L - R, define A"W(x) as the vector of differences A7 W(x), without repetition.

Proposition 5.1. Let (5.1) hold in the case W: L ~ R. Suppose that, for a suitable

choice of orthogonal coordinates,

A"W(x) ~ N(0,7I). (5.4)

Then the Bayesian estimate of W{x), conditional on {f(x)}, is given by Whittaker graduation
with relativity constant £ = g? /n"’ 7. O

The factor #» ™ which appears in the denominator of £ is the sum of the coefficients of squared
differences in (4.14) or (4.15).

‘Verrall (1993) re-interpreted Taylor’s results (5.1) -*(5.3) in terms of dynamic linear models
(DLMs) and Kalman filtering. These ideas also extend to the multi-dimensional case.
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Proposition 5.2. Let (5.1) hold in the case W: L - R.  Choose any system of

orthogonal coordinates, and let ¢,, ...., ¢, denote the natural basis vectors for that system.

Suppose that the values of AjW(x) are determined by the following stochastic recursion:
[e7¢0), (), ] ~ N(O, D), (55)

for each x, with I, I, etc running over all #-fold indexes ¢4, suchthats, <4, < .. < .5

B + e) = D) + b Dw), =1,y m k=1, L m - 1, (5.6)

for each x, and with I denoting any £-fold index;

- 0 =
Aj Wix) = (%), j=1, ..., m, (5.7)
for each «.

Then the Bayesian estimate of W(x) conditional on {f(x)}, is given by Whittaker graduation

with relativity constant:

k= oz/n"‘ 2
a

According to (5.7), the gradients A]W vary from point to point according to the DLM defined
by (5.5) and (5.6).
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Appendix A: Proof of Proposition 3.2

Let
P KO- ), (A1)
Wiy) = W(2). (A2)

Let S be defined as for S in (2.15) but with W replaced by W and subject to the restriction

on « in Proposition 3.1.

By this last restriction,
§ = KO)W KO, (a3)

with I restricted to index sets of the form #:...4 (m times).

By (A.2),

KO)W = KW, (A4)
where

W) = A [ + A - D] + p0y) (A5)

with p(y) a polynomial of degree <m. Thus
W(z) = A,(A)" ()" + other terms. (A.6)

The other terms here involve powers of ¥/ all strictly less than #. The m-th differencing

operator K(z) therefore eliminates these terms. Then (A.4) and (A.6) yield:
- b
KO)W = K (2) [A, (A)" (")
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By (2.13), without summation over ¥,

KK =-K¥K [L-u.]]
Substitution of (A.7) and (A.8) into (A.3) yields:
S, = (ml)? & &, (A" 8" & A (A"

= (m!)* & A, A (& A"

= (m!)* & A (A] )

(m1)? A, A 5; [by orthogonality of A]

m! X )Li,
k

which is the same as (3.2).
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Appendix B: Directional differences

B.1 2-dimensional space

Consider the case # = 2. Define W(x) as the following special case of Proposition 3.1:

Wix) = A, (1™ + Az(xz)’” + other terms, - (B.1)

where the “other terms” are of degree <m.

Now define the directional difference operator Ay as the difference operator along the line

obtained by rotating the x ' -axis counter-clockwise through an angle 6 about x. That is,
AW(x) = W(x' + cos 6, £% + sin 8) - W(x!, £?). (B.2)
It may be checked that
B W) = &g [A 'y + 2, (7))

= ! [)Ll cos™ 0 + A, sin™ 6]. (B.3)

Then
[AF WP = @m!)* (A] cos®™ 8 + A] sin® @ + 21 A, sin™ 6 cos™ B
= (%)% (m!)? [Af (e® + ¢ Ag (4)%* (¢ - o702
+ 20,4, ()" (e® + 70y (% - z'ie)’”]. B.4)

If the terms on the right side of this result are expanded, they yield a constant term and a

number of periodic terms. Evaluation of the constant term lead to the following results.
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If m is odd,

(A" W) = () (m!)? [ Z”) (A2 + 22y + periodic terms. (B.5)

If m is even,

" 2 - 21 2m 2 92, m
[ WP = (s> (m) [[ m) (A1 + 4y) 2( 1/2m) b (B.6)

+ periodic terms.

