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A GENERAL CLASS OF RISK MODELS
Daniel Dufresne, University of Montrea]

Abstract

We consider the actuarial risk model when the waiting times or claims have a
Laplace transform which is a rational function. This generalizes the classical
model, where the waiting times are exponential, and gives more flexibility in
the modelling of a risk business. Ruin is seen as a random walk crossing a
barrier; the summands of the random walk are expressed as the difference of
the waiting time and the claim. The class R/ of distributions which have finite
rational Laplace transforms includes the so-called phase-type distributions.
For waiting times in R , the Laplace transform of the ruin probability is
obtained explicitly; if the claims are in R/, then the probability of ruin
is a combination of exponentials times polynomials, which can be found in
closed-form.

RISK THEORY; RENEWAL PROCESS; RANDOM WALK

1. Introduction

There is an abundant literature on the classical insurance no-interest risk
model, which assumes that the waiting times between claims are exponential (arrival
times thus forming a Poisson process). Fundamental to this model is the integral
equation

W) = 3 {0 - ["vu- o) -1 - Fel

where 1(u) is the probability of ruin, 1/ is the mean waiting times, ¢ is the rate at
which premiums are received, and Fx is the distribution function of the claims. The
Laplace transform of the probability of ruin is easily obtained from this equation.
Several numerical techniques are available for the numerical inversion of this trans-
form; however, up to now its explicit inversion has only been done in special cases,
e.g. if the claims distribution is a combination of exponentials (Gerber, 1979, p.118).
Sparre Andersen (1957) suggested a model where the i.i.d. waiting times have an
arbitrary distribution, and derived integral equation (2.1) below. Since then, the
theories of random walks and of queues (see for instance Spitzer (1964)) have pro-
vided a more general framework, which has led to explicit results in cases where
waiting times or claims have distributions related to the Erlang (for instance, see
Borovkov (1976)). Dickson (1998) and Dickson & Hipp (1998, 2000) look at the
cases where the waiting times have a Gamma(2, A) distribution or a combination
of two exponentials. They obtain an explicit expression for the Laplace transform
of the probability of ruin by solving a second-order differential equation, itself a
consequence of the Sparre Andersen integral equation for this specific case. This
approach is rather cumbersome, and appears very difficult as soon as the waiting
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times are a combination of more than two exponentials, or if they are Gamma(n, )
for an integer n larger than two. By contrast, in this paper we proceed directly with
the Laplace transform of integral equation (2.1); this permits the derivation of the
Laplace transform of the probability of non-ruin for a wider class of waiting times
distributions. This class includes finite combinations of Erlang distributions and
other distributions which have a rational Laplace transform. The simplifications
brought about by the use of transforms and complex variables in Risk Theory are
similar to those the same tools bring to ordinary differential equations with constant
coefficients.

The approach we take is to express ruin as a random walk crossing a bar-
rier. This question has been studied by many authors, in Probability as well as in
Queueing Theory. Three decades ago, Feller (1971, p.389) already remarked “The
literature is vast and bewildering”, in connexion with these problems. This pa-
per may not give new answers, but it expresses known ones in a different guise,
precisely aimed at calculating the probability of ruin. The results given in Feller
(1971, Chapter 12), Borovkov (1976), Asmussen (1992) and elsewhere on random
walks can be applied to Risk Theory. However, this paper takes up the problem
from scratch, applying elementary results from the theory of functions of a complex
variable, and proceeds directly to the ruin problem. The distributions considered
include the phase-type distributions, but differential equations are unnecessary in
our approach. Ladder variables (Feller, 1971; Bowers et al., 1997) do not appear ex-
plicitly, but factorization identities play an essential role, as they do in the so-called
“Wiener-Hopf” treatment of random walks (regarding the latter, see the comments
in Feller (1971)). Contrary to common usage, we use Laplace transforms, rather
than Fourier transforms.

Section 2 states the assumptions underlying the model. Section 3 gives some
general properties of the Laplace transform of the survival (or non-ruin) probability,
including a lower bound for the probability of ruin, and the removal of zero claims or
zero waiting times. Section 4 defines the class of finite rational distributions R/, and
gives examples. Section 5 derives an explicit expression for the Laplace transform
of the probability of non-ruin (or “survival probability”), when waiting times are in
RS, the claims distribution being arbitrary. Section 6 derives an expression for the
ruin probability when claims are in R7. Finally, Section 7 concludes the paper and
comments on various extensions of the results.

2. Assumptions and notation

We begin by stating some well-known definitions and results, which show
that the classical ruin problem over an infinite time period is a special case of
a barrier crossing problem for random walks. The abbreviation “a.s” stands for
“almost surely.” In this paper the Erlang(n,)) distribution is the same as the
Gamma(n, A), but the former is restricted to n € N,.

By changing the monetary units if necessary, it is always possible to assume
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that premiums are received at the rate of 1 per time unit. The classical risk process
is thus

N
Ut = U-I-t—ZXj,
Jj=1

where {NV;} is the counting process generated by i.i.d. (non-negative) waiting times
{W;}, that is,
Ny = max{n|Wy+.--+ W, <t}

or 0, if the set on the right is empty. Each of the sequences {X;}, {W;} is asumed
ii.d. and non-negative, and all the variables {X;, Wy; j,k > 1} are assumed inde-
pendent. Ruin is the event “there is a t < oo such that U; < 0,” or, equivalently,

{o

T, =W+ +W,, Tp =0, then

Nt(w)

sup ( > Xj(w)—t> > u}

0<t<oo j=1

Ur, = u+ ) (W, - X;),

=1

and ruin becomes equivalently

N,
su X;—t] >upy = inf Ur <05;.
{ 0§t<poo (; ! ) } { 0<n<oo Tn }

Let us rephrase the problem as follows. Suppose {Y;} is an arbitrary i.i.d. sequence,
and define

So =0, S =>Y n>L
j=1

The probability of non-ruin, or probability of survival, becomes

= > — B i .
o(u) P(M>-u) where M og‘fioo Sn

Note that ¢(u) = 0 for all u < 0. In the context of Risk Theory, we write
Y; = W; - X;,

where {X;} represent the claims, and {W;} the waiting times between claims. We
denote Y a random variable with the same distribution as Y}, and similarly for
W and X. From the Law of Large Numbers, if EY > 0 then U; tends to +oc
a.s. as t — oo (this includes the case where the average waiting time has infinite
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expectation while the average claim is finite). If EY < 0, then ruin is certain. In
the sequel we always assume that

0 < BEY < oo.

A consequence of this assumption is that the variable M defined above is a.s. finite,
whence

lim p(u) = 1.

For a random variable V, let Fy denote the measure on B(R) generated by its
distribution function. By conditioning on Y;, we find

plu) = / dFy(y)p(u+y) = Ep(u+Y). (2.1)

In the case of the risk process described above, Y is the difference of two independent
variables W and X, and (2.1) becomes

o(u) = Eplut+ W —X) = / dFw (2) / dFx () p(u+t—v).  (2.2)

For a complex number s, we use the notations
P(s) = / due™**p(u), W(s) = Ee™*W %(s) = Ee™*X, §(s) = Ee™*Y (2.3)
0

whenever these integrals exist, and we use the same symbol for their analytic con-
tinuations. The abscissa of holomorphy hy of a random variable V is defined as

hy = inf{s € R|Ee™*Y < o0}.

For a distribution Fy, with hy > —o0, the function s — E e~*Y must have a singular-
ity at hy (Widder, 1946, p.58). For instance, a finite combination of Erlang(n;, A;)
distributions has

hy = — mjin{/\j}.

The positive part of a is denoted a* = max(a,0).

