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Some optimal dividends problems

David C M Dickson and Howard R Waters

Abstract

We consider a situation originally discussed by De Finetti (1957)
in which a surplus process is modified by the introduction of a con-
stant dividend barrier. We extend some known results relating to the
distribution of the present value of dividend payments until ruin in the
classical risk model and show how a discrete time risk model can be
used to provide approximations when analytic results are unavailable.
We extend the analysis by allowing the process to continue after ruin.

1 Introduction

In this paper we study optimal dividend strategies, a problem first discussed
by De Finetti (1957). De Finetti considered a discrete time risk model and
produced some results in the situation when the aggregate gain of an insurer
per unit time is either 1 or —1. A summary of De Finetti’s work can be
found in Biithlmann (1970, Section 6.4.5), or for a more recent reference see
Gerber and Shiu (2002, Appendix B).

The problem of optimal dividend strategies has also been considered in
continuous time. The textbooks by Biihlmann (1970) and Gerber (1979)
discuss the problem in the context of the classical risk model. See also Gerber
and Shiu (1998, Section 7).

In this paper we consider both a discrete time risk model and the classical
continuous time risk model. We show how our discrete time risk model can
be used to tackle problems for which analytical solutions do not exist in the
classical continuous time model. In the classical continuous time model, we
generalise a result given in Biihlmann (1970) and Gerber (1979). Our result
has a counterpart in the Brownian motion risk model considered by Gerber
and Shiu (2002). In each of the references mentioned so far, the risk process
continues until ruin occurs, an event which is certain as each study is in the
framework of a dividend barrier whose level is constant. We consider the
notion that the risk process can continue after ruin as a result of a suitable




injection of surplus. Siegl and Tichy (1999) also consider the expected present
value of dividends for a surplus model which continues after ruin. However,
their model is different to ours in several important aspects.

We define the classical surplus process {U(t)}+>0 as

N()

i=1

where u is the insurer’s initial surplus, c is the rate of premium income per
unit time, N(t) is the number of claims up to time ¢, and X; is the amount of
the ith claim. {N(t)}:>o is a Poisson process, with parameter A, and {X;}2,
is a sequence of independent and identically distributed random variables,
independent of {N(t)}:>0. We denote by p, the kth moment of X;. Let
F and f denote the distribution function and density function respectively
of X, with F/(0) =0, and let ¢ = (1 + 0) A\, where § > 0 is the premium
loading factor. The ultimate ruin probability from initial surplus u is denoted
¥ (u) and defined by

Y(u) = Pr(U(t) < 0 for some t > 0).

We consider the above surplus process modified by the introduction of
a dividend barrier, b. When the surplus reaches the level b, premium in-
come no longer goes into the surplus process but is paid out as dividends to
shareholders. Thus, when the modified surplus process attains the level b, it
remains there until the next claim occurs. We say that ruin occurs when the
modified surplus process falls below 0, and ruin is certain as we are effectively
considering a surplus process in the presence of a reflecting upper barrier.
We use the notation T, to denote the time of ruin.

Let the random variable D, denote the present value at force of interest
8 per unit time of dividends payable to shareholders until ruin occurs (given
initial surplus u), with V,(u,b) = E[D%]. An integro-differential equation
for Vi(u,b) can be found in Biihlmann (1970) and Gerber (1979), together
with a solution in the case when the individual claim amount distribution
is exponential. A solution for V,(u,b) in the case of the Brownian motion
risk model (as defined in Klugman et al (1998)) is given in Gerber and Shiu
(2002). In Section 2 we derive an integro-differential equation for V,,(u,b),
and solve this equation when the individual claim amount distribution is
exponential. In Section 3 we consider the distribution of D, when é = 0.

In Section 4 we consider both the time of ruin and the deficit at ruin and
derive results which we then apply in Section 6 where we allow the process to
continue after ruin. In Section 5 we consider a discrete time model. Notation
for this model is introduced in that section.




2 The moments of D,

In this section we derive an integro-differential equation for V;,(u, b), and find
a boundary condition. We then use this equation to calculate some moments
in the case when the individual claim amount distribution is exponential. We
start, however, with a lemma which we apply in Theorem 2.1.

Lemma 2.1 For any positive u and 6 and any positive integer m, define:
- 00 1— o\ ™
I(m,p)=p / eht ( ¢ ) dt.
0 é

I(m,p) = m! H(,u + k6)7L.

k=1

Then

Proof. Integrating by parts, it can be seen that

I(m, p) = —I(m ~1,pu+35).

p+0
Hence
B m(m—1)...2 B
Im, 1) = 5 (e 20) - (ut (m =gy i+ (M= 1)9).

It can be checked that
I(L, g+ (m—1)8) = (u+ mé)~>
and the result follows. m

Remark 2.1 We remark that the above result holds when § = 0, provided
we interpret (1 — e™%)/§ as t in this case.