If (B.5) and (B.6) are integrated over 0, the periodic terms have no effect. Then

fo Zn[A’g W(x)]"de const. X (Ai + Ai), m odd;

const. X [(Ai + Ai) + 2)»112( " )/( 2::)], m ev

YVom

const. ><,{()L1 + )»2)2”[ /m )/( 2m)
Yom

m
(Ai + Ai)[l - [ 1;:11) /( 2:;)] }, m even. B

It is necessary to consider how (B.7) changes under orthogonal transformations of the

+4

coordinates. This is most easily done by considering separately the cases of m odd and even.

Case I: m odd

First, rewrite (B.1) as:

Wix) = A, ; xi‘xi’...xi’", (B.8)
1°2°"m
with each ¢, = 1,2, and
)‘11...1 =Ap Ay o = Ay
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A . . = 0, otherwise.
ty8ef, >

Thus, in terms of the contraction notation (2.18),

f“[A’g W(x)'d0 = const. X AA.
0

Now consider an orthogonal transformation of x to y, with

yi = A;xf

Then

Ky - K Kol - ot

by (2.16).

“Substitution of (B.12) in (B.8) gives:

.
(W Yy 5

t

Wi(x)

with

ie.
v, = A AL
Then
VvV = A% A A, Af.

Apply Proposition 3.3 to the tensor A, A¥ (= A, 1)) to show that

vV, = )“1 }‘r
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This shows that, for any W(y) of the form (B.13), obtainable from (B.8) and (B.9) by an
orthogonal transformation from x to y, the quantity V; V; is invariant under orthogonal
transformations. Further, by (B.10), this quantity measures the mean square m-th difference

appearing there.

Case IT: m even

The same reasoning as in Case I can be applied. However, it is more useful to proceed

somewhat differently in order to deal with the additional term in (B.7) involving (A, + 1,).

Let m = 2p, and in place of (B.8) write
_ D A i I}
Wix) = )”J}---Ii x'..x? %", 50, (B.18)
witheach s, s =1, 2, and
11..1 22..2
Ay = A Anla = Ay

i )
)uji__ 'fi = 0, otherwise. (B.19)

Then

T AM m m
f: [AF W(x)[48 = const. x {oq)z ( %m) / ( m]

+ i Xy [1 - (IZ,,) /( 27:”) ]} (B.20)

Parallel to Case 1, it is possible to show that, for any W(y) of the form:
W) = v 2y y g, (B.21)

-obtainable from (B.18) and (B.19) by an orthogonal transformation from % to ¥ ; the quantities

v§ and v} \{ are invariant under orthogonal transformations. Further, by (B.20), the quantity:
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SV (2 e

measures the mean square 7 -th difference appearing there.
B.2 xn-dimensional space

It is known (e.g. Boerner, 1963, 221-2) that any orthogonal transformation in #-dimensional
space is orthogonally similar to (i.e. can, with appropriate orthogonal change of coordinates,
be represented as) %in (n even) or Y2(n~-1) (» odd) rotations of orthogonal 2-dimensional

subspaces.

Consider the following generalization in (B.1):

Wi(x) = A, (1" + ..+ A (x")y" + other terms, (B.23)

where the “other terms” are still of degree <m.

Note that (B.23) can be written as (B.8) (7 odd) or (B.18) (# even) with each i, =12,..,n,

and

A, .= A

...4 3

A

#1858,

= 0 otherwise. (B.24)

Define the directional difference operator A 40 as the difference operator along the line obtained

24-1

by rotating the x“?""-axis counter-clockwise through an angle 8 about x in the x4 1x24-

plane.
‘Consider how the quantity on the left side of (B.7) generalises to # dimensions. One may take

= [ o, WP 4 6, | (®.25)

with g4 running from 1 to Yn (» even) or %(n-1) (#» odd). Then define «(W)as the
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average of (B.25) taken over all permutations of the # coordinate axes. This last step

symmetrises (B.25) with respect to the choice of planes of rotation.