Lemma 2.1. The transform @(s) in (2.3) is analytic in {s € C|Re(s) > 0}. The
same applies to W(s) and X(s), when W, X > 0. IfEY > 0, then

Jim sp(s) = p(c0) = 1
lim s@(s) = ¢(0).

Proof. The limits are the usual Initial and Final Value Theorems for Laplace trans-
forms, see Doetsch (1974). The second one applies because p(u) = P(—M < u),
and thus lim, o4 ¢(u) = ¢(0). 0
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3. First properties of ¢(s)

The factorization given in Theorem 3.1 is not the one commonly used in the
study of random walks (Feller, 1971; Borovkov, 1976). Theorem 3.5 is a lower bound
for 1(0), which the author has not seen in the literature. We assume W, X > 0.
Since W and X are independent, Y = W — X implies y(s) = w(s)x(—s), and
thus hy+ = hw . The restriction hyy < 0 may be removed in Theorems 3.2-3.5, see
Section 7.

Theorem 3.1. Suppose hy < 0. Then, for 0 < Re(s) < —hyw,

¢(s) = 2_8’ (3.1)
where
00 Y+
n(s) = E/o dve®™p(Y —v) = E ; dvep(YT —v) (3.2)
w
=E / dvetW V(v — X) (3.3)
0
d(s) = ¥y(-s) -1 (3.4)

Proof. Multiplying (2.1) by e~** and integrating yields (for 0 < Re(s) < —hyw)

&(s) = Ee“y/0 due™ ) p(y 1+ Y)

o0
= Ee%Y /Y+ dve " p(v)

= Ee*Y [/000 dve™*p(v) — /0Y+ dv e‘”cp(v)]

y+
= F-5)p(5) —E [ duep(Y* —u).
0
Since
Y+
/ dveo(Yt —v)| < Y+eRe(s)Y+, (3.5)
0

the second term in the last expression is finite if 0 < Re(s) < —hw. This proves
(3.1), (3.2) and (3.4). From (2.2) (if 0 < Re(s) < —hw),

oo
o(s) = Eesw/ due MW — X +u)

= SW/ dve *p(v - X)
= SW/ dve™*" v—-X)—E/ dve* ™ (v — X).
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The independence of W and X implies that the first term in the last expression
equals

w(—s) /000 dv e“s”'/ov dFx (z)p(v—z) = W(—s)x(s)@(s),
which proves (3.3). a

Theorem 3.2. Suppose hw < 0. Then the function n(s) of Theorem 3.1 is analytic
in {s € C|Re(s) < —hw}, and

v+
In(s)] < n(0) = E/o (YT —u)du < E(YT), Re(s) < 0.

Suppose n(s) and d(s) have analytic continuations in a domain D of {Re(s) > 0},
if so € D is a zero of d(s), then it is also a zero of n(s), with at least the same
multiplicity.

Proof. Recall (3.5), and note that @(s) has no pole in {s € C|Re(s) > 0}. O

Theorem 3.3. Suppose hyy < 0. IfEe~*Y" (or X(s)) has an analytic continuation
in some domain D of {Re(s) < 0}, then ¢(s) has an analytic continuation in D as
well, where it is equal to n(s)/d(s).

Proof. We know that n(s) is analytic to the left of ~hy (Theorem 3.2); moreover,
d(s) = w(—s)x(s) — 1 is analytic in the strip {0 < Re(s) < —hw}. Therefore,
if X(s) has an analytic continuation to the left of that strip, then we must have
&(s) = n(s)/d(s) there too. Next, observe that

5’(—8) = Ee*Y = Eesyl{ygo} + Eesyl{y>0}
= Ee™Y +EeY' —1.
The function Ee~*Y ™ is analytic in the right half-plane, while EesY™ is analytic to

the left of hy. Consequently, if Ee~*Y  has an analytic continuation in a subset of
the left half-plane, so does y(—s). O

Theorem 3.4. If hyy < 0, then

vt
n(0) = E/o (Yt —u)du = E(Y).

Proof. The result follows from

n(0) _ n0)

lims_,0+ dss) h EY ’

—
Il

p(oc) = lim sp(s) =
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EY~

9. >
Theorem 3.5. If hw < 0, then ¥(0) > EVT

Proof. From Theorem 3.4,
v+
EY*—EY- = EY = E/ o(Y*—u)du > pOEY+ = EY*—g(0)EY+. O
0

Exzample 3.6. This example takes advantage of the simplifications which occur
when Y has an arithmethic distribution over some mutiple of the integers 1,0, —1, ...
(we let that multiple be one for simplicity), and shows that the inequality in Theo-
rem 3.5 cannot be improved upon in general. Since S,, can only decrease by integer
values, ¢(u) is constant between successive integers; ¢(u) is also right-continuous.
Because Yt equals only 0 or 1, we find

y+
EYT-EY™ = E/ (YT —u)du = p(0)EY™.
0

Thus,
EY~™ _ Y kP(Y = —k)
-EY+ PY =1) '
In particular, if 1/2 < p< 1, ¢g=1—-p, Y =1 with probability p and Y = —1 with
probability g, then the above implies

$(0) =

vo) = -,

which can be checked in other ways (for instance, apply the theorem on p.413 of
Bowers et al. (1997).) |

Removing zero claims or waiting times

In the classical Poisson case (and for compound distributions in general), a
useful technique is the removal of the zero claim, that is, transforming a given
problem so that the probability of a claim being equal to 0 is 0. This is possible
more generally for the class of risk models we consider in this paper, for claims as
well as for waiting times. For instance, suppose P(W = 0) = a¢ € (0,1), and let

Ny = 0, Np = min{n > N | W, > 0}, k>1.

Define
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The distribution of X is compound geometric, with probability of succcess 1 — ag.

Since the ruin probability is unaffected by the change from S, to S,, the ruin
problem with

Fy(z) = M, x>0, /Oooe—stdFW(t) - W(s) — ag

1—&0 1—0,0
s s ., (36)
(z) = . - —st g (p) = (L= a0)%(s)
Fx(z) = kE_lﬁFx’“(x)(l—ao)a’S g /0 AR () = TR0

is equivalent to the original one, but has no zero waiting time. Removing the zero
claim leads to a similar equivalent problem, with the roles of W and X reversed.

4. Probability laws with rational Laplace transforms

A rational function is the ratio of two polynomials.

Definition. A probability distribution u on R is said to belong to R if its Laplace
transform is a rational function. If p is concentrated on R, then it will be said to
belong to ’Ri In either case the distribution will be said to be rational.

The class Rfl_ includes all combinations of Erlang densities, possibly including
a mass at the origin. For instance, the measure u which is a combination of a mass
ag < 1 at the origin, and 1 — ao times an Erlang(n, )\) density, n a positive integer,
has Laplace transform

A )'n _ ao()\+s)”+(1—a0))\" _ Pl(s)
A+s) A+ s)n T Py(s)’

where Py, P, are polynomials. When the degrees of P; and P, are the same, as they
are above when ag > 0, then necessarily there is a point mass at the origin. If there
is no mass at the origin, then the degree of P, is lower than the degree of P,. With
the help of Egs.(3.6), any mass at the origin in the distribution of W € ‘Ri may be
removed, and the transformed distribution is still in Ri; the same applies to the
removal of zero claims.

ao+(1—a0)(

The combinations of Erlang densities do not necessarily have only positive
weights; for instance, the function

(3(3—2‘1c - 26_4$)1{z>0}

is non-negative and integrates to one, even though it includes the exponential den-
sity with parameter 4 multiplied by —1/2. All the measures in Ri may be expressed
as
n_ dj pCik geik—1 p~b;t
du(t) = aod(dt) + |D > ajp- —1(0,00)(t) | dt, (4.1)
j=1k=1 (eje = 1)!
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where
ag + Zajk = 1.
ik

Here, the {b;} are either real and positive, or else complex numbers with positive
real parts, and the {c;i} are positive integers; for convenience we further assume
¢im < cja; for all m < d; and aja; # 0. The Laplace transform of F' may be
expressed as P; /P, where Py, P, are irreducible polynomials, with

Py(s) = (by + 8)%%1 -+ (by + 5)°ndn.