Theorem 2.1 For n = 1,2,3,..., V,,(u,b) satisfies the integro-differential
equation

d A+ né
d—an(u, b) =

Vi(u, b) — % /0 feWValu—-zb)ds  (21)

with boundary condition

d

d—an ('LL, b) = nVn—l(b'l b) (22)

u=b
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Proof. Let 0 < u < b, and let 7 denote the time at which the surplus
would reach b if there were no claims, so that v + ¢ = b. By considering
whether or not a claim occurs before time 7, we have

Va(u,b) = e ATy, (b b)
T u+ct
+/ )\e‘()‘+"5)t/ f(@) Va(u+ ct — z,b) dz dt,
0 0
(2.3)

and substituting s = u 4 ¢t we get
Va(u,b) = e~ AFnmdb-w/ey (p p)
A b s
+= / e~ Mnd)(s—u)/e / f(@) Vu(s — z,b) dz ds.
u 0

c
Differentiating with respect to u, we obtain

d A+néd
— b =
dan(u, )

Va(u,b) — %/Ou f(2)Vo(u — z,b) dz,

which is equation (2.1).
To obtain the boundary condition (2.2), we first consider V,,(b,b). By condi-
tioning on the time and the amount of the first claim we have

Va(b,b) = / Ae” O (e5)™ dt

+Z/ ( ))\e Ont (g / F@)Vi(b—,b) do dt

where, in standard actuarial notation, 55 = (e’ —1)/4.
Applying Lemma 2.1 we have

Vi (b, )
n b
= I(n,A nj ’_’) A In—j A+ s Vi(b—z,b)d
1N+ 2 (]) 5513 +30 [ o) d

= (A +46)

j=1

+Zc _J(>n JIA [H(A-}-md) jl/fz)V —z,b)dz.

m=}]




Also, by rearranging (2.1) we have

c d
A+ né du

Va(b,b) = Vi (u, b)

+/\+ 6/f (b—z,b)dz

Hence, by equating the above two expressions for V,,(b, b) we obtain

u=

d
%Vn(u, b)

u=>b

n—1

= c"_ln!H(A+ 36)7?
+"Z”lcn—1—j<’j’>(n-j)u L_ (A + md)- ]/ f(2)V;(b—,b) de

(2.4)

=j

We can now prove (2.2) by induction. We note that V;(b,b) = E [D?] = 1.
Equation (2.2) is already known to be true for n = 1. See, for example,
Gerber and Shiu (1998, Section 7). Now let us assume that it is true for
n=1,2,..,m. Then by (2.1) and (2.2)

cm

A b
Vl0.9) = s Vna00) + 5z [ F@)Vinle = ,0) o

or

/f (b —z,b) dr = Vi (b,b)—/\—%vm_l(b,b).

/\+m6




Next, by (2.4),

d

d—uVm+1(U, b)

u=b

= ™ (m+1)! ﬁ()\ +j6)7!

+ e (M 1) [H_(A ¥ ns)-l} [+ 78) V;(6,) = ¢V (6,b)]

= ™ (m+1)! ﬁ(A + 387+ (m 4+ 1)Vin(b,0) +

j=1

+n‘:10m_]( +1)(m+1—ﬂ)'-ﬁ(”"‘5)_1

j=1 r=j+1

zm:cm (m + 1) (m+1-j)! ﬁ()\ + r6)‘{| cjVj-1(b,b)

Vi(b,0)

j=2

.

—c™(m+1)! H()\ +78)71| Vo(b, b)
= (m+1)V,(b,d) + 1{: cm_j( )( +1- ) H A+ 76)7| V;i(b,b)
j=1 r=j+1

- i s (’:jf) (m—s)! [ [T o+ r5)_1] (s +1)Va(b,0)
s=1 r=s+1
= (m+1)Vm(b,d)

which completes the proof. m
We remark that Gerber and Shiu (2002, formula (4.11)) have shown that
(2.2) also holds for the Brownian motion risk model.

Example 2.1 Let F(z) = 1 — exp{—oaz}, £ > 0, with o > 0. Then by a
standard technique (see, for example, Gerber (1979, p. 116)) we get

anéd

A+nd\ d
)@Vn(u,b) —V(u b) =0.

dd2V(ub)+<

For this individual claim amount distribution, Lundberg’s fundamental equa-
tion with force of interest nd (see Gerber and Shiu (1998, Section 2)) is

s2+(a—’\t"5>s—9"—5=0 (2.5)




which gives
Va(u,b) = kypexp{rinu} + konexp{ranu} (2.6)

where 11, and T2, are the roots of (2.5). To solve for ki, and ks, (which
are both functions of 6 ), we use equation (2.1) and insert the functional form
for V,, given by (2.6) and the form of the density f. Integrating out we find
that

kl,n . o+ Tl,n
k2,n T« +7on
so that
kin
Vilu,b) = —22— ((a + 1) exp {r1nu} — (0 + To,0) exp {ranu})
o+ Tin
and
Sy = nVii(bb)
d'U, ni\w, . - n—-1\Y,
kl,n
= ((a+711n) rinexp{rind} — (4 ron) ronexp {ranb}).
o+ Tin
Hence

(a4 r1n)exp{rinu} — (@ + r2,) exp {ranu}
(a4 11n) r1nexp {rind} — (@ 4+ r2,) Tonexp {rz,,l(b} )
2.7
Equation (2.7) is well known when n = 1. See, for example, Biihlmann
(1970). Table 2.1 shows some values of the mean, standard deviation and
coefficient of skewness of Doy when a =1, § = 0.1, A = 100 and c = 110,
with b varying. We comment on these values in the next section.

Viu(u,b) = nV,_1(b,b)

3 The distribution of D, when 6 =0

In this section we consider the special case when § = 0. Gerber and Shiu
(2002) consider this case for the Brownian motion risk model and show that
the distribution of D, is a mixture of a degenerate distribution at 0 and
an exponential distribution. As shown below, this is also the case for the
classical risk model.

Consider first the case when 0 < u < b. Then the probability that there
is a first dividend stream is the probability that the surplus reaches b without
ruin occurring first, the probability of which is x(u,b) where

1 — 1p(u)

x(u,b) = T y(0)
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b | Mean | St. Dev. | Skewness
20 | 46.496 | 35.705 0.8737
30 | 65.011 ] 43.875 0.1472
40 | 72.355 | 42.811 -0.2733
50 | 71.324 | 39.706 | -0.4133
60 | 66.896 | 36.866 | -0.3978
70 | 61.620 | 34.386 | -0.3246
80 | 56.404 | 32.129 | -0.2361
90 | 51.520 | 30.023 | -0.1464

100 | 47.025 ] 28.042 -0.0596

Table 2.1: Mean, standard deviation and coefficient of skewness of Dayy.

See Dickson and Gray (1984). Given that there is a first dividend stream,
the probability that there is a second stream of dividend payments is p(b)

where
d

b
p0) = [ f@x(b-z,bde ¥ 1-40)
0
since a second stream can occur only if the amount of the claim that takes the
surplus process away from the dividend barrier is no more than b. Hence, if N
denotes the number of streams of dividend payments, N has a zero-modified
geometric distribution with Pr(N =0) =1 — x(u,b) and for r =1,2,3, ...,

Pr(N = r) = x(u, b)p(b)"q(b).

e (wha)e’
u, e
Mp(t) =1 x(u,b) + XT—I)EIW'

Now let A; denote the amount of the ith dividend stream, so that
D, = SN A;. Clearly {A;}%2, is a sequence of independent and identi-
cally distributed random variables. We note that the time until a claim from
the time the surplus process reaches b is exponentially distributed with mean
1/X due to the memoryless property of the exponential distribution. Hence,
the distribution of A, is exponential with mean ¢/, and so

A

M(t) = Elexp{tAi}] = v—

giving
x(u,b)q(b) M (¢)
1 —p(b)M(2)

MDu(t) = MN [lOgM(t)] =1- x(u,b) +

= 1 x(u,b) + x(u, b)q_(b%'
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Thus, the distribution of D, is a mixture of a degenerate distribution at 0
and an exponential distribution with mean ¢/ (Aq (b)).

Applying the above argument when u = b, we see that the distribution
of D, is exponential with mean ¢/ (Ag (b)).

We remark that when 6 = 0, the coefficient of skewness of D, is always
positive. However, it can be seen from Table 2.1 that this is not the case
when § > 0.

4 Time and severity of ruin

In this section we derive results relating to the time and severity of ruin that
we will apply in Section 6. Let Y, denote the deficit at ruin given initial
surplus u. We will consider E [e=*"+Y"], of which E [e~%7+] is an important
special case. To do this, we adopt the approach of Gerber and Shiu (1998)
and consider a function ¢, (u, b) defined by ¢, (u, b) = E[e~%7*Y"]. This is just
the function ¢ defined in equation (2.10) of Gerber and Shiu (1998), modified
to our model. In particular, P(T, < oo) = 1 in our model. Properties of a
more general version of the function ¢, (u,b) are discussed in detail by Lin
et al (2003).

Let 7 be as previously defined. Then by conditioning on the time and the
amount of the first claim,

bn(u,b) = / Ae” O [ (y —u — ct)" f (y)dydt
u+ct
/ Ae- A+ / (y — b)" f(y)dydt
+ct
+/ \e -(,\+6)t/ f(y)p,(u+ ct — y,b)dydt
0
[ e / £ (@)¢n(b — v, bdydt
b o
/ A= O s—u)/e / (y — 8)"f(y)dyds
! / N OHs-/e / (y — b)" f (y)dyds
b
1 b
47 [etoremae / F@)¢(s — v, b)dyds
+% / Ae~ A+ (s—u)/c / f(y)¢n (b —y,b)dyds
b

S| - +

+




giving
cemOF/ey (4 b)) = / A= (sl / (y — 9)"f(y)dyds
+ / Ae~OF)s/e / (y — )" f(y)dyds
b

+ / 205/ [ 106 (5 — g, b)dyds
u 0

00 b
+ [ ae s [ )6, 0 - v, b)dyds.
b 0
Hence

ce—O+)u/e (—_(6:-—>‘2¢n(u, b) + diuqb"(u’ b)>

= e OO / (g — ) f(y)dy — e O+Ie /0 * @) dalu— v, b)dy

or

2ot = 20,0 =% [T rwdy-3 [ 106wty

(4.1)
which can be written as

al10) = 552 tn s | [0 ur s+ [ o= o).
Also
ou0) = [Tae | ["-orsGin+ [ 10000 v0)]
- 55| w-oriea [ swee- o)
so that
d
ata(wd) =0 (42)

Example 4.1 Let us again consider the case when F(z) = 1 — exp{—az},
z > 0, with a > 0. It is straightforward to show that

d2 S+ d s
du .2 (U b) + (a - —‘—Z—‘) %-qbn(u, b) - a?qbn('u,, b) =0
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giving
bn(u, b) = h1e™" + hoe™"

where 1 and 2 are what were called 711 and ro; in Example 2.1. Inserting
for ¢, w and f in (4.1) we find that

! h h "
Mook ok 3)
an” a+nr a+4+r

where h; = h;(8) fori=1,2. Also

d
—¢n(u, b) = hlrle”b + h27'2€r2b
du ueb
gives
ﬂ — ___26(1‘2—1‘1)17.
h2 ™

From (4.3) it follows that

E[eY]] =E [ E[Y]] = E [e7%] »

an’
a result we could have anticipated as the distribution of the deficit at ruin is

exponential with mean 1/, independent of the time of ruin. A little algebra

shows that \ bir b
T1 2U rob+r1u
E[e?h] = 2 —2° ra¢ , (4.4)
¢ (a+r)rent — (a + ry)raerzb

where we have used the fact that (a + m1)(a + r2) = Aa/c. An alternative
method of deriving this result is given by Lin et al (2003).

5 Discrete time modelling

In this section we consider the discrete time model described by Dickson
and Waters (1991). In this model, the surplus process is {U(n)}32,, where
U(0) = u (an integer) and U(n) = U(n — 1) + 1 — Z,, where {Z,}, is a
sequence of independent and identically distributed random variables. The
premium income per unit time is 1, and Z,, denotes the aggregate amount of
claims in the nth time period, with E [Z;] < 1.

The distribution of Z; is compound Poisson with Poisson parameter
1/[(1 + 6)8], where we choose 8 to be a positive integer, and individual
claims are distributed on the non-negative integers, with a mean of 8. A
consequence of this is that the premium contains a loading of 6. Dickson
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and Waters (1991, Section 1) explain how this model can be used to approxi-
mate the classical risk model of Section 1 using a process of rescaling of both
time and monetary units, and by discretising the individual claim amount
distribution F.

Let b again be a dividend barrier, and let b be an integer. A dividend of 1
is payable at time n only if the surplus was at level b at time n — 1 and there
are no claims at time n, for n = 1,2,3,... . With a slight abuse of notation,
we again let D, denote the present value of dividends payable until ruin at
force of interest 6 > 0 per unit time, and again denote F [D7] by V,(u,b). We
are thus generalising De Finetti’s original model by allowing the increment
of the (unmodified) surplus process to be one of 1,0,—1,—2, ..., compared
with 1 or —1 in De Finetti’s model. We define ruin to be the event that the
surplus goes to zero or below at some time n > 0, but we allow the surplus
at time 0 to be 0.

Conditioning on the aggregate claim amount in the first time period, and
letting g; = Pr(Z, = j), we find that for v =0,1,2,...,b—1

Va(u, b) —e”‘sZgJ (u+1-3b) (5.1)

and

V(bb—e"(gOZ() bb+ZgJ b+1—],b)>. (5.2)

Thus, we have b-+1 linear equations for the unknowns V,,(u,b),u« =0,1,2, ..., b,
and we can solve these by standard methods. Claramunt, Madrmol and Alegre
(2002) investigate the expected present value of dividends in a discrete time
model and formulae (5.1) and (5.2) above with n = 1 correspond to their
formula (4).

The same approach can be applied to finding moments of the discounted
time of ruin and severity of ruin. We again let T,, denote the time of ruin
from initial surplus u, and note that Pr (7T, < o) = 1. Defining ¢y(u,b) =
E[e~%T+] and letting .

Gk) =1-G(k)= > 9;

we have

Bo(u,b) =™ (i 9i%o(u+1—-7,b) + G(U)) (5-3)

=0
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foru=0,1,2,...,b—1, and

¢0(b7 b) = 6—5 (goff’o(b, b) + Z gj¢0(b +1-— ja b) + é(b)) - (54)

i=1

Let Y, again denote the deficit at ruin, and let ¢,(u,b) = E[e™%™*Y,].
Then

hi(w,b) = (Zgj¢1(u+1—j,b)+ > g;-(j—u—l))

j=u+l

= (zml(u +1-j 8+ B2 - Y g - (u+t 1>é(u))

=0

foru=0,1,2,....,b—1, and

d)l(bab) = 6'—6 (gOd)l(ba b) + Zgj¢l(b+ 1 _j’ b) + Z g](.] —-b- 1))

j=1 j=b+1

= e (90¢1(b, )+ > gid(b+1-35,0)+E[Z1] = jg; — (b+1)G(b)

J=1 j=1

Calculation of the functions ¢, and ¢; involves solving b+ 1 linear equations
in the same number of unknowns. This can be done by standard methods.

Other quantities can similarly be calculated for this model. For example,
foru=0,1,2,...,b—1,

BT = 05 (4 BT ) + 60 =1+ Y g,B T

and

ET)) = g(+ED)+> g (14 E[T;]) +G®)

=1

b
= 1+ @E[N]+ > g;EThi1-5)-
=1 |

Two quantities we will need in Section 6 are &(u, b) “E [Dye~T] and
v(u, b) = E[D,e~%T+Y,]. We calculate these as follows.

13

) |




Foru=0,1,2,....,b—1,

E(u,b) =€) g&(u+1-4,b)

=0

noting that no dividends are payable if ruin occurs at time 1, and

Eb,b) =€ (Zgjﬁ(b +1—5,b) + gol€(,5) + ¢ (0, b)]) :

i=1

Similarly, for v =0,1,2,...,b— 1,

v(u,b) = e Zgﬂ(u +1—4,b)

=0
and

7(b,8) = ¢ (Z g57(b+1—5,5) + goly(b, 5) + 10, b)}) .

=1

Example 5.1 In this ezample we compare approximations with exact values
based on an individual claim amount distribution in the classical risk model
that is exponential with mean 1. To perform calculations in our discrete
model, we discretised this exponential distribution according to the method
of De Vylder and Goovaerts (1988). This discretisation method is mean
preserving which facilitates calculation of the function ¢,. In the classical
risk model, let us set A = 100, 6 = 0.1 and 8 = 0.1. In our discrete model,
let B = 100. Table 5.1 shows exact and approrimate values of Vy(u,100),
Va(u,100), E[T,] and Elexp{—6Ty}] for a range of values for u. (A formula
for E[T,] is given by Gerber (1979, p.150).) We see from this table that the
approzimate values are very close to the true values. We have observed this to
be the case for other values of b but we also found that for a given value of 3,
accuracy improves as b increases. Also, we note that in Dickson and Waters
(1991) a smaller value of B was adequate to provide good approrimations -
in that case to non-ruin probabilities. We believe that a small value such as
B = 20 will not be particularly appropriate for our current purpose. In all
subsequent calculations in this paper, a scaling factor of 8 = 100 has been
used in our discrete model, and the above mentioned discretisation procedure
has been applied.

We conclude this section by noting that the methodology of Section 3 can
be applied to show that when § = 0, the distribution of D, is a mixture of a
degenerate distribution at 0 and a geometric distribution on the non-negative
integers for 0 < u < b, and the distribution of D, is geometric.

14




Vi (u, 100) Va(u, 100) E[T,)] Elexp{—6T,}]|
u | Exact | Approx. | Exact | Approx. | Exact | Approx. | Exact | Approx.
0 |4.6812 | 4.6810 | 278.90 | 278.88 | 976.07 | 976.45 | 0.9009 | 0.9008
10 | 33.353 | 33.352 | 2,030.8 | 2,030.6 | 6,803.9 | 6,806.5 | 0.3343 | 0.3343
20 | 47.025 | 47.023 | 2,997.7 | 2,997.4 | 9,151.2 | 9,154.8 | 0.1242 | 0.1242
30 | 55.423 | 55.421 | 3,760.6 | 3,760.3 | 10,096 | 10,100 | 0.0462 | 0.0462
40 | 62.185 | 62.182 | 4,533.0 | 4,532.6 | 10,477 | 10,481 | 0.0173 | 0.0173
50 | 68.689 | 68.686 | 5,403.6 | 5,403.2 | 10,629 | 10,633 | 0.0066 | 0.0066
60 | 75.482 | 75.479 | 6,421.0 | 6,420.4 | 10,690 | 10,694 | 0.0027 | 0.0027
70 | 82.802 | 82.799 | 7,622.7 | 7,622.1 | 10,714 | 10,718 | 0.0012 | 0.0012
80 | 90.779 | 90.775 | 9,047.0 | 9,046.3 | 10,723 | 10,727 | 0.0007 | 0.0007
90 |99.505 | 99.500 | 10,737 | 10,736 | 10,726 | 10,730 | 0.0006 | 0.0006
1 100 | 109.06 | 109.06 | 12,741 | 12,740 | 10,726 | 10,731 | 0.0005 | 0.0005

Table 5.1: Exact and approximate values of V;(u, 100), V,(u, 100), E[T,] and
Elezp{—0T,}].

