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Summary

Recent years have seen a considerable upsurge in the use of Generalised Linear Models (GLM:s)
to carry out technical pricing of domestic (and other) lines. The paper by Brockman and
Wright (1992) detailed some of the fundamentals of the application of GLMs.

This paper attempts to build on that earlier one. There are many practical issues which arise
repeatedly in applications. An attempt is made here to identify these issues, establish a
framework for dealing with them, and reduce as many as possible to a routine.

Section 3 addresses the matching of risk premiums to claims experience after a GLM has been
used to estimate all premium relativities, i.e. cell-to-cell ratios. Subsequent sections deal with
modelling the relativities themselves.

Section 6 covers various issues concerned with the selection of a model structure and estimation
of its parameters. Section 7 discusses the validation of the model. Section 8 discusses the
response of the model to No Claim Discount and deductibles, two subjects which do not fit
easily into the GLM framework.

Section 9 summarises as much as possible of the discussion into a protocol, set out in flowchart
form.

Keywords:  Pricing, domestic lines, generalised linear models.



1 Introduction

This paper is concerned with the pricing of domestic lines of insurance, spcciﬁcélly with
estimation of risk premiums. No consideration will be given to expenses, profit or any
strategic adjustments made to premiums in response to competitors’ prices.

Emphasis will be placed on the use of Generalised Linear Models (GLMs) to rate risk
premiums. This paper therefore forms some sort of sequel to that of Brockman and Wright
(1992), which dealt with a number of aspects of pricing using GLMs, with particular reference
to the statistical package GLIM.

The purpose here will be twofold:

. to expand on some of the areas discussed by Brockman and Wright; and

. to establish, as far as possible, a protocol by which a risk premium rating assignment
might be carried out.

Risk rating of a portfolio consists of two parts:
. rating the relativities between risks;
. ensuring that the aggregate premium pool is adequate;

as will be discussed in Section 3. This paper is concerned largely, though not solely, with the
- first of these two questions.

2 Notation and terminology

Brockman and Wright (1992) mention (p. 484) the variety of different claim types which can
arise under a single policy. They recommend separate modelling of different claim types. This
question is discussed in Section 6. Suffice to say here that where different claim types are
recognised, all notation below applies to a single claim type.

It is supposed, conventionally, that each policy at risk has a number of attributes which
function as risk descriptors, i.e. the risk premium associated with a policy may be viewed as
a mapping of its attributes.

In this sense, the attributes may be regarded as risk covariates. Examples in motor insurance
would be:

. age of insured;
. gender of insured;
. sum insured;
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ctc.

Consider a portfolio of policies, and denote the identified covariates by 4, , &, ... Though
there can be many covariates, it will be assumed for the sake of exposition that there are only
3. This reduces the notational load, while extension of the development below to a larger
number of covariates will be obvious.

With this understanding, each policy can be labelled by its covariates i, 7, &, ... Acellisa
collection of policies with common 4, f, 2, and may be labelled with these values. Thus a
typical cell will be denoted by i, 7, }.

In the following, a quantity sub-scripted by #k will represent the summation of that basic
quantity over all policies in cell {;, 7, k}. Let

E, = number of years of exposure to risk of claim;

Ngk number of claims;

amount of claims incurred.

ifk

These quantities will be measured over some defined, but arbitrary, period. The period might
be a calendar year, quarter, month, etc.

In practice, some consideration will need to be given to the definition of “claims incurred™.
This is discussed in Section 5.1.

It is assumed that

E{Ny] = By fyo 1)
E[Ciﬂe lNiJk] =N, 2, (2.2)

where E[.] is the expectation operator and fw a,; are cell-dependent parameters:

f;-, ) = expected claim frequency (per year of exposure) for the cell;
a, = expected claim size for the cell.
i

Define the target of the investigation:
P, = risk premium per year of exposure,

and note that

03/06/97 11:18AM SN\GAMSONM\GENERAL\GI18.09



P ik E [Cg'ﬂe]/ Egