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Abstract

The problem of determining optimal retention levels for a non-life portfolio
consisting of a number of independent sub-portfolios was first discussed by de
Finetti (1940). He considered retention levels as optimal if they minimised the
variance of the insurer’s profit from the portfolio subject to the constraint of
a fixed level of expected profit. In this paper we consider a similar problem,
changing the criterion for optimality to minimising the probability of ruin, either
in discrete or continuous time. We investigate this problem through a series of
case studies based on a real portfolio.

Keywords: reinsurance; optimal retention levels; finite time ruin; translated
gamma process.



1 Introduction

This paper is a risk-theoretic discussion of the problem of determining the relative
reinsurance retention levels for a non-life portfolio consisting of a number of
independent sub-portfolios. We consider only simple forms of proportional and
excess loss reinsurance. Our discussion will be based largely on numerical results
derived from a “pseudo-real” portfolio. The characteristics and constructlon of
this portfolio are described in detail in Section 2 below.

The classical results in this area are due to de Finetti (1940) (see also
Biihlmann (1970 section 5.2)). De Finetti derived relative retention levels which
have simple forms by considering the insurer’s net (of reinsurance) profit from
the portfolio at the end of a given time period. He then minimised the variance
of this profit subject to its expected value being fixed. A summary of de Finetti’s
results is given in Section 3 below.

In Section 4 we discuss some alternative criteria for determining relative re-
tention levels. These alternatives are to minimise the insurer’s probability of ruin
over a finite time horizon, either in continuous or in discrete time. Questions of
interest to us are:

(1) Do some or all of our probability of ruin criteria produce relative retention
levels close to those given by de Finetti’s approach?

(2) Are the relative retention levels produced by a probability of ruin in con-
tinuous time criterion close to those produced by a discrete time criterion?

(3) How do the relative retention levels produced by our probability of ruin
criteria depend on:

- (i) the insurer’s expected net profit?
(ii) the time horizon for ruin?

~(iii) the insurer’s initial surplus?

These questions are investigated in Section 5 (proportional reinsurance) and Sec-
tion 6 (excess loss reinsurance). Our conclusions are set out in Section 7.

2 The Portfolio

In order to investigate the problems outlined in the previous section, we have
constructed a non-life insurance portfolio based on a study by Ramlau-Hansen of
data supplied by a Danish insurance company. Ramlau-Hansen’s work is detailed
in a series of working papers (1986a, 1986b, 1986¢ and 1986d) and a conference
paper (1983) and summarised in two papers (1988a and 1988b).

Ramlau-Hansen analysed data from the Nye Danske Lloyd insurance company
covering the period 1977 to 1981. The data related to policies on:
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single-family houses, and,
dwellings (mainly apartment buildings, but also some office buildings).
These policies covered the buildings, but not their contents, against:

glass damage, i.e. damage to windows and sanitary fittings,
fire damage, and, |

windstorm damage.
Claims from these three sources will have very different characteristics:

Glass claims: these will be relatively numerous but for rather small amounts.

Fire claims: these will be far less frequent than glass claims but will be for
far greater amounts.

Windstorm claims: the number of windstorms will be very small but each
windstorm will produce a large number of individual claims.

In terms of claims experience, we would expect glass claims to be relatively stable,
fire claims to be less stable and windstorm claims to be even less stable over time.

Our portfolio is based on Ramlau-Hansen’s “Standard Portfolio” (1986d, sec-
tion 4.3). It consists of three sub-portfolios covering glass, fire and windstorm
claims, each of which can be reinsured separately. However, within each sub-
portfolio, single-family houses and dwellings cannot be reinsured separately. The
total annual expected claim amount, before reinsurance, is 500 x 10% of which
25% (125 x 10°) is expected to come from glass claims, 70% (350 x 10%) from
fire claims and the remaining 5% (25 x 10°) from windstorm claims. (Ramlau-
-Hansen’s monetary unit was Danish Kroner at 1981 values. For our purposes
only relative monetary values are important, not absolute values.)

Ramlau-Hansen modelled in some detail the annual claim numbers and
amounts distributions for each sub-portfolio. We have adopted Ramlau-Hansen’s
models for our portfolio with some very minor simplifications. Our models are
as follows:

Glass claims: Since glass claim amounts are almost always relatively small, we
have assumed that this sub-portfolio would not be reinsured under an excess loss
treaty, but would be reinsured under a proportional reinsurance treaty. (This
agrees with Ramlau-Hansen’s study (1988b, section 3.2).) For this reason we
need to specify a model for the aggregate annual glass claims but not for claim
numbers and claim amounts separately. We have assumed that the aggregate
annual glass claims have a normal distribution. This is a slight simplification of
Ramlau-Hansen’s model but his analysis (1986a, Table 12) does show that the
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skewness of aggregate annual glass claims is very small. The expected aggregate
annual glass claims are 125 x 10° , as explained above, and we have taken the
standard deviation to be 4.3 x 10% . The standard deviation has been inferred
from the information given by Ramlau-Hansen (1986a, Table 14).

Fire claims: The annual fire claim rate for dwellings is about 0.0885. (See
Ramlau-Hansen (1986b, Tables 1 and 2).) The annual fire claim rate for single-
family houses is 0.0127. (See Ramlau-Hansen (1983, Tables 1 and 7).) In 1981,
the numbers of dwellings and single-family houses in Ramlau-Hansen’s data were
12,318 and 83,699, respectively. These figures indicate that the expected num-
ber of claims each year is approximately the same for dwellings and single-family
houses. Ramlau-Hansen (1988a, section 2.1) assumes claim numbers have a Pois-
son distribution. We have assumed the Poisson parameter for dwellings and
for single-family houses is 7,893.9. (This value, when combined with the claim
amount distributions specified below, gives a mean aggregate annual fire claim
amount of 350 x 108 | as required.)

We use different claim amount distributions for dwellings and for single-family
houses. In each case, the distribution is loggamma, truncated at an expected
maximum loss (EML), with a density function of the form:

v
f(zy0,7) = f‘%;l- (log(x/z0))" " (z/20)~ @Y  for zo < 2 < EML
0

- where in each case the lower limit zy is 100. The other parameters and the
resulting moments are:

Dwellings Single-family houses

EML 35 x 10° 402, 500
o 1.4177 1.1220

¥  5.1003 3.2477
Mean 33,611 10,727
St. Dev. 490,721 : 42,560
Skewness 51.64 7.338

Ramlau-Hansen (1988a, section 2.2 and 1983, section 3) uses parameter values
which depend on the floor area of the dwelling or house. We have selected a “typi-
cal” distribution for each type of property. Let F(z; «,~y) denote the distribution
function corresponding to the density function f(z;c,v). Then the aggregate
annual fire claims have a compound Poisson distribution with Poisson parameter
15,787.8 and individual claim amount distribution F(z), where:

F(z) = 0 forz < 100

F(z) = (F(z;1.4177,5.1003) + F(z;1.1220,3.2477))/2 for 100 < z < 402, 500
F(z) = (1+ F(z;1.4177,5.1003))/2 for 402,500 < z < 35 x 10°

F(z) = 1 forz > 35x 10°



For our model, aggregate annual fire claims have the following moments:

Mean 350 x 108
St. Dev. 43.875 x 10°
Skewness 0.571

Windstorm claims: Ramlau-Hansen (1988a) developed a complicated model for
windstorms. He modelled the number of storms per annum, the number of claims
from each storm and the amount of the individual claims. For the purposes of pro-
portional reinsurance we need model only the aggregate annual windstorm claims.
When we consider excess loss reinsurance, we shall assume the insurer protects
the windstorm (sub-)portfolio with a catastrophe excess loss treaty whereby the
reinsurer reimburses the insurer for the amount by which the total claim amount
caused by a storm exceeds a given retention. See Ramlau-Hansen (1986¢, p42).
This means that we need model only the annual number of windstorms and the
total claim amount from each windstorm.

The number of windstorms per annum (in Denmark) in Ramlau-Hansen’s
model has a Poisson distribution with mean 4.36 and the expected cost of a
single windstorm is 9.3 x 106. Since we require the expected aggregate annual
cost of windstorms to be 25 x 10°, we need to scale down either the expected
number of windstorms or the expected cost of a single windstorm. We decided
to do the latter, which is equivalent to an insurer (in Denmark) having fewer
windstorm policies than in Ramlau-Hansen’s portfolio.

Our model for windstorm claims is as follows:

The number of storms per annum has a Poisson distribution with mean
4.36.

The total claim amount from a single windstorm has the following moments:

‘Mean - 5.734 x 108
St. Dev. 13.14 x 108
Skewness 2.649

We have assumed that the total claim amount from a single windstorm
has a translated gamma distribution with the above moments, i.e. has the
distribution of k 4+ Y, where Y has a I'(a, 8) distribution. The parameters
of this distribution are:

a= 0.5700
B= 5746 x 1078
k= —4.187 x 10



This model gives the following moments for the aggregate annual claims from

windstorms:
Mean 25 x 108

St. Dev. 29.936 x 106
Skewness 1.49

Following Ramlau-Hansen, we assume that all random variables in our model are
independent unless specified otherwise, so that, for example, aggregate claims
from the three sub-portfolios are independent and aggregate claims in separate
years are independent. In addition, we assume that the distributions do not
change from year to year. It would not be difficult to relax this assumption, for
example by incorporating inflation and business growth, but this would compli-
cate the presentation without adding significantly to the study.

For the remainder of the paper we will work in units of one million, so that
the expected aggregate claim amount from the portfolio is 500.

3 A Review of de Finetti’s Results

This section contains a brief summary of the essential points of de Finetti’s results.
More details, and proofs, can be found in de Finetti (1940) (see also Biihlmann
(1970)). The basic idea underlying these results is as follows. An insurer has a
portfolio of n independent risks and wishes to effect the same type of reinsurance
for each risk. The insurer’s profit level from these risks clearly depends on the level
of reinsurance. The insurer fixes a level for its expected profit from the portfolio
over a given time period, say one year, and chooses retention levels to minimise
the variance of the profit from the portfolio over this period. De Finetti’s results
state how retention levels for proportional and excess loss reinsurance should be
calculated under this criterion, which we shall refer to as the minimum variance
criterion.

... Consider -first proportional reinsurance. . For a portfolio of n independent
risks, let S; denote aggregate claims from the ith risk in a fixed time period for
1=1,2,...,n, and let P, denote the premium received by the insurer to cover this
risk. The insurer effects proportional reinsurance for each risk with proportion a;
retained for the ith risk, paying a reinsurance premium of (1 + 6;)(1 — a;)E(S;)
for this reinsurance cover. Thus, the reinsurance premium is calculated by the
expected value principle with a loading 6; for the ith risk. The insurer’s profit
over the period is

n

i=1

Subject to the constraint E[Z(a)] = k, where k is a constant, V[Z(a)] is minimised



by
_ CH.LE(S,)
“Z VS
where c is a constant which is determined by the condition F[Z(a)] = k. If this
procedure produces a value of a; > 1, the solution is to set that value of a; equal
to 1, with the remaining retentions being of the above form. :
In the case of excess loss reinsurance, let .S; and P, have the same meaning
as above. We assume that each S; has a compound Poisson distribution. The
insurer effects excess loss reinsurance with retention level M; for the ith risk and
pays a reinsurance premium of (1 + 6;)E(S; — S!) where S! denotes the insurer’s
aggregate retained claim amount from the ith risk. The insurer’s profit over the
period is

fori=1,2,...,n

Z(M) = (P - (1+6)E(S; - 8T) - 8I)
i=1
Subject to the constraint E[Z(M)] = k, where k is a constant, V[Z(M)] is
minimised by
M;=cl; fori=1,2,..,n

where c is a constant which is determined by the condition E[{Z(M)] = k.

Tables 1 and 2 show optimal retention levels for the portfolio described in
Section 2 for proportional and excess loss reinsurance respectively. In the case
of proportional reinsurance, the loadings in the reinsurance premiums are 10%
(glass), 40% (fire) and 80% (windstorm), while for excess loss reinsurance they
are 40% (fire) and 80% (windstorm). The tables also show the mean and variance
of the insurer’s retained aggregate claims. We can see in each case that these
quantities increase as the expected net profit increases. We note that for each level
of expected net profit, the values of mean retained aggregate claim amounts under
each type of reinsurance are similar. However, for a given level of expected net
profit, the variance of the retained aggregate claim amount is considerably smaller
under excess loss reinsurance. For example, when the expected net profit is 90, a
reduction of just 10 from its maximum value, the variance of the insurer’s retained
aggregate claim amount can be reduced by 44% using excess loss reinsurance,
compared to a reduction of only 24% using proportional reinsurance.

Expected Glass Fire Windstorm

Net Profit Retention Retention Retention Mean Variance
50 1 0.753 0.231 394 1,157
60 1 0.821 0.252 419 1,373
70 1 0.890 0.273 443 1,609
80 1 0.958 0.294 468 1,863
90 1 1 0.5 488 2,168
100 1 1 1 500 2,840

Table 1: Optimal retentions - proportional reinsurance
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Expected Fire Windstorm
Net Profit Retention Retention Mean Variance

50 2.08 4.15 397 213
60 3.55 7.09 418 351
70 5.86 11.72 438 582
80 9.66 19.32 458 961
90 16.88 33.77 478 1,602
100 00 co 500 2,840

Table 2: Optimal retentions - excess loss reinsurance

Note that in the case of proportional reinsurance, there is in fact no reinsur-
ance for the glass sub-portfolio, nor for the fire sub-portfolio as the expected net
profit increases. In all other cases in Table 1, the retentions for the fire and wind-
- storm portfolios are in the same proportion. In Table 2, the retention levels for
windstorm claims are twice those for fire claims since the reinsurance premium
loading factors are in the ratio 2:1.

Thus, de Finetti’s results provide simple formulae from which optimal reten-
tion levels can be calculated. In the case of proportional reinsurance, the optimal
retention levels depend on the first two moments of aggregate claims from each
sub-portfolio. This is perhaps not surprising since the problem is specified in
terms of the first two moments of profit from the n sub-portfolios considered to-
gether. In the case of excess loss reinsurance, the optimal retention level for each
sub-portfolio depends only on the reinsurer’s loading for that sub-portfolio. An
interesting feature of this result is that the distribution of individual claims for
a sub-portfolio has no bearing whatsoever on the retention level.

The results are independent of the insurer’s premium income (before reinsur-
ance) and of the amount of the insurer’s surplus. Intuitively we would expect
these factors to play a part. We also note that these results hold for a single
period analysis. If we assume that claims in successive time periods are inde-
pendent, then a change in the time period considered does not alter the optimal
retention levels.

Finally, we note that if the optimality criterion is altered from minimising
V[Z(b)] subject to the constraint E[Z(b)] = k (where b denotes the vector of
retention levels) to minimising V[Z(b)] subject to the constraint E[Z(b)] > k
then it is not difficult to prove that the solution to the problem is unchanged.
In our case studies in Sections 5 and 6, where we apply different criteria for
optimality, we will see that a change in the constraint from E[Z(b)] = k to
E[Z(b)] > k can make a considerable difference.



4 An Alternative Criterion for Optimality

In this section we consider an alternative criterion for optimality. We will consider
a vector of retention levels to be optimal if those retentions minimise the insurer’s
probability of ruin (net of reinsurance) subject to the constraint that the insurer’s
expected profit per unit time is greater than or equal to some constant. Thus we
have not only changed the objective function from variance of profit to probability
of ruin, but we have also altered the constraint. It will be clear in the examples
in the next sections why it is sensible to do this. In our examples we will consider
finite time ruin, both in discrete and in continuous time.