6 Optimal dividends

One approach to selecting the level of the dividend barrier is to set it at b*
where b* is the value of b which maximises V;(u,b). See Bithlmann (1970) or
Gerber (1979). In the case when F is an exponential distribution with mean
1/a, the optimal level is

2
b 1 log rg (a+12)
1 —To 2 (a+ )

where r; and 79 are as in Example 4.1. If this quantity is negative, the optimal
level is b* = u. See Gerber and Shiu (1998). Generally, it is difficult to find
the optimal level analytically, but it is not difficult to find it numerically if
we can find an expression for Vj(u, b). In other cases, we can use our discrete
time model to find an approximation to the value of b*. As an example
of this, Figure 1 shows Vj(u,b) as a function of b when A = 100, ¢ = 110
and 6 = 0.1 for v = 10, 30, 50 and 70 when the individual claim amount
distribution is Pareto(4,3). From this we observe the features that are known
in the case of exponential claims, namely that there is an optimal level here
for b independent of u (51 to the nearest integer), and that if u exceeds this
optimal level, the maximum value of V;(u,b) occurs when b = u.

Under the criterion of maximising the expected present value of dividend
payments until ruin, the optimal strategy is to set a constant dividend barrier.
See, for example, Borch (1990). Asmussen and Taksar (1997) have shown
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that this result also holds, under certain conditions, when the surplus is
driven by a Brownian motion. In what follows, we investigate the expected
present value of dividend payments under a constant dividend barrier. We
make no claims about the optimality of a constant dividend barrier, but view
our study as a natural extension of existing work.

6.1 Modification 1

As the shareholders benefit from the dividend income until ruin, it is reason-
able to expect that the shareholders provide the initial surplus u and take
care of the deficit at ruin. Under this scenario the expected present value of
(net) income to shareholders is
def —6Ty
L(u,b) = Vi(u,b) —u— E [e7°TY,] .
Consistent with the approach of the previous subsection, a reasonable objec-

tive is now to find the value of b that maximises L(u,b) for a fixed value of
u.

Example 6.1 Again let F(z) = 1 — exp{—az}, > 0, with a > 0. Then
from (2.7) and (4.4),

d _d d 6T,

(a+mr)e™ — (a+ ry)em™
[(a+ ri)rie™ — (@ + ra)raer2]?
A(ry — ro)rireemtm2? (o 4 rp)e"® — (a 4 15)e™Y|

cal(a+r)rien® — ry(a + 7"2)6’2"]2

[(a+ r)rie™® — (o + rz)rge”b]

and this partial derivative is zero when
Ad
(a4 7)™ — (a+ ry)riemt = —(r - 1g)elr1+r2)b,
c

using rire = —ad/c. For the same numerical inputs as in Example 2.1 we
find that the optimal value of b is 43.049.

Figure 2 shows values of L(u,b) for u = 10,20, ...,50 when individual
claims are distributed as Pareto(4,3), ¢ = 110, A = 100 and § = 0.1. These
plots are based on calculated values of L(u, b) for integer values of b using the
approach of the previous section, and they suggest that an optimal barrier
level is around 51.
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Figure 3 shows the coefficient of variation of the present value of (net)
income to shareholders in the case of exponential claims, as approximated by
the model of the previous section. To calculate this we require

E [(Du - e‘5T"K,)2] which can be calculated as

Vo(u,b) — 2v(u,b) + E [e'25T"Y;2]

where the final term can be calculated using the approach in Section 5 to
the calculation of ¢y(u,b). We note from Figure 3 that the value of b which
minimises the coefficient of variation varies with u, but is around 51, com-
pared with the value 43.049 being optimal in the sense of maximising L(u, b).
As each curve in Figure 3 is relatively flat around its minimum, we conclude
that choosing b to minimise L(u,b) is a reasonable strategy. We observed
similar features in the case of Pareto(4,3) claims.

An alternative objective is to find the optimal level of investment, as-
suming there is no restriction on the amount the shareholders can input.

As p p
a _1_ 9 oy T,
7 Vi(u,b) — 1 7 Ele Y;]

we note from (2.2) and (4.2) that £ L(u,b) is zero when u = b. However,
we are unable to determine whether the derivative is zero elsewhere, so we
cannot say whether the maximum of L(u,b) occurs when u = b.

In the case of the numerical illustration in Example 6.1, it is possible
to show that E‘%L(u, b) is zero only when u = b. Consequently, the optimal
investment level is 43.049, with the barrier at the same level.

As a matter of mathematical interest we note that for the function ¢,
defined in Section 4,

d

2 Vi) —u— gl b)) =0

u=b

6.2 Modification 2

We again assume that the shareholders input u, but now suppose that when
ruin occurs, the shareholders immediately pay the amount of the deficit at
ruin, so that the surplus at the time of ruin is then 0. The insurance operation
can then continue from this surplus level, and the operation from the time
of ruin is independent of the past, so that each time ruin occurs, the surplus
can be restored to 0 and this time point is a renewal point of the new process.
The surplus is now moving indefinitely between 0 and b. It can remain at b
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for a period, but immediately moves away from 0. Now let V'(u,b) denote
the expected present value of dividends only. Then
V(u,b) = Vi(u,b) + E [e7*] V(0,b).
Hence V(O ) V1(0.5)
’ 1 — E[e~%T0]

Now let W(u, b) denote the expected present value of payments to be made
by the shareholders when the surplus falls below 0. Then

W(u,b) = E [e7™Y,] + E[e"*™]W (0, b)

which gives

E [C_JTO}/O]

1 — E[e~%To]

Defining M (u, b) to be the expected present value of net income to the share-
holders, our strategy is to find the value of b which maximises

W (0,b) =

M(u,b) = V(u,b)—W(u,b)—u
E [e~*™+] V4(0,b)

= Vi(u,b) + 1= Ele—T]
Ele*Tu|E [e-iTrY,
Bl - | 1-]E[e[—5T°] -
_ Liwb)+ 2 1[6:6;‘[155(7(,?)’] b

Figure 4 shows M(u,b) as a function of b for u = 0, 10, 30 and 50 when
A =100, ¢ = 110, 6 = 0.1 and the individual claim amount distribution is
exponential with mean 1. From this figure we deduce that for this set of
parameters, the optimal strategy is to set © = b = 0 and in the Appendix we
prove that this is generally the case.

The explanation for this optimal strategy is that we are dealing only with
expected values. When u = b = 0, the shareholders are acting as the insurer:
they receive the premium income and pay each claim in full when it occurs.
The positive loading factor in the premium ensures that the shareholders’
expected profit is positive. However, the probability that at some future
time the shareholders’ outgo will exceed their income is ¢(0) = 1/(1 + 6).
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6.3 Modification 3

The deficiency of the optimal strategy under Modification 2 suggests that
the shareholders should seek a solution under which they make no payments
after time 0, but can still receive dividend income after ruin occurs. Let us
suppose that the shareholders purchase a reinsurance policy which provides
them with the amount of the deficit each time that ruin occurs. Such a policy
is discussed in the context of the (unrestricted) classical surplus process by
Pafumi (1998) in his discussion of Gerber and Shiu (1998). In our examples,
we assume that the reinsurance premium is calculated by the expected value
principle. Let 6 denote the loading factor used by the reinsurer. Then by
previous arguments, the reinsurance premium is

RP = (14 6R) (E[e’5T"Yu] + E[e“ST"]M) .

1 — Efe~%T]

Our strategy is now to find the value of b that maximises
N(u,b) € V(u,b) —u — RP.

Let us assume that claims are exponentially distributed with parameter
. Inserting expressions for V(u,b) and RP into the formula for N(u,b), it
can be shown after some algebra that

d
%N(u, b) = k1 (u)ka(b)

where k; (u) is a function of u, but not b, and k2(b) is a function of b, but not
u. Further £ N(u,b) = 0 if and only if

A
(a4 r)em™ — ryla+ ro)e™ = (1+ 93)2(7'1 — rg)ebrtra),

Figure 5 shows N(u,b) as a function of b for u = 0, 5,10, 15 and 20 for the
following parameter values: o =1, A = 100, ¢ = 110, § = 0.1 and 6 = 0.25.
In this case, the optimal value of b is 16.195. Further, the optimal strategy
in this case is to invest this amount and set the barrier at this level, giving

N(16.195,16.195) = 82.80. Note that
82.80 > 16.195 4 31.85 = u+ RP.

Figure 6 shows N(u,b) for Pareto(4,3) claim sizes, with all other para-
meters as in Figure 5. This appears to show the same feature as Figure 5,
namely that the optimal value of b is independent of u, but we have not
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been able to prove that this is true. From Figure 6, the optimal value of b

is 20 (to the nearest integer), and N(20,20) = 77.68. Note that in this case
RP = 43.96 and

82.80 — 16.195 — 31.85 > 77.68 — 20 — 43.96.

Considering the greater variance associated with Pareto claims, it is some-
what surprising that a difference of only 3.8 in initial surplus is required
compared with the case of exponential claims.

Figure 7 shows the coefficient of variation in the case of Pareto(4,3) claims.
We observe that this function has an unusual shape. However, the function
does not vary greatly around b = 20.

We also calculated values of N (u,b) for different values of 5. Our cal-
culations were for integer values of u and b, and we observed that as fp
increased, the largest value of N(u,b) over all u and b decreased, with this
largest value almost always occurring with u = b. Further, for increasing 6,
the value of b maximising N (b, b) increased.

References

[1] Asmussen, S. and Taksar, M. (1997) Controlled diffusion models for
optimal dividend pay-out. Insurance: Mathematics & Economics 20, 1-
15.

[2] Borch, K. (1990) Economics of Insurance. North Holland, Amsterdam.

[3] Biihlmann, H. (1970) Mathematical Methods in Risk Theory. Springer-
Verlag, Berlin.

[4] Claramunt, M.M., M4rmol, M. and Alegre, A. (2002) Expected present
value of dividends with a constant barrier in the discrete time model. Pro-
ceedings of the 6th International Congress on Insurance: Mathematics
& Economics, Lisbon.

[5] De Finetti, B. (1957) Su un’ impostazione alternativa dell teoria col-
lettiva del rischio. Transactions of the XVth International Congress of
Actuaries 2, 433-443.

[6] De Vylder, F. and Goovaerts, M.J. (1988) Recursive calculation of finite
time survival probabilities. Insurance: Mathematics and Economics 7,
1-8.