Following a development parallel to that leading from (B.1) to (B.7), one finds that

a(W) = const. X (AX + .. + 42, m odd; | . (B26)
»! "
- const. X [(n/Z).’ BPRO2 + L+ 2
m 2m
+2 X AA / ], m, n even;
i\ Vom m (B.27)
(n-1)! (n-1)/2,42 2
= const. X |———~-— (15) (A + o +A)
[(n-1)2)! '
2m
+23 A 7 , m 7 odd.
s f( Vzm) / ( m )] e (B.28)

The factor #!/(%n)! X (¥4)%" in (B.27) is the number of choices of Y47 planes of rotation in
n-dimensional space. The corresponding factor in (B.28) is ! / [Y(n-1)! x (B)# D2 but
each such choice leads to the appearance of only #-1 out of # of the )L? terms. Hence the

factor of (A} + ... + A2) in (B.28).

Now (B.26) - (B.28) may be consolidated as follows:
(W) = const. X [(A} + ... + A7) + 2, T 1A, (B.29)
i>f

with
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B,, = 0, m odd;
= 2" x G2 m / 2m m n even;
n! Yom m )’ ’
= 20712 l&=-D2)t ( " )/[ Zm) m even, # odd.
(-1 | Yam m )’ (B.30)
Then «(W) may be put in the form:
(W) = const. X [B,,, () +...+2,)% + (1-B, ) (A} +...+A2)] (B.31)

As in Appendix B1, consider orthogonal transformations (B.11), converting W{x) to the form
(B.13) (m odd) or (B.21) (m even). By the same reasoning as there, the quantities

v, v, (m odd) or vf and v§ vl’r (m even)are invariant under orthogonal transformations.

Then the mean square m-th difference a(W) is measured by:
v, v, m odd, (B.32)
or

B (D* + (1-B,,) V1 v}, m even. (B.33)
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11

12

13

14

Date

MAR 93

APR 93

APR 93

AUG 93

-SEP 93

SEP 93

OCT 93

JAN 94

MAR 94

FEB 94

‘JUNE 94

JUNE 94

JUNE %4

SEPT 94

RESEARCH PAPER SERIES

Subject
AUSTRALIAN SUPERANNUATION :
THE FACTS, THE FICTION, THE FUTURE

AN EXPONENTIAL BOUND FOR RUIN
PROBABILITIES

SOME COMMENTS ON THE COMPOUND
BINOMIAL MODEL

RUIN PROBLEMS AND DUAL EVENTS

- CONTEMPORARY ISSUES IN AUSTRALIAN

SUPERANNUATION -
A CONFERENCE SUMMARY

AN ANALYSIS OF THE EQUITY INVESTMENTS
OF AUSTRALIAN SUPERANNUATION FUNDS

A CRITIQUE OF DEFINED CONTRIBUTION
USING A SIMULATION APPROACH

REINSURANCE AND RUIN

LIFETIME INCOME, TAXATION, EXPENDITURE
AND SUPERANNUATION (LITES):
A LIFE-CYCLE SIMULATION MODEL

SUPERANNUATION FUNDS AND THE
PROVISION OF DEVELOPMENT/VENTURE
CAPITAL:

THE PERFECT MATCH? YES ORNO

“RUIN PROBLEMS: SIMULATION OR

CALCULATION?

THE RELATIONSHIP BETWEEN THE AGE
PENSION AND SUPERANNUATION BENEFITS,

. PARTICULARLY FOR WOMEN

THE COST AND EQUITY IMPLICATIONS OF

- -THE INSTITUTE OF ACTUARIES OF AUSTRALIA

PROPOSED RETIREMENT INCOMES STRATEGY

PROBLEMS AND PROSPECTS FOR THE LIFE
INSURANCE AND PENSIONS SECTOR IN

" INDONESIA

Author
David M Knox
David C M Dickson
David C M Dickson

David CM Dickson
Alfredo D Egidio dos
Reis

David M Knox

John Piggott

David M Knox
David M Knox
David C M Dickson
Howard R Waters
Margaret E Atkinson
John Creedy

David M Knox

David M Knox

David C M Dickson
Howard R Waters

David M Knox

Margaret E Atkinson
John Creedy

David M Knox
Chris Haberecht

Catherine Prime
David M Knox
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16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

OCT %4

DEC 94

JAN 95

FEB 95

MAY 95

.. JUNO9S ... ..

JUN 95

JUN 95

SEP 95

OCT 95

DEC 95

FEB 96

FEB 96

“FEB 9% .

- "MAR 96

MAR 96

PRESENT PROBLEMS AND PROSPECTIVE
PRESSURES IN AUSTRALIA’S
SUPERANNUATION SYSTEM

PLANNING RETIREMENT INCOME IN
AUSTRALIA: ROUTES THROUGH THE MAZE

ON THE DISTRIBUTION OF THE DURATION
OF NEGATIVE SURPLUS

OUTSTANDING CLAIM LIABILITIES:
ARE THEY PREDICTABLE?

SOME STABLE ALGORITHMS IN RUIN THEORY
AND THEIR APPLICATIONS

-~ SOME FINANCIAL CONSEQUENCES OF THE SIZE

OF AUSTRALIA’S SUPERANNUATION INDUSTRY
IN THE NEXT THREE DECADES

MODELLING OPTIMAL RETIREMENT IN
DECISIONS IN AUSTRALIA '

AN EQUITY ANALYSIS OF SOME RADICAL
SUGGESTIONS FOR AUSTRALIA’S RETIREMENT

- INCOME SYSTEM

EARLY RETIREMENT AND THE OPTIMAL
RETIREMENT AGE

APPROXIMATE CALCULATION OF MOMENTS OF
RUIN RELATED DISTRIBUTIONS

CONTEMPORARY ISSUES IN THE ONGOING
REFORM OF THE AUSTRALIAN RETIREMENT
INCOME SYSTEM

THE CHOICE OF EARLY RETIREMENT AGE AND

‘THE AUSTRALIAN SUPERANNUATION SYSTEM

PREDICTIVE AGGREGATE CLAIMS
DISTRIBUTIONS

"THE AUSTRALIAN GOVERNMENT

SUPERANNUATION CO-CONTRIBUTIONS:
ANALYSIS AND COMPARISON

A SURVEY OF VALUATION ASSUMPTIONS AND
FUNDING METHODS USED BY AUSTRALIAN
ACTUARIES IN DEFINED BENEFIT
SUPERANNUATION FUND VALUATIONS

- "THE EFFECT OF INTEREST ON NEGATIVE

SURPLUS

David M Knox

Margaret E Atkinson
John Creedy
David M Knox

David C M Dickson
Alfredo D Egidio dos
Reis

Ben Zehnwirth

David C M Dickson
Alfredo D Egidio dos
Reis

Howard R Waters

.. David M Knox

Margaret E Atkinson
John Creedy

Margaret E Atkinson
John Creedy

- -David M Knox

Angela Ryan

David C M Dickson

David M Knox

Margaret E Atkinson
John Creedy

David C M Dickson
Ben Zehnwirth

: Margaret Atkinson

Des Welch
Shauna Ferris

David C M Dickson
Alfred D Egidio dos Reis



31

32

33

34

35

36

37

MAR 96
AUG 96

AUG 96

AUG 96
SEPT 96
OCT 96

OCT 96

RESERVING CONSECUTIVE LAYERS OF INWARDS
EXCESS-OF-LOSS REINSURANCE

EFFECTIVE AND ETHICAL INSTITUTIONAL
INVESTMENT

STOCHASTIC INVESTMENT MODELS: UNIT
ROOTS, COINTEGRATION, STATE SPACE AND
GARCH MODELS FOR AUSTRALIA

THREE POWERFUL DIAGNOSTIC MODELS FOR
LOSS RESERVING

KALMAN FILTERS WITH APPLICATIONS TO LOSS
RESERVING

RELATIVE REINSURANCE RETENTION LEVELS

SMOOTHNESS CRITERIA FOR MULTI-

- -DIMENSIONAL WHITTAKER GRADUATION

Greg Taylor

Anthony Asher

Michael Sherris
Leanna Tedesco
Ben Zehnwirth

Ben Zehnwirth
Ben Zehnwirth
David C M Dickson

Howard R Waters

Greg Taylor