Since the probability of ruin depends on all the characteristics of the surplus
process, we might expect this new criterion to produce different optimal reten-
tion levels to those produced by the minimum variance criterion. However, the
following examples suggest that this new criterion may not produce very different
- results.

Example 1: It is well-known that if the adjustment coefficient, denoted R, for
a risk exists, it can be approximated as

R~ 2 x Expected Profit
™ Variance of Profit

Let us treat profit in this approximation as being the net of reinsurance profit
- from a portfolio of risks over a fixed time period. A natural (and approximate)
way of obtaining retention levels to minimise the insurer’s probability of ultimate
ruin would be to find retention levels that maximise this approximation to R.
When we apply the constraint that the expected profit is constant, maximising
R is equivalent to minimising the variance of profit, i.e. minimising the variance
of net retained claims.

Example 2: Suppose that an insurer has a portfolio of n risks and receives a total
premium of P per annum to cover these risks. Suppose further that the insurer
effects some form of reinsurance for each of these risks, defined by a vector b of
retention levels. Let II(b) denote the total premium paid by the insurer for this
reinsurance, and let S, (b) denote the aggregate claims, net of reinsurance, paid
by the insurer up to time n. Finally, let U denote the insurer’s initial surplus.

We assume that the insurer’s expected net profit per unit time, P — II(b) —
E[S:(b)], is positive. Assuming that S,(b) has a normal distribution, and that
aggregate claims are independent and identically distributed from year to year,
the insurer’s probability of ruin at the end of n years is

_ & (nP —nll(d) - nE(S:(b) + U
e ( AV (S )72 )

where ® denotes the standard normal distribution function. Minimising this
probability of ruin (as a function of b) subject to the insurer’s expected net profit
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per unit time being fixed is equivalent to minimising the variance of the insurer’s
net profit per unit time subject to the same constraint.

‘Example 3: Now let us extend the previous example by assuming in addition
that the insurer’s aggregate gain process {G(b)}i>0 is a Brownian motion with
(positive) drift. Let (U, T|b) denote the probability of ruin in continuous time
before time T, which may be finite or infinite. Let b; and b, be two reinsurance
retention vectors which result in the same expected net profit for the insurer, say
i per unit time, but different variances. Then using a coupling argument, i.e.
regarding G(b;) as equivalent to

pt + (Ge(by) — pt) (V[Ge(5:1)]/V[Ge(b2)]) /2

it is easy to see that 1(U, T'|b;) > 4(U, T'|b,) is equivalent to V[Gy(b;)] > V[Gy(b,)).
Hence, minimising the probability of ruin in continuous and finite or infinite time

-~ subject to the insurer’s expected net profit per unit time being fixed is equiv-

alent to minimising the variance of the insurer’s net profit subject to the same
constraint.

Each of these last two examples relies on being prepared to approximate
the insurer’s net surplus process by a process determined by just its mean and
variance (see, for example, Grandell (1977)). They also apply the constraint
that the expected net profit equals some constant, rather than is greater than or
equal to that constant. Nevertheless, they suggest that a change in the optimality
criterion from minimising variance to minimising a ruin probability may not result
in very different retention levels. We shall see in Sections 5 and 6 that this can
be the case, although we shall also see that the change in optimality criterion can
lead to very different results.

~ Since our new optimality criterion is to minimise a probability of ruin, we
need to be able to calculate ruin probabilities. Our approach to this problem will
not be to attempt to calculate exact ruin probabilities. Rather, we will use an
approximation. We will approximate the retained aggregate claims process by a
translated gamma process. There are two reasons for using this approximation.
First, formulae exist from which ruin probabilities can be calculated. Second,
recent evidence shows that this approach provides very good approximations to
ruin probabilities, particularly in problems involving reinsurance. See Dickson
and Waters (1993 and 1996).

We conclude this section by describing how we calculated ruin probabilities.
Consider first the discrete time ruin problem. We require probabilities of the
form

P1(u,t) =Pr(u+ Pn— X, <0 for some n,n=1,2,..,t)

where P represents the insurer’s premium income, net of reinsurance, per unit
time, and X,, denotes aggregate claims up to time n, again net of reinsurance. We
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approximated X,, by Y, +kn where Y,, has a gamma distribution with parameters
na and § and calculated probabilities from

Yi(u,t) =Pr(u+ P'n—-Y, <0 for somen,n=1,2,..,t)

where P* = P — k. The parameters o, 3 and k are found by matching the first
three moments of X,, and Y,,+kn. Let G(z) and g(x) respectively denote the dis-
tribution function and density function of a gamma distribution with parameters
a and f, so that the mean of the distribution is /3. Then

Yi(u,1) =1 - G(u+ P*)

and fort=1,2,3,...