20




[7] Dickson, D.C.M. and Gray, J.R. (1984) Approzimations to ruin probabil-
ity in the presence of an upper absorbing barrier. Scandinavian Actuarial
Journal, 105-115.

[8] Dickson, D.C.M. and Waters, H.R. (1991) Recursive calculation of sur-
vival probabilities. ASTIN Bulletin 21, 199-221.

[9] Gerber, H.U. (1979) An Introduction to Mathematical Risk Theory. S.S.
Huebner Foundation, Philadelphia, PA.

[10] Gerber, H. U. and Shiu, E. S. W. (1998) On the time value of ruin.
North American Actuarial Journal 2, 48-78.

[11] Gerber, H. U. and Shiu, E. S. W. (2002) Optimal dividends: analysis
with Brownian motion. Unpublished manuscript.

[12] Klugman, S.A., Panjer, H.H. and Willmot, G.E. (1998) Loss models -
from data to decisions. John Wiley, New York.

[13] Lin, X.S., Willmot, G.E. and Drekic, S. (2003) The classical Poisson
risk model with a constant dividend barrier: analysis of the Gerber-Shiu
discounted penalty function. Insurance: Mathematics & Economics, to
appear.

[14] Pafumi, G. (1998) Discussion of ‘On the time value of ruin’. North
American Actuarial Journal 2, 75-76.

[15] Siegl, T. and Tichy, R.E. (1999) A process with stochastic claim fre-
quency and a linear dividend barrier. Insurance: Mathematics & Eco-
nomics 24, 51-65.

21




Appendix

In this Appendix we consider Modification 2, as set out in Section 6.2. We
prove that u = b = 0 is optimal for this model in the sense that this maximises
M (u,b), the expected present value of the net income to the shareholders.

For a given initial surplus v and a dividend barrier at b(> u), let D; (u, b)
be a random variable denoting the total net income to the shareholders in
(0,t]. Then, since the shareholders have to provide the initial surplus, the
total net income to the shareholders in [0,¢] is D} (u,b) — u. Hence:

M(u,b) = E [ /O :o e~% dD? (u, b)] —u.

For any u and b such that 0 <u < b and any t > 0, let:
C; (u,b) = D;{(0,0) — D;(u,b) + u.

Then: -
M(0,0) — M(u,b)=E [/ e85 dC? (u, b)] .
0—
We will show that this difference is non-negative by showing in the following
Result that the integral is non-negative with probability one.
Result: For any u(> 0), b(> ), 6(> 0) and ¢(> 0) we have:

Ci(u,b) >0 wp. 1 (A1)

and .
/ e % dC*(u,b) >0 w.p. 1. (A2)

0—

Proof. Let U;(u,b) be the level of the modified surplus at time ¢+, so

that:
N(t)

U (u,b) =u+ct— Y X;— D;(u,b). (A3)

] i=1
By considering the sample paths of the modified surplus processes, it is clear
that for b > u > 0:

U/ (u,b) > U} (u,u) > U (0,0) =0
and hence from (A3) that:
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This proves (Al).

Let t1, ts, . .. denote the (random) times of the claims for the surplus process.
To prove (A2), note that the income stream contributing to D; (u, b) consists
of continuous payments at constant rate ¢ during some time intervals, i.e.
when dividends are being paid, and some negative lump sums at some of the
claim instants, i.e. payments to restore the surplus to zero following a claim
which causes ruin. The income stream contributing to D} (0, 0) consists of
continuous payments at constant rate ¢ in each interval (¢;_;,¢;) and negative
lump sums at each claim instant equal to the corresponding claim amount.
Hence, the income stream contributing to C;(u, b) consists of a non-negative
payment of u at time 0, non-positive discrete cash flows at times t;,1,,...
and, in each time interval (t;—;,t;), at most one interval of continuous cash
flow at constant rate c.

Note that the only cash flows contributing to C} (u, b) between t;_; and ¢; are
non-negative, so that if:

ti—1
/ e %dC*(u,b) > 0
0—

then: .
‘/ e~%dC?* (u,b) > 0

for ¢t € [ti_1,t;). Hence, it is sufficient to prove (A2) for t =t,to,. ..

Consider the interval [0,t¢;]. Since the only non-positive cash flow in this

interval is at time ¢;, the accumulated amount of the cash flows must exceed
¥ (u,b), so that:

t1
/ e’ (1=9)dC3 (u, b) > C: (u,b) > 0.

Hence, (A2) is true for t = t;.
Suppose (A2) holds for t = t,...,t, for some positive integer n. Then, by
hypothesis:

tn tn
et / e52dC (u, b) > / e84 (u, b) > 0.
_ 0—
Since the accumulated cash flow to time t,, is positive, the accumulated cash

flow to any time t in (¢,,%,41) is also positive (since cash flows are non-
negative in (t,t,4,)). Further, as Cf | (u,b) >0,

tn+1
e‘st"/ e %°dC*(u,b) > 0
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and hence

tntl
/ e~%dC?(u,b) > 0.
0—

Formula (A2) then follows by induction. m
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