The {b;} are then the poles of the Laplace transform of F. When the {b;} are all
real, p is seen to be a combination of a mass at the origin and of Erlang(c;k, b;)
densities, for 1 < k < d;j, 1 £ j < n. In other words, the density of the continuous
part of u is of the from

Z mi(z)e %", (4.2)

where the m;(z) is a polynomial in z. The roots of Py, b1,...,b,, are the scale
parameters of the Erlang densities which make up the combination. Observe that
b; has multiplicity c;q,.

Some of the parameters {b;} may be complex, so that the class 'R,fr contains,
in particular, measures which have damped sine or cosine functions as part of their
densities. For example, the measure with density

17 _, .
3¢ [1 —sin(4x)] 11550} (4.3)

is non-negative, integrates to one, and has Laplace transform

17/ 1 4 17 s°—2s+13 a4
13 (1+s (s+1)2+16> - 13.(1+s)[(s+1)2+16]’ (44)
and thus belongs to ’Ri Here the three roots of the denominator are —1, —1 + 44
and —1 — 47. The last two are complex and conjugate. In all cases where a rational
distribution has complex roots, the latter have to come in pairs of conjugate roots
(otherwise the density would not be a real function). In all other respects, the den-
sities of the distributions in Riwith some complex b; are just the same as in (4.2).
In effect, this means that the class of combinations of Erlang densities naturally
includes damped sines and cosines, although such functions cannot individually be
probability densities. Note that min{Re(b;)} has to be one of the real {b;}, and that
the abscissa of holmorphy of y is h, = —min{Re(b;)}.

The class ’Ri strictly contains the class of phase type distributions, since the
latter does not allow damped trigonometric functions as components, see Neuts
(1981, Chapter 2). An early reference to rational distributions is Cox (1955). One
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might initially believe that ruin problems would be simpler if complex {b;} are
excluded in the distributions of waiting times or claims, but the analysis below
shows that it is not so. The formulas are the same, and the tools used to derive
them are identical. Even when all the {b;} are real, the probability of ruin may still
contain damped trigonometric functions, as can be seen in Dickson (1998, Section
6) and in Section 6 below.

‘s . . b
5. Waiting times in R

This section shows how to obtain the Laplace transform of the probabiity of
survival, ¢(s), when the distribution of waiting times is in Rf:_ This is achieved
by showing that n(s) is a rational function, which can be determined explicitly.
In general, this does not yield the probability of ruin, except in specific cases. The
situation is the same as in the classical Poisson case: inverting the Laplace transform
for ¢ depends on the Laplace transform of the distribution for the claims, and may
be a difficult problem; the inversion of ¢(s) can be performed explicitly in cases
where the claims are in R, as shown in Section 6.

Theorem 5.1. Let {b;} be complex numbers with positive real part, and {c;i, d;}
positive integers, with cjm < cja; for all m < dj, ajq; # 0, and suppose the distri-
bution of W is given by (4.1). Then

n dj ¢ m(g s\ (m
0 apb P (—1)™ (%)™ (b))

TL(S) : ZZ Z il m](b —S)CJ"’ m

ji=1k=1 m=0

for s € C = {b,...,b,}, with (Xp)™)(s) = (d™/ds™)(Xp(s)).

Proof. Apply (3.3). For Re(s) < —hw = min{Re(b;)} and v > 0,

w n dj ajkbc.jk o0 1
Ee*"1iwsy = . j / duuSi " te™®
{W>v} ng kZ=1 (cjx — 1)(bj — s)es* v(b;—s)

Recall the incomplete gamma function (Abramowitz & Stegun, 1972, pp.260-262):

o0
I'(a,z) = / t*le~tdt, z > 0.
-

Fore=12,...,
c—1 ™
I'(e,z) = T'(c)é(c—1,z)e”" where  &(c—1,z) = Z —
m=0
Thus
n d Cik
- ajkbj] —v(b;—s)
EeWiwsny = >, 0 _S)Cks(cjk 1,9(b; — s))e
j=1k=1 ‘7
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and
[o o]
/ dve™*Ep(v — X) [v(b; — s)]me—v(bj-S)
0

= (bj —s)™ /000 dve~biy™ /:) dFx (z)p(v - )

= (b; — s)m(—l)mjr—rrn /000 dve ™" /Ov dFx(z)p(v — )

= (b~ S\ (~1)" o [%(r)(r)]

'I‘:bj

’I‘=bj

The calculation was done under the assumption that Re(s) < —hw, but d(s) =
w(—s)X(s) — 1 is analytic, except for poles, in {Re(s) > 0}, and so must n(s) =
o(s)d(s). O

Since @(s) has no poles in the right half-plane, the unknown constants
(@)™ (b;) in n(s) may be found by determining the zeros of the denominator
¥(—s) — 1 in that half-plane.

Theorem. (Rouché) Suppose f(z) and g(z) are analytical on and within a closed
contour T' in C. Suppose (a) f(z) does not vanish on T, and (b) |g(2)| < |f(2)| on
T. Then f(z) and f(z) + g(2) have the same number of zeros within T.

Theorem 5.2. Suppose hx < 0 and that W is the rational distribution of Theorem
5.1. Let

m(s) = [](b; — o).
j=1

Then the polynomial
N(s) = m(s)n(s),
has degree v = c14, + -+ + Cng, — 1, and the function D(s) = n(s)d(s) is analytic
in {Re(s) > 0}. Moreover, there is R > max |b;| such that
j

lw(—=s)| <1 Vs with |s|=R, Re(s) >0. (5.1)
Let Cp be the closed path consisting of the half-circle {s| |s| = R,Re(s) > 0} and

the line segment going from —R ¢ to +Ri. Then N(s) and D(s) have exactly v zeros
inside Cr. Moreover, -

N(s) = p;js’ with po=EY J][b;/% and p,=p(0)(-1)".
=0 =1

11
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Proof. By Theorem 5.1, N(s) is a polynomial, with degree no larger than v. Fur-
thermore, D(s) = m(s)d(s) is analytic in {Re(s) > 0}, because multiplying by
(bj — s)¥% cancels the pole of W(—s) at b;, and X(s) is of course analytic in that
region. We can write the Laplace transform of W as

Py(s)
ap + P, (S)’
where the degree of P; is strictly smaller than the degree of P»; this implies that
W(—s) tends to ap < 1 as |s| tends to oo, and that (5.1) is satisfied for some
R < oco. Choose hx < —q < 0 such that ¥(—g) < 1 (this is possible because
EY > 0) and form the closed path Cg 4 (see Figure 1) consisting of the half-circle
{s|Re(s) = R, Re(s) > 0}, the line segment from Ri to —gq, and finally the line
segment from —g to —R<4. On the line segments we have s = u + v, u < 0, v € R,
and so

[y(u+iv)| < §(u) < 1.

We also have |y(+iR)| < 1, since the distribution of Y is not arithmetic (Feller,
1971, p.501). Thus |y(—s)| < 1 for all s € Cg,q, so

[7(8)7(=9)| < |n(s)l, s€Cryg,

as m(s) does not vanish on Cg 4. From Rouché’s Theorem, 7(s)y(—s) — n(s) has
the same number of zeros inside Cr 4 as m(s), that is, v + 1. Let ¢ tend to zero.
Observe that d(s) has a zero at the origin, which must have multiplicity one, for
¥'(0) = EY # 0. Then the number of zeros of 7(s)d(s) inside Cg is v.

By Theorem 3.4,
po = N(0) = 7(0)n(0) = 7(0)EY.

Finally, by Lemma 2.1,

e i) - g 5
= 9(0) Jim 22} Jim [¥(-9)%(s) - 1
. e bj Cid; _ v
= -+ tin ]] (2-1)" = —e-10+ D

12
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Im

Re

Figure 1. The path Cg 4 in the complex plane

Exzample 5.3. Suppose W ~ Erlang(a, A), that is,

Aata—le—)\t
¥ 1(0’00) (t)dt.

dFw(t) = ~——p5-

Then

a-1

1) A% (%))
n(s) — Z( 1) A ( <P) (’\), 7'('(8) = (A—S)a,

mi(A — s)a—™

m=0

and N(s) is a polynomial of degree v = a — 1. From Theorem 5.2 ,
po = A°RY, Pa1 = p(0)(-1)*"1.

The roots of D(s) = (A — s)*[W(—s)X(s) — 1] must all satisfy

%(s) = 1/W(-s) = (1—§>a. (5.2)

The resulting expression for ¢(s) agrees with the one given by Kalashnikov (1998,
Eq.(1)), which is itself taken from Prabhu (1980), since

N(s) Z;:olpjsj
D(s) — m(s)d(s)

13
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w [[1-2)

i S
(A — s)*[w(=s)z(s) — 1]

a—1
xEW -x) TJ(- pij)
Aoz(s) — (A —s)e

et As
(@=2EX) [[(A- )
L

Pi

Aeg(s) — (A—s)> '’

if {p;} are the non-zero roots of d(s).

Consider the real roots of Eq.(5.2). Because y(—s) = Eexp(sY) is convex, with

d .
E (—S) o = EY > 0,

D(s) cannot have a real root between 0 and A. Suppose « is even. For s > A, X(s)
is decreasing, 1/W(—s) is increasing, and so D(s) has just one real, positive root,
larger than A (see Figure 2). If o is odd, there is no real root (Figure 3), since
1/w(—s) is negative for s > A. In short, N(s) has at most one real root, and, if
it has one, it is larger than X. All other roots of N(s) are complex and conjugate.
Finally, if Re(s) > 0 and |[A — s| > A, then 1/W(—s) > 1 and z(s) < 1, so that s
cannot be a solution of (5.2), and thus all roots {p;} are within the circle of radius
A centered at s = A.

Let us consider the cases a = 1, 2 in more detail. The case o = 1 is the classical
risk model, with claims arriving according to a homogeneous Poisson process with
intensity A. Let us derive the formula for the Laplace transform of the derivative of
the probability of ruin, which is given in Bowers et al., p.419:

° _ 0 1—x(s)
sulof/ (u)]du = . . 5.3
/0 Yl = T e T AT esEX 1 (53)
In our notation, the security loading is
EY
= — 54
and so (5.3) becomes
AEY - Tl;’fs@___
X(S) + S 1
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1/w(-s)

x(s)

Figure 2. Xx(s) and 1/W(—s), n even

x(s)

\l/w(—s)

Figure 3. X(s) and 1/W(—s), n odd
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Now, by Theorem 5.2, N(s) has degree 0, and
po = AEY = ¢(0).

Hence

/0 " ey ()] du = /0 ” el (w) du

= —¢(0) + s¢(s)
sAEY
= ARV + AX(s) = A+s
= )\EY. zg‘gi)*
x(8)+5 -1
When a = 2, N(s) has degree 1, and
N(s) _ po+ P15 _ po+p18

Oy g BRZORICEDR

ar(s) - 1]

From Theorem 5.2, po = A2EY = 2X — A?E X, and p; = —¢(0). The latter may be
found by determining the root of D(s) in the interval (A, 00), say p. We must have
N(p) =0, s0 p1 = —po/p = —X2EY/p, from which

NEY
0) = )
»(0) B

Let us be check that ¢(0) is strictly smaller than one. For s real, the two curves
1/%(—s) and X(s) meet at the origin, where they have slopes X'(0) = —E X and
w'(0)/w(0)2 = —EW = —2/), respectively. Since EW > EX, the curve %X(s)
is above the curve 1/W(—s) for small positive s. The curves also meet a p > 0.
Because X(-) is convex, p has to be to the right of the point where the tangent of
X(r) at r = 0 meets 1/w(—s). That point s satisfies

)\—So 2
l—SoEX = ( by ) s

which means

so = A2 (%—EX) = \2EY < p. 0

16
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6. Claims in ’Ri

Remarkable simplifications occur when we assume that X € ’Ri. Suppose
hyw < 0 and that the distribution of X is given by (4.1). We know that @(s) is
analytic in {Re(s) > 0}, and that n(s) is analytic in {Re(s) < —hw} (Theorem
3.2). Moreover, d(s) = W(—s)x(s) — 1 is analytic in {Re(s) < —hw}, except for
a finite number of poles in {Re(s) < 0}. Then @(s) = n(s)/d(s) is analytic in C,
except for a finite number of poles. Each of these poles has to be a zero of d(s).

Theorem 6.1. If hyw < 0 and X € RL, then @(s) is a rational function. If,
moreover, no zero of W(—s) is a pole of X(s), then the non-zero roots of d(s) are all
in {Re(s) < 0}, and their number equals the number of poles of X(s).

If the distribution of X is a combination of Erlang(m;,3) distributions (pos-
sibly with a mass at the origin), then no zero of W(—s) can be a pole of X(s).

Proof. With respect to the last claim, a combination of Erlang(m;,(3) plus a
mass at 0 has a Laplace transform with real poles only; any zero of W(—s) in
{Re(s) < 0} has to be complex, since this is the Laplace transform of a real, non-
negative measure.

Obviously, s = 0 is a root of d(s). Here Y cannot have an arithmetic distribu-
tion, so d(s) has no other zero on the imaginary axis (Feller, 1971, p.501). Next,
we show how to form a closed contour in the left half plane which contains all the
poles of X(s) in its interior, and on which

[W(=s)| < (6.1)

1
%(s)I
Since EY > 0, and also because §(—s) exists for s in a neighbourhood of the origin,
there is a strip —6 < Re(s) < 0, § > 0, where X(s) has no pole and |y(-s)| < 1.
Now, |W(—s)| < 1if Re(s) < 0, while |X(s)| < 1 if |s| is large enough, which implies
that d(s) cannot vanish if Re(s) < 0 and if |s| is larger than some number Ry. Thus,
we may choose R such that the half-circle

) ] g T 3
= — e — 3 —_ < < e = —— W J—
Cr {s 2+zy, R<y<R;s 2+Re ,2<9<2}

encloses all the poles of X(s), as well as all the zeros of d(s), and (6.1) holds on
the half-circle. We cannot apply Rouché’s Theorem to w(—s) and 1/X(s) based on
(6.1), because 1/x%(s) is not analytic in Cr. However, recall that

- _ Py(s)
x(s) = %’

where P (s), Px(s) are polynomials, expressed in irreducible form. Letting
o) = Ps)#(=s) and  f(s) = —Pi(s)/%(s) = —Px(s),
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we see that the assumptions in Rouché’s Theorem are satisfied in Cg, and so
h(s) = f(s)+g(s) = Pi(s)W(—s) = Pa(s) = Pa(s)d(s)

has the same number of zeros inside Cr as P»(s). Every zero of d(s) is a zero of h(s);
it remains to show the converse. If h(s) = 0 and Py(s) # 0, then clearly d(s) = 0. If
h(s) = 0 and P5(s) = 0, then s is one of the poles of X, and so P;(s)W(—s) # 0, a
contradiction, since no zero of W(—s) is a pole of X(s), and P (s)/P»(s) is irreducible.

O

Since ¢(u) tends to 1 as u — oo, the poles of ¢(s) must have negative real
parts. There are cases where W(—s) has zeros in the left half-plane, an example
is Eqgs.(4.3)-(4.4). These zeros must be complex and conjugate. If such a pair of
(simple) zeros (—b1,—b;) also happen to be (simple) poles of %(s), then there is
a cancellation in the product w(—s)X(s), which in effect decreases the number of
poles of X(s) by 2. The proof of the above theorem is unchanged, except that we
define

Py (s)w(-s)
(b1 +8) (b1 +5)’

__R@ES  _ P
(by + s)(b1 + s) (b1 + 8)(b1 + 5)’

9(s) = fls) =

and conclude that the number of zeros of d(s) in the left half plane (including
the imaginary axis) is one plus the number of poles of X(s) minus two. The same
reasoning shows in general that the number of zeros of d(s) is one plus the number
of poles of X minus the number of zeros of W(—s) which are also poles of x(s)
(counting multiplicities).

Corollary 6.2. If hw < 0 and X is in R%, then

pw) = 1= fulwe™™, (62)
k=1
where each fr(u) is a polynomial, and {—ri;k =1,...,m} are the zeros of d(s) in

{Re(s) < 0}.

This follows by inverting the rational function &(s). Each pole of @(s) is a zero
of d(s) in {Re(s) < 0}, including 0 (which corresponds to the “1” in the above
expression for ¢(u)). The degree of fr(u) is the multiplicity of 7, minus one, and
the sum of the degrees of the fi(u), plus m, is the number of zeros of d(s) in

{Re(s) < 0}.

Because X(s) has a pole at hxy = —min{Re(b;)}, and that hx must be one of
the {b;} which are real, we must have

lim y(-7) = .
rﬁl)l{y( 7) 400
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Now y(—7) is a convex function for —r € (hx, 0], with §'(0) < 0. Hence d(—r) has
exactly one simple, real zero —r; in the same interval. There cannot be a complex
root s of d(s) in {—r; < Re(s) < 0}, since we would then have

|Ee’Y| < Eefe®)Y < 1.
(The first strict inequality results because the distribution of Y is not arithmetic.)

In cases where X(s) has other types of distributions, r; may not exist.

Definition. The smallest r1 > 0 such that d(—r1) = W(r1)X(—r1) = 1, if it exists,
is called the adjustment coefficient.

In the classical risk model, W(r) = A/(A + r), and so the relationship which
defines the adjustment coefficient is

A+7r = AEenX

or

1+1} = Een¥X,

In our notation, 1/ = (1+6)E X (see (5.4)), and thus the above equation is identical
to (13.4.3), p.411, in Bowers et al. (1997).

Since the adjustment coefficient ry is the root of d(—s) with the smallest real
part, Corollary 6.2 implies that, when claims are rational,
p(u) ~ Ce as u — oo.

When waiting times are exponential, the above asymptotic result is, of course, a
particular case of the famous result due to Cramer (Feller, 1971, p.411).

The hitherto unknown polynomials {fx(-)} may be found by inserting (6.2)
into (2.2). We limit ourselves to the simpler case where both X(s) and @(s) have
only simple poles, that is,

dFx(z) = aod(dz)+) abje %1 y(z)dz,  (u) = 1-) _ fre™™*, (6.3)
j=1 k=1

where {fi} are constants. The case where some of the {ry} or {b;} have multiplic-

ities greater than 1 is conceptually the same, but the equations are more compli-

cated (in the case where claims are Erlang(a, ), the expression for @(s) is given

in Kalashnikov (1998), quoting Prabhu (1980)). Since b; # ri for all (j, k) (poles

cannot be zeros), we get

m utt m
(¢]

j=1 k=1

m
= aop(u+t)+ Zaj [1— e bi(vF1)
Jj=1

_ Z Z ajbjfk [e—rk(u+t) _ e—bj(u+t)]’
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and so
p(u) = 1= fre™™"
k=1
= aoEp(u+ W)+ a;[l — e b"Ww(b))]
j=1
m m a b f e e
=YY P e (k) — e (b))
j=1k=1 1 'k
m . m b
= 1—aEp(ut+ W) - Z fre () Y b_“f_ -
k= j=1 J
m 5 N m b f
- a5Ww(bs)e b’“[ Zb = }
j=1 k=1 J
Hence

aOEz,Lv(u—I-W)-I-kae_r'“ Tk)z = kae i (ry) a°+zb “ry

b —r
k=1 k

= Z fee T TFEW (re)z(—1k)

and
— b fx .
= =1,...,m. 6.
Zb_rk 1, j=1...,m (6.4)
These conditions determine the constants { fx; kK = 1,...,m}, once the roots {ry; k =
1,...,m} have been found.

In the particular case where the distribution of X is a mass ag at 0 and otherwise
an exp(b) distribution, we find

b-— 1 —riu

b

In words, when claims are exponential (po'ssibly with a point mass at the origin),

the probability of ruin is an exponential function of the initial surplus, whatever the
distribution of waiting times.

P(u) =

Ezample 6.3. In Example 4.1 in Dickson & Hipp (2000), the authors assume
fw() = ( et 4 4e“t/2> 10,00) (%), X ~ Erlang(2,1). (6.5)
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Since W ¢ Ri, it is possible to find the Laplace transform of ¢(u) as was done in

Example 5.3, and then invert it. However, X € R_{ as well, and it appears more
direct to apply Corollary 6.2, as was done above for the case where the distribution of
claims is a combination of exponentials. Let the distribution of W > 0 be arbitrary,
and suppose X ~Erlang(2,b) (assuming E(W — X) > 0). From Corollary 6.2, the
probability of ruin is a sum of constants times exponentials, as long as all roots of
d(s) in the left half-plane are simple (this is so in the particular case (6.5)). Hence,

we know that
2
$(u) = 1= fre ™,
k=1

where 71,72 are known roots of d(s) — 1 (and thus depend on the distribution of
W), and f;, f, remain to be found. Insert the above expression into (2.2), and recall
the formula

z
a2/ ze dzr = 1— (14 az)e™ .
0

We find
u+t 2 utt
Ed(u+t-X) = / drbPze™ = " fibZe () / d pe—(b-"%)=
0 k=1 0
= 1—[L+b(u +t)]e ¥+
2 B2
~ 3 e (e ) [1 4 (b — 7y (u + )] b},

k=1 (b - rk)2

and so

$(u) = E¢(u+T - X)
= 1—e "E[l +bu+W)e W
2 2

2
- Gy ° EV e ’k“+e”’“ka ° ot G+ W)e™
k=1
& - —bup bW 2 b b
= l—kzzlfke kY _ e Ee [l—gfkm-f-bu(l—;fkb_rk):l
— be EWe W (1 b
k=1 _Tk

We must therefore have

2
Z b—re ka(b—rk)2 =1L

k=1

f—t
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These equations are the counterparts of (6.4), and determine the constants f, fo.
In the case considered by Dickson & Hipp (2000) (see (6.5)), we find

ri = 0.210536, r, = 1.44931

fi = 0.720226, fp = —0.0342954, (6.6)

and thus
Y(u) = 0.729226 ¢~0-210536% _ () 0342954 ¢~1-44931u

Observe that it is also possible to approximate v (u) by considering a model with
the same distribution for W, but with claims having a distribution which is a com-
bination of exponentials and which approximates the Erlang(2,1). The sum of two
independent exponentials with respective means 1 and 1 + € tends (in distribution)
to an Erlang(2,1) as € — 0. This sum of exponentials has Laplace transform

1+e€ 1+¢ 1 1+¢€ 1

X(s) = 1+s)(1+e+3) T Te 1+s € 1+e+s

and the density of claims is thus

fx(z) =

€ €

1+4e¢ . 14+€ _qi0s
< e € (1+e) )1(0’00)(.’13).

As seen before, the probability of ruin is a combination of exponentials with weights
given by (6.4). It can be checked numerically that the constants ri,7s, f1, f2 so
obtained approach those in (6.6) as € tends to 0.

The lower bound for 1(0) (Theorem 3.5) can be computed here:

EY~

EYT = 0.420103. O

$(0) 2

7. Extensions and conclusions

This paper has shown one way of treating the ruin problem when either waiting
times or claims have rational Laplace transforms. When waiting times are in ’R,fr,
then the Laplace transform of the probability of ruin has an explicit expression,
which depends on the zeros of d(s) = W(—s)x(s) — 1 in the right half-plane. When
claims are in 'Ri, then more explicit results are obtained, in that the probability
of ruin itself has a rational Laplace transform, with poles which are the zeros of
d(s) = W(—s)X(s)—1 in the left half-plane. The expressions given for the probability
of ruin in Section 6 show that the zeros of d(s) are unavoidable, whatever way the
probability of ruin is obtained, even if they are complex. An approach based on
differential equations, as used in Dickson (1998) and Dickson & Hipp (1998, 2000)
will involve finding the zeros of d(s) at some point, for instance when solving a
differential equation with constant coefficients.
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Concerning the papers Dickson (1998) and Dickson & Hipp (1998, 2000) the
following points may be made (refer also to Kalashnikov (1998)):

e Those papers assume that waiting times are rational, with two poles (combination
of two exponentials, or an Erlang(2, A)). The Laplace transform of the probability
of ruin is given by Theorems 5.1-5.2, by specifying that either n = 2,d; = dy = 1,
or n = 1,d; = 2. The roots of d(s) which appear in Theorem 5.2 are found in the
three papers, when solving ordinary differential equations which ultimately result
from Eq.(2.1).

e The examples given in the three papers all involve claims with rational distribu-
tions. In some cases the claims distribution is a combination of two exponentials,
and the probability of ruin is also a combination of two exponentials; in one case
the claims distribution is a combination of two Erlang(2, \) distributions, which
has thus four poles (counting multiplicities), yielding a probability of ruin which is
a combination of four exponentials. All those facts are independent of the particular
distribution for the waiting times, as shown in Section 6. However, the approach
described in this paper avoids ladder variables and differential equations altogether.

On the subject of ladder variables (see Feller (1971, Chapter 12), Bowers et al.
(1997, Chapter 13)), observe that once the Laplace transform of the probability of
ruin and ¢(0) have been obtained (for instance, using Theorems 5.1-5.2), the Laplace
transform q(s) of the ladder variable @ follows immediately from the identity

©(0)
1-9(0)a(s)

From this point of view, once ¢(0) and $(s) are known, ladder height representations
for the probability of ruin are no more than one possible way of inverting &(s).

sp(s) =

The following claims will be the subject of further work:

Theorems 3.2-3.5, 6.1 and 6.2 were stated with the condition hy < 0, but they

also hold if hyy = 0. This is shown by taking appropriate limits with respect to the
distribution of W. Likewise, Theorems 5.1-5.2 hold if hx = 0.

It is also possible to consider a more general class of distributions, R, which
consists in distributions on R} with a Laplace transform which is a series of ratio-
nal functions. Under proper assumptions, the density of such distributions can be
expressed as a series of Erlang densities. Moreover, Theorems 5.1, 5.2, 6.1 and 6.2
can be extended to cases where W or X are in R, . In particular, it is interesting
that if claims have a density which is a series of exponentials times polynomials,
then the probability of ruin is of the same type.

Acknowledgments

This is the outcome of a research project which was begun while the author
was at the Centre for Actuarial Studies, University of Melbourne. Financial support
from the Institute of Actuaries of Australia is gratefully acknowledged.

23




A General Class of Risk Models

References

Abramowitz, M., and Stegun, A (1972). Handbook of Mathematical Functions.
Dover, New York.

Asmussen, S. (1987). Applied Probability and Queues. Wiley, Chichester.

Asmussen, S. (1992). Phase-type representations in random walk and queueing prob-
lems. Annals of Probability 20: 772-789.

Borovkov, A.A. (1976). Stochastic Processes in Queueing Theory. Springer-Verlag,
New York.

Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A., and Nesbitt, C.J. (1997).
Actuarial Mathematics (Second Edition). Society of Actuaries, Itasca, Illinois.

Cox, D.R. (1955). A use of complex probabilities in the theory of stochastic pro-
cesses. Proc. Camb. Phil. Soc. 51: 313-319.

Dickson, D.C.M. (1998). On a class of renewal risk processes. North American Ac-
tuarial Journal 1: 60-68.

Dickson, D.C.M., and Hipp, C. (1998). Ruin probabilities for Erlang(2) risk pro-
cesses. Insurance: Mathematics and Economics 22: 251-262.

Dickson, D.C.M., and Hipp, C. (2000). Ruin problems for Phase-Type(2) risk pro-
cesses. Scand. Actuarial J. 2000: 147-167.

Doetsch (1974). Introduction to the Theory and Application of the Laplace Trans-
formation. Springer-Verlag, New York.

Feller, W. (1971). An Introduction to Probability Theory and its Applications, Vol.2
(Second Edition.) Wiley, New York.

Gerber, H.U. (1979). An Introduction to Mathematical Risk Theory. S.S. Huebner
Foundation for Insurance Education, Wharton School, Philadelphia.

Kalashnikov, V. (1998). Discussion of “On a class of renewal risk processes” by
D.C.M. Dickson. North American Actuarial Journal 1: 70-71.

Neuts, M.F. (1981). Matriz-Geometric Solutions in Stochastic Models. Johns Hop-
kins University Press, Baltimore.

Prabhu, N.U. (1980). Stochastic Storage Processes. Queues, Insurance Risks, and
Dams. Springer-Verlag, New York.

Sparre Andersen, E. (1957). On the collective theory of risk in the case of contagion
between the claims. Transactions of the XV International Congress of Actuaries,
Vol. 2, 219-227.

Spitzer, F. (1964). Principles of Random Walk. Van Nostrand, Princeton, N.J.
Widder, D.V. (1946). The Laplace transform. Princeton University Press.

Willmot, G.E. (1997). A Laplace transform representation in a class of renewal
queueing and risk processes. Institute of Insurance and Pension Research, University
of Waterloo (Canada), Research Report 97-16.

24




10

11

12

13

14

Date

MAR 1993

APR 1993

APR 1993

AUG 1993

SEP 1993

SEP 1993

OCT 1993

JAN 1994

MAR 1994

FEB 1994

JUNE 1994

JUNE 1994

JUNE 1994

SEPT 1994

RESEARCH PAPER SERIES

Subject

AUSTRALIAN SUPERANNUATION:
THE FACTS, THE FICTION, THE FUTURE

AN EXPONENTIAL BOUND FOR RUIN
PROBABILITIES

SOME COMMENTS ON THE COMPOUND
BINOMIAL MODEL

RUIN PROBLEMS AND DUAL EVENTS

CONTEMPORARY ISSUES IN AUSTRALIAN
SUPERANNUATION -
A CONFERENCE SUMMARY

AN ANALYSIS OF THE EQUITY INVESTMENTS
OF AUSTRALIAN SUPERANNUATION FUNDS

A CRITIQUE OF DEFINED CONTRIBUTION USING
A SIMULATION APPROACH

REINSURANCE AND RUIN

LIFETIME INSURANCE, TAXATION, EXPENDITURE
AND SUPERANNUATION (LITES):
A LIFE-CYCLE SIMULATION MODEL

SUPERANNUATION FUNDS AND THE
PROVISION OF DEVELOPMENT/VENTURE
CAPITAL:

THE PERFECT MATCH? YES OR NO

RUIN PROBLEMS: SIMULATION OR
CALCULATION?

THE RELATIONSHIP BETWEEN THE AGE PENSION
AND SUPERANNUATION BENEFITS,
PARTICULARLY FOR WOMEN

THE COST AND EQUITY IMPLICATIONS OF
THE INSTITUTE OF ACTUARIES OF AUSTRALIA
PROPOSED RETIREMENT INCOMES SRATEGY

PROBLEMS AND PROSPECTS FOR THE LIFE
INSURANCE AND PENSIONS SECTOR IN
INDONESIA

Author

David M Knox

David C M Dickson

David C M Dickson

David C M Dickson
Alfredo D Egidio dos
Reis

David M Knox

John Piggott

David M Knox
David M Knox
David C M Dickson
Howard R Waters
Margaret E Atkinson
John Creedy

David M Knox

David M Knox

David C M Dickson
Howard R Waters

David M Knox

Margaret E Atkinson
John Creedy

David M Knox
Chris Haberecht

Catherine Prime
David M Knox




15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Date

OCT 1994

DEC 1994

JAN 1995

FEB 1995

MAY 1995

JUNE 1995

JUNE 1995

JUNE 1995

SEP 1995

OCT 1995

DEC 1995

FEB 1996

FEB 1996

FEB 1996

MAR 1996

Subject

PRESENT PROBLEMS AND PROSPECTIVE
PRESSURES IN AUSTRALIA’S SUPERANNUATION
SYSTEM

PLANNING RETIREMENT INCOME IN AUSTRALIA:
ROUTES THROUGH THE MAZE

ON THE DISTRIBUTION OF THE DURATION OF
NEGATIVE SURPLUS

OUTSTANDING CLAIM LIABILITIES:
ARE THEY PREDICTABLE?

SOME STABLE ALGORITHMS IN RUIN THEORY
AND THEIR APPLICATIONS

SOME FINANCIAL CONSEQUENCES OF THE SIZE
OF AUSTRALIA’S SUPERANNUATION INDUSTRY
IN THE NEXT THREE DECADES

MODELLING OPTIMAL RETIREMENT IN
DECISIONS IN AUSTRALIA

AN EQUITY ANALYSIS OF SOME RADICAL
SUGGESTIONS FOR AUSTRALIA’S RETIREMENT
INCOME SYSTEM

EARLY RETIREMENT AND THE OPTIMAL
RETIREMENT AGE

APPROXIMATE CALCULATIONS OF MOMENTS OF
RUIN RELATED DISTRIBUTIONS

CONTEMPORARY ISSUES IN THE ONGOING
REFORM OF THE AUSTRALIAN RETIREMENT
INCOME SYSTEM

THE CHOICE OF EARLY RETIREMENT AGE AND
THE AUSTRALIAN SUPERANNUATION SYSTEM

PREDICTIVE AGGREGATE CLAIMS
DISTRIBUTIONS

THE AUSTRALIAN GOVERNMENT
SUPERANNUATION CO-CONTRIBUTIONS:
ANALYSIS AND COMPARISON

A SURVEY OF VALUATION ASSUMPTIONS AND
FUNDING METHODS USED BY AUSTRALIAN
ACTUARIES IN DEFINED BENEFIT
SUPERANNUATION FUND VALUATIONS

it

Author

David M Knox

Margaret E Atkinson
John Creedy

David M Knox
David C M Dickson
Alfredo D Egidio dos
Reis

Ben Zehnwirth
David C M Dickson
Alfredo D Egidio dos
Reis

Howard R Waters

David M Knox

Margaret E Atkinson
John Creedy

Margaret E Atkinson
John Creedy
David M Knox

Angela Ryan

David C M Dickson

David M Knox

Margaret E Atkinson
John Creedy

David C M Dickson
Ben Zehnwirth

Margaret E Atkinson

Des Welch
Shauna Ferris




30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Date

MAR 1996

MAR 1996

AUG 1996

AUG 1996

AUG 1996

SEPT 1996

OCT 1996

OCT 1996

OCT 1996

OCT 1996

OCT 1996

NOV 1996

DEC 1996

DEC 1996

JAN 1997

JUL 1997

AUG 1997

NOV 1997

Subject

THE EFFECT OF INTEREST ON NEGATIVE
SURPLUS

RESERVING CONSECUTIVE LAYERS OF INWARDS
EXCESS-OFF-LOSS REINSURANCE

EFFECTIVE AND ETHICAL INSTITUTIONAL
INVESTMENT

STOCHASTIC INVESTMENT MODELS: UNIT
ROOTS, COINTEGRATION, STATE SPACE AND
GARCH MODELS FOR AUSTRALIA

THREE POWERFUL DIAGNOSTIC MODELS FOR
LOSS RESERVING

KAIL.MAN FILTERS WITH APPLICATIONS TO LOSS
RESERVING

RELATIVE REINSURANCE RETENTION LEVELS
SMOOTHNESS CRITERIA FOR MULTI-
DIMENSIONAL WHITTAKER GRADUATION

GEOGRAPHIC PREMIUM RATING BY WHITTAKER
SPATIAL SMOOTHING

RISK, CAPITAL AND PROFIT IN INSURANCE

SETTING A BONUS-MAIUS SCALE IN THE
PRESENCE OF OTHER RATING FACTORS

CALCULATIONS AND DIAGNOSTICS FOR LINK
RATION TECHNIQUES

VIDEO-CONFERENCING IN ACTUARIAL STUDIES -
A THREE YEAR CASE STUDY

ALTERNATIVE RETIREMENT INCOME
ARRANGEMENTS AND LIFETIME INCOME
INEQUALITY: LESSONS FROM AUSTRALIA

AN ANALYSIS OF PENSIONER MORTALITY BY
PRE-RETIREMENT INCOME

TECHNICAL ASPECTS OF DOMESTIC LINES
PRICING

RUIN PROBABILITIES WITH COMPOUNDING
ASSETS

ON NUMERICAL EVALUATION OF FINITE TIME
RUIN PROBABILITIES

iii

Author

David C M Dickson
Alfredo D Egidio dos
Reis

Greg Taylor

Anthony Asher

Michael Sherris
Leanna Tedesco
Ben Zehnwirth

Ben Zehnwirth
Ben Zehnwirth
David C M Dickson

Howard R Waters

Greg Taylor

Greg Taylor

Greg Taylor

Greg Taylor

Ben Zehnwirth

Glen Barnett

David M Knox
Margaret E Atkinson
John Creedy

David M Knox

David M Knox
Andrew Tomlin

Greg Taylor

David C M Dickson
Howard R Waters

David C M Dickson




48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Date

NOV 1997

JAN 1998

JAN 1998

MAR 1998

MAR 1998

MAR 1998

APR 1998

APR 1998

APR 1998

MAY 1998

MAY 1998

MAY 1998

JUNE 1998

JUNE 1998

JUNE 1998

JUNE 1998

AUG 1998

AUG 1998

Subject
ON THE MOMENTS OF RUIN AND RECOVERY
TIMES

A DECOMPOSITION OF ACTUARIAL SURPLUS AND
APPLICATIONS

PARTICIPATION PROFILES OF AUSTRALIAN
WOMEN

PRICING THE STOCHASTIC VOLATILITY PUT
OPTION OF BANKS’ CREDIT LINE COMMITMENTS

ON ROBUST ESTIMATION IN BUHLMANN
STRAUB’S CREDIBILITY MODEL

AN ANALYSIS OF THE EQUITY IMPLICATIONS OF
RECENT TAXATION CHANGES TO AUSTRALIAN
SUPERANNUATION

TAX REFORM AND SUPERANNUATION - AN
OPPORTUNITY TO BE GRASPED.

SUPER BENEFITS? ESTIMATES OF THE
RETIREMENT INCOMES THAT AUSTRALIAN
WOMEN WILL RECEIVE FROM SUPERANNUATION

A UNIFIED APPROACH TO THE STUDY OF TAIL
PROBABILITIES OF COMPOUND DISTRIBUTIONS

THE DE PRIL TRANSFORM OF A COMPOUND Ry
DISTRIBUTION

ON MULTIVARIATE PANJER RECURSIONS
THE MULTIVARIATE DE PRIL. TRANSFORM

ON ERROR BOUNDS FOR MULTIVARIATE
DISTRIBUTIONS

THE EQUITY IMPLICATIONS OF CHANGING THE
TAX BASIS FOR PENSION FUNDS

ACCELERATED SIMULATION FOR PRICING ASIAN
OPTIONS

AN AFFINE PROPERTY OF THE RECIPROCAL
ASIAN OPTION PROCESS

RUIN PROBLEMS FOR PHASE-TYPE(2) RISK
PROCESSES

COMPARISON OF METHODS FOR EVALUATION OF

THE n-FOLD CONVOLUTION OF AN ARITHMETIC
DISTRIBUTION

iv

Author
Alfredo G Egidio dos
Reis
Daniel Dufresne
M. E. Atkinson
Roslyn Cornish

J.P. Chateau
Daniel Dufresne

José€ Garrido
Georgios Pitselis

David M Knox
M. E. Atkinson
Susan Donath

David M Knox

Susan Donath

Jun Cai
José Garrido

Bjgrn Sundt
Okechukwu Ekuma

Bjgrn Sundt
Bjgrn Sundt
Bjgrn Sundt
M E Atkinson
John Creedy

David Knox

Felisa J Vizquez-Abad
Daniel Dufresne

Daniel Dufresne
David C M Dickson
Christian Hipp

Bjgrn Sundt
David C M Dickson




66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

Date

NOV 1998

NOV 1998

DEC 1998

FEB 1999

MAR 1999

APR 1999

NOV 1999

NOV 1999

DEC 1999

DEC 1999

MAR 2000

MAR 2000

JULY 2000

JULY 2000

NOV 2000

NOV 2000

Subject

COMPARISON OF METHODS FOR EVALUATION OF
THE CONVOLUTION OF TWO COMPOUND R;
DISTRIBUTIONS

PENSION FUNDING WITH MOVING AVERAGE
RATES OF RETURN

MULTI-PERIOD AGGREGATE 1.OSS
DISTRIBUTIONS FOR A LIFE PORTFOLIO

LAGUERRE SERIES FOR ASIAN AND OTHER
OPTIONS

THE DEVELOPMENT OF SOME CHARACTERISTICS
FOR EQUITABLE NATIONAL RETIREMENT
INCOME SYSTEMS

A PROPOSAL FOR INTEGRATING AUSTRALIA’S
RETIREMENT INCOME POLICY

THE STATISTICAL DISTRIBUTION OF INCURRED
LOSSES AND ITS EVOLUTION OVER TIME I: NON-
PARAMETRIC MODELS

THE STATISTICAL DISTRIBUTION OF INCURRED
LOSSES AND ITS EVOLUTION OVER TIME II:
PARAMETRIC MODELS

ON THE VANDERMONDE MATRIX AND ITS ROLE
IN MATHEMATICAL FINANCE

A MARKOV CHAIN FINANCIAL MARKET

STOCHASTIC PROCESSES: LEARNING THE
LANGUAGE

ON THE TIME TO RUIN FOR ERLANG(2) RISK
PROCESSES

RISK AND DISCOUNTED LOSS RESERVES
STOCHASTIC CONTROL OF FUNDING SYSTEMS
MEASURING THE EFFECTS OF REINSURANCE BY
THE ADJUSTMENT COEFFICIENT IN THE SPARRE
ANDERSON MODEL

THE STATISTICAL DISTRIBUTION OF INCURRED

LOSSES AND ITS EVOLUTION OVER TIME
III: DYNAMIC MODELS

Author

David C M Dickson
Bjgrn Sundt

Diane Bédard
Daniel Dufresne

David C M Dickson
Howard R Waters

Daniel Dufresne

David Knox
Rostyn Cornish

David Knox

Greg Taylor

Greg Taylor

Ragnar Norberg

Ragnar Norberg
A J G Cairns

D C M Dickson
A S Macdonald
H R Waters

M Willder

David C M Dickson

Greg Taylor
Greg Taylor
Maria de Lourdes

Centeno

Greg Taylor




82

83

84

85

86

87

88

89

90

91

92

93

94

Date

DEC 2000

DEC 2000

FEB 2001

FEB 2001

JUNE 2001

SEPTEMBER 2001

NOVEMBER 2001

NOVEMBER 2001

NOVEMBER 2001

NOVEMBER 2001

JANUARY 2002

JANUARY 2002

JANUARY 2002

Subject

OPTIMAL INVESTMENT FOR INVESTORS WITH
STATE DEPENDENT INCOME, AND FOR INSURERS

HEDGING IN INCOMPLETE MARKETS AND
OPTIMAL CONTROL

DISCRETE TIME RISK MODELS UNDER
STOCHASTIC FORCES OF INTEREST

MODERN LANDMARKS IN ACTUARIAL SCIENCE
Inaugural Professorial Address

LUNDBERG INEQUALITIES FOR RENEWAL
EQUATIONS

VOLATILITY, BETA AND RETURN

WAS THERE EVER A MEANINGFUL
RELATIONSHIP?

EXPLICIT, FINITE TIME RUIN PROBABILITIES FOR
DISCRETE, DEPENDENT CLAIMS

ON THE DISTRIBUTION OF THE DEFICIT AT RUIN
WHEN CLAIMS ARE PHASE-TYPE

THE INTEGRATED SQUARE-ROOT PROCESS
ON THE EXPECTED DISCOUNTED PENALTY
FUNCTION AT RUIN OF A SURPLUS PROCESS
WITH INTEREST

CHAIN LADDER BIAS

FURTHER OBSERVATIONS ON CHAIN LADDER
BIAS

A GENERAL CLASS OF RISK MODELS

vi

Author

Christian Hipp

Christian Hipp
Michael Taksar

Jun Cai

David C M Dickson

Gordon E Willmot
Jnun Cai
X Sheldon Lin

Richard Fitzherbert

Zvetan G Ignatov
Vladimir K Kaishev
Rossen S Krachunov
Steve Drekic

David C M Dickson
David A Stanford
Gordon E Willmot
Daniel Dufresne

Jun Cai
David C M Dickson

Greg Taylor

Greg Taylor

Daniel Dufresne