u+-P*
Pilwt+) =gl D+ [ iz elu+ P - 2)ds

Values of 97 (u, 1) were calculated directly from computer routines which compute
the gamma distribution function. Values of 9 (u,t) for ¢ > 1 were calculated by
numerical integration. For each value of u required we performed numerical
integration on the interval (0,[u + P*]), where [u + P*] denotes the greatest
integer less than or equal to u+ P*, by applying the repeated trapezoidal rule on
unit steps. The integral over the range ([u + P*],u + P*) was calculated by the
trapezoidal rule. Thus, except for the integral over the final part of the range,
i (z,t) values were required only for integer values of z. For the integral over
([u+ P*],u + P*) values of ¢}(z,t) were required for non-integer . These were
obtained by linear interpolation. For our numerical examples, a unit step size was
deemed to be sufficiently large in view of the parameter values in our examples.
In particular, the value of P* was typically between 300 and 500. o ,

In the case of continuous time ruin probabilities, we require probabilities of
the form

Y(u,t) = Pr(u+ Pr—8(r) <0 for some 7,0 <T§ t) |

where P is as above and {S(¢)}:>0 denotes the aggregate claims process, net of
reinsurance. We approximate the process {S(¢)}i>0 by the translated gamma
process {Sg(t) + kt}i>0 where {S¢(t)}1>0 is a gamma process with parameters o
and 3. The parameters «, 3 and k are found by matching the first three moments
of the two processes. Ruin probabilities for the translated gamma process were
calculated by the method described by Dickson and Waters (1993).

5 Proportional Reinsurance

In this section we consider the problem of choosing proportional reinsurance
retention levels for each of the three sub-portfolios, glass, fire and windstorm, of
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the portfolio described in Section 2. We will discuss two case studies which reveal
rather different features.

Case Study 1: We have set the insurer’s premium income (before reinsurance)
to be 600 per unit time, i.e. 120% of the expected aggregate claims. The insurer’s
initial surplus has been set at 20. The initial surplus was chosen so that the one-
year discrete time ruin probability is about 1% when the vector of retentions @
is given by the solution under the minimum variance criterion. The reinsurer’s
premium loading factors are § = (0.044,0.1605,1.533). These loading factors are
in proportion to the standard deviation of aggregate claims per unit time for the
three sub-portfolios and are such that, if the insurer reinsured the whole of each
sub-portfolio, the reinsurance premium would be 600.

Table 3A shows for the time horizons ¢ = 1,2, 5, 10 and 20, the probability of
ruin in continuous time and in discrete time assuming the insurer does not effect
any reinsurance. In this case the insurer’s expected net profit per unit time is
100, as shown in the final column of Table 3A.

Prob’y of ruin Prob’y of ruin Expected

t a (continuous) (discrete) net profit
1 (1,1,1) 0.2413 0.0237 100

2 (1,1,1) 0.2484 0.0262 100

5 (1,1,1) 0.2494 0.0267 100
10 (1,1,1) 0.2495 L 0.0267 . 100
20 (1,1,1) 0.2495 0.0267 100

Table 3A: Case Study 1 - no reinsurance

The proportional reinsurance retention levels which minimise the variance of
the insurer’s net (of reinsurance) aggregate claims subject to the constraint that
the insurer’s expected net profit per unit time should be 50 are ¢ = (1,0.396,0.581).
Table 3B shows the insurer’s probabilities of ruin with these retention levels.

Prob’y of ruin Prob’y of ruin Expected

t a (continuous) (discrete) net profit
1 (1,0.396,0.581) 0.0898 0.0103 50
2 (1,0.396,0.581) 0.0948 0.0115 50
5 (1,0.396,0.581) 0.0955 - 0.0117 50
10 (1,0.396,0.581) 0.0955 0.0117 50
20 (1,0.396,0.581) 0.0955 0.0117 50

Table 3B: Case Study 1 - minimum variance

Table 3C shows for each time horizon, the retention levels which minimise the
insurer’s probability of ruin in continuous time subject to the insurer’s expected
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net profit being at least 50, the corresponding minimum probability of ruin,
the probability of ruin in discrete time for these retention levels and finally the
insurer’s expected net profit. In this case, the optimal retention levels are such
that the insurer’s expected net profit is equal to 50 for each of the five time
horizons.

Prob’y of ruin -Prob’y of ruin Expected

t a (continuous) (discrete) net profit
1 (1,0.438,0.519) 0.0882 0.0095 50

2 (1,0.438,0.519) 0.0929 0.0106 50

5 (1,0.439,0.518) 0.0935 0.0108 50

10 (1,0.439,0.518) 0.0935 0.0108 50
20 (1,0.439,0.518) 0.0935 0.0108 50

Table 3C: Case Study 1: minimum probability of ruin in continuous time

Table 3D is similar to Table 3C except that for each time horizon, the retention
levels are those which minimise the insurer’s probability of ruin in discrete time
subject to the insurer’s expected net profit being at least 50.

Prob’y of ruin Prob’y of ruin Expected

t - 'a - (continuous) - (discrete) net profit
1 (1,0.456,0.493) 0.0885 0.0094 30
2 (1,0.456,0.493) 0.0933 0.0105 50
5 (1,0.456,0.493) 0.0939 0.0107 50

10 (1,0.456,0.493) 0.0939 0.0107 50

20 (1,0.456,0.493) 0.0939 0.0107 50

Table 3D: Case Study 1 - minimum probability of ruin in discrete time

Case Study 2: We have again set the insurer’s premium income to be 600 but
have increased the initial surplus to 35. This initial surplus gives a one-year
discrete time probability of ruin of about 1% when there is no reinsurance. We
have set the reinsurance premium loading factors as 8 = (0.1, 0.4, 0.8). These are
somewhat arbitrary choices but are designed to reflect the relative risk for the
three sub-portfolios. With these loadings, the premium for reinsuring the whole
portfolio is greater than 600. Adopting the same constraints as for Case Study
1, the retention levels which minimise the variance of the insurer’s net claims are
(1,0.753,0.231).

Tables 4A, 4B, 4C and 4D give the information relating to Case Study 2 which
corresponds to the information relating to Case Study 1 in Tables 3A, 3B, 3C
and 3D.
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Prob’y of ruin Prob’y of ruin Expected

t a (continuous) (discrete)  net profit
1 (1,1,1) 0.1282 0.0146 100
2 (1,1,1) 0.1347 0.0164 100
5 (1,1,1) 0.1357 0.0167 100
10 (1,1,1) 0.1357 - .0.0167 100
20 (1,1,1) 0.1357 0.0167 100
Table 4A: Case Study 2 - no reinsurance
Prob’y of ruin Prob’y of ruin Expected
t a (continuous) (discrete) net profit
1 (1,0.753,0.231) 0.0746 0.0147 50
2 (1,0.753,0.231) 0.0861 0.0185 50
5 (1,0.753,0.231) 0.0894 0.0199 50
10 (1,0.753,0.231) 0.0895 0.0199 50
20 (1,0.753,0.231) 0.0895 0.0199 50
Table 4B: Case Study 2 - minimum variance
Prob’y of ruin Prob’y of ruin Expected
t a ~(continuous) ~ (discrete) net profit
1 (1,0.749,0.257) 0.0745 0.0147 50
2 (1,0.749,0.257) 0.0860 0.0184 50
5 (1,0.749,0.257) 0.0893 0.0198 50
10 (1,0.749,0.257) 0.0894 0.0199 50
20 (1,0.749,0.257) 0.0894 0.0199 50

Table 4C: Case Study 2 - minimum probability of ruin in continuous time

Prob’y of ruin  Prob’y of ruin Expected

t a (continuous) (discrete) net profit
1 (1,1,0.42) 0.0957 0.0103 88.4
2 (1,1,0.43) 0.1011 0.0115 88.6
5 (1,1,0.43) 0.1018 0.0118 88.6
10 (1,1,0.43) 0.1018 0.0118 88.6
20 (1,1,0.43) 0.1018 0.0118 88.6

Table 4D: Case Study 2 - minimum probability of ruin in discrete time
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Comparison of Tables 3A-D and 4A-D:

(a)

(b)

(©)

Comparing the ruin probabilities in Table 3A (no reinsurance) with those
in Tables 3B-D, and also those in Table 4A with those in Tables 4B-D, it is
apparent that proportional reinsurance can reduce the probability of ruin
considerably, although in many cases 50% of the maximum expected profit
has been sacrificed to achieve this reduction.

A feature of Tables 3C-D and Tables 4C-D is that the optimal reinsurance
retentions are not very sensitive to changes in the time horizon for ruin.
This suggests that if we wish to choose proportional reinsurance retentions
which minimise the insurer’s probability of ruin in either continuous or
discrete time, subject to a minimum level for the insurer’s expected net
profit, it may be sufficient to calculate the optimal retentions for a short
time horizon.

A feature of Case Study 1 is that the optimal retentions in Tables 3C,
(1,0.438/9,0.519/8), and 3D, (1,0.456,0.493), are close to each other and
not too far from those in Table 3B, (1,0.396,0.581). Also, the corresponding
probabilities of ruin in Tables 3B-D are all very close to each other. This
suggests that, in this example, if we wish to choose retention levels which
minimise a probability of ruin, in either continuous or discrete time, an

- approximation can be obtained by calculating retention levels using the

(d)

minimum variance criterion. This could be a significant point since the
computational effort required for the latter is considerably less than that
required for the former.

The comments in (c) above, all of which related to Case Study 1, do not
apply to Case Study 2. For Case Study 2, the optimal retentions, and ruin
probabilities, calculated using a minimum variance criterion, Table 4B, and

- a continuous time ruin criterion, Table 4C, are very close to each other.

Also, the optimal retentions in Table 4C give an expected net profit for the
insurer of exactly 50. However, the optimal retentions and ruin probabilities
calculated using the discrete time ruin criterion, Table 4D, are very different
from those in Tables 4B and 4C. A noticeable feature of Table 4D is that
the optimal retentions give expected net profits, 88.4/6, well in excess of
the constrained minimum value of 50.

Further discussion of Case Study 2:

Figure 1 shows minimum discrete time ruin probabilities as a function of
the insurer’s expected net profit for ¢ = 1 and ¢ = 10. This figure shows the
advantage to the insurer of constraining the expected net profit to be at least 50.
In particular, when ¢t = 10 we see that any expected net profit greater than 50
results in a lower probability of ruin than when the expected net profit equals 50.
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Results showing the effect of different values for the initial surplus are shown
in Tables 5A, 5B, 6A and 6B, in all cases the reinsurance premium loadings are
as in Case Study 2. Tables 5A and 6A show figures for an initial surplus of 20
and Tables 5B and 6B show figures for an initial surplus of 50. Tables 5A and
5B show for each of the five time horizons the optimal retention levels calculated
using a continuous time ruin criterion, together with the resulting expected net
profit for the insurer and the minimum value of the ruin probability. These
values should be compared with those in Table 4C. Tables 6A and 6B show the
optimal retention levels calculated using a discrete time ruin criterion. These
values should be compared with those in Table 4D.

Prob’y of ruin  Expected

t a (continuous time) net profit

1 (1,0.753,0.229) 0.1883 50.0

2 (1,0.799,0.247) 0.2025 56.8

5 (1,0.827,0.256) 0.2050 60.9
10 (1,0.827,0.256) 0.2050 60.9
20 (1,0.827,0.256) 0.2050 60.9

Table 5A: minimum probability of ruin in continuous time, U = 20

Prob’y of ruin  Expected

t a (continuous time) net profit
1 (1,0.747,0.271) 0.0288 50
2 (1,0.747,0.271) 0.0362 50
5 (1,0.748,0.264) 0.0387 90
10 (1,0.748,0.264) - 0.0387 50
20 (1,0.748,0.264) 0.0387 50

-~ -Table 5B: minimum probability of ruin in continuous time, U = 50

Prob’y of ruin Expected

¢ a (discrete time) net profit
1 (1,1,0.460) 0.0186 89.2
2 (1,1,0.470) 0.0205 89.4
5 (1,1,0.470) 0.0208 89.4
10 (1,1,0.470) 0.0208 89.4
20 (1,1,0.470) 0.0208 89.4

Table 6A: minimum probability of ruin in discrete time, U = 20
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Prob’y of ruin Expected

t a (discrete time) net profit
1 (1,1,0.390) 0.0055 87.8
2 (1,1,0.400) 0.0063 88.0
5 (1,1,0.405) 0.0065 88.1
10 (1,1,0.405) - 0.0065 - 88.1
20 (1,1,0.405) 0.0065 88.1

Table 6B: minimum probability of ruin in discrete time, U = 50

The optimal retentions in Table 5B are very close to those in Table 4C, indicat-
ing that increasing the insurer’s initial surplus from 35 to 50 has had little effect
in terms of optimal retention levels and the insurer’s expected net profit. How-
ever, Table 5A displays different features. The optimal retention levels change
as the time horizon increases, appearing to converge to (1,0.827,0.256), and the
insurer’s expected net profit moves away from the constrained minimum value.
Table 5A indicates that the optimal retentions under a continuous time ruin cri-
terion may depend on the time horizon and, by comparison with Tables 4C and
5B, on the insurer’s initial surplus. Turning to Tables 6A and 6B, we see that a
change in initial surplus has only a small impact on optimal retention levels and
- the insurer’s expected net profit.

6 Excess Loss Reinsurance.

Case Study 3: In this Case Study we investigate different optimal retention
levels for excess loss reinsurance of the fire and windstorm sub-portfolios. For
the reasons given in Section 2, we assume that the glass sub-portfolio is not
--reinsured under an excess loss treaty.  The insurer’s premium income is 600, as
in the previous two Case Studies, and the initial surplus is 35. The reinsurance
premium loading factors are 100% (fire) and 200% (windstorm). These factors
are higher than those in the previous two Case Studies, a consequence of the fact
that excess loss, by its very nature, should be more expensive than proportional
reinsurance.

The probabilities of ruin, for continuous and discrete time, and for different
time horizons, when there is no reinsurance are as in Table 4A. We will assume
that the insurer wishes to find the optimal excess loss retentions subject to the
constraint that the expected net profit is at least 50. The minimum variance solu-
tion to this problem is M = (00, 9.66,19.32). The ruin probabilities with this set
of retention levels are shown in Table 7B. Table 7C shows the optimal continuous
time retentions and ruin probabilities for different time horizons, together with
the discrete time ruin probabilities for these retentions and the insurer’s expected
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net profit, which in every case is 50. Table 7D shows the optimal discrete time
retentions and ruin probabilities for different time horizons, together with the
continuous time ruin probabilities for these retentions and the insurer’s expected
net profit.

Prob’y of ruin Prob’y of ruin Expected

t M (continuous) (discrete) net profit
1 (00,9.66,19.32) 0.0420 "~ 7 '0.0068 50 a
2 (00,9.66,19.32) 0.0485 0.0083 50
5 (00,9.66,19.32) 0.0499 0.0087 50
10 (00,9.66,19.32) 0.0499 0.0087 50
20 (00,9.66,19.32) 0.0499 0.0087 50
Table 7B: Case Study 3: - minimum variance
Prob’y of ruin Prob’y of ruin Expected
t M (continuous) (discrete)  net profit
1 (co,10.43,17.39) 0.0414 0.0066 50
2 (c0,10.39,17.48) 0.0479 0.0081 50
5 (00,10.38,17.50) 0.0492 0.0085 50
10 (o0,10.38,17.50) 0.0493 0.0085 50
20 (00,10.38,17.50) 0.0493 0.0085 50

Table 7C: Case Study 3: - minimum probability of ruin in continuous time

Prob’y of ruin Prob’y of ruin Expected

t M (continuous) (discrete) net profit
1 (00,11.52,19.09) 0.0451 0.0066 54.7
2 (00,12.56,20.78) 0.0543 0.0078 58.8
5 (00,12.91,21.37) 0.0564 0.0081 60.1
10 (00,12.91,21.37) 0.0564 -0.0081 60.1
20 (00,12.91,21.37) 0.0564 0.0081 60.1

Table 7D: Case Study 3: - minimum probability of ruin in discrete time

A comparison of Tables 7B-D shows that the ruin probabilities in these tables,
either continuous or discrete time, do not change significantly from one table to
the next. This indicates that for many practical purposes the probability of ruin,
in either discrete or continuous time, can be assumed to attain its minimum
value at the solution to the minimum variance problem. However, the extra
computational effort required to compute the optimal retentions for discrete time
ruin in Table 7D may be considered worthwhile since they result in an expected
net profit for the insurer in excess of 60, for ¢ > 5, rather than 50 for the minimum
variance optimal retentions.
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Other features of Tables 7B-D are:

(a) the different time horizons in Tables 7C and 7D have little effect on the
values of the optimal retention levels, and no effect for ¢ > 5, and,

(b) optimal retentions for continuous time ruin, Table 7C, are closer to the
minimum variance solution than are the optimal retentions for discrete time
ruin, Table 7D. In particular, the former give an expected net profit for the
insurer of 50, i.e. on the boundary of the constraint, as for the minimum
variance solution, whereas the latter give an expected net profit away from
the boundary.

Figure 2 shows the minimum discrete time ruin probabilities as a function of
the insurer’s expected net profit for £ = 1 and ¢ = 10. As in Figure 1, we can
again see the advantage of constraining the expected net profit to be at least 50
rather than exactly 50.

The effect of altering the insurer’s initial surplus is shown in Table 8. This
table shows for U = 20 and U = 50 the optimal retentions for both the continuous
time and the discrete time ruin criteria, together with the minimum value for the
probability of ruin and the resulting expected net profit for the insurer. In all
cases the time horizon for ruin is 20 years.

Continuous/ , ‘ - Expected
U discrete M Prob’y of ruin net profit
20 Continuous (00, 10.08,18.22) 0.1569 50
50 Continuous (o0, 10.49,17.25) 0.0155 30
20 Discrete (00,16.18,27.00) 0.0182 70.5
50 Discrete (00,10.89,17.89) 0.0031 51.8

Table 8: Case Study 3: different values for the initial surplus: ¢t = 20

The important point revealed by Table 8 is that changing the insurer’s initial
surplus has little effect, in terms of the optimal retentions or the insurer’s expected
net profit, in the case of continuous time ruin but makes a considerable difference
in the case of discrete time ruin.

7 Conclusions

Our purpose in this paper has been to investigate different criteria for determining
the optimal relative retention limits for a non-life portfolio consisting of a number
of independent sub-portfolios. For the reasons discussed in Examples 1, 2 and 3
in Section 4, the minimum variance criterion could be regarded as a proxy for a
probability of ruin criterion. The advantages of the minimum variance criterion
are:
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(a) it is possible to express the optimal retention levels in closed form,

(b) the optimal retention levels depend only on the reinsurance premium load-
ings and, in the case of proportional reinsurance, on the first two moments
of aggregate claims for the sub-portfolios, and,

(c) the optimal retention levels can be calculated very easily. In contrast, the
optimal retention levels using a ruin probability criterion cannot be ex-
pressed in closed form and can be time consuming to compute, particularly
for the longer time horizons.

Our method of investigation has been to carry out several “case studies” for
a single portfolio. Using this method it can be difficult to draw any conclusions.
Nevertheless, we consider that the numerical results in Sections 5 and 6, and
the other examples we have investigated in the course of this study, enable us to
reach the following tentative answers, for both proportional and for excess loss
reinsurance, to the questions posed in Section 1:

(1) The minimum variance criterion produces optimal relative retention levels
close to those produced by the continuédus time ruin criterion (see Tables
3B and 3C, Tables 4B, 4C, 5A and 5B and Tables 7B, 7C and 8 (Con-
tinuous)) but not necessarily similar to those produced by a discrete time
ruin criterion (see Tables 4B, 4D, 6A and 6B and Tables 7B, 7D and 8
(Discrete)).

(2) As indicated in (1) above, the discrete time ruin criterion can produce
very different optimal retentions from those produced by the continuous
time ruin criterion. For a related discussion see Dickson and Waters (1996,
Sections 8 and 9).

(3) (i) In most cases we investigated, the optimal retention levels for con-
tinuous time ruin give an expected net profit for the insurer on the
boundary of its constrained values (see Tables 3C, 4C, 5B, 7C and 8
(Continuous)). In one example this was not the case (see Table 5A).
The exact reverse is true for the optimal retentions for discrete time
ruin (see Table 3D for the former case and Tables 4D, 6A, 6B, 7D and
8 (Discrete) for the latter case).

(ii) A marked feature of all our calculations is that the time horizon for
ruin, for one year and longer, has very little effect on the optimal
retention levels in either continuous time or discrete time. In all cases
the optimal retention levels are unchanged to three significant figures
as the time horizon increases from five years to twenty years.
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(ili) The insurer’s initial surplus, which is not considered by the minimum
variance criterion, can have a considerable effect on the optimal reten-
tion levels using a probability of ruin criterion (see Tables 7D and 8
(Discrete)).
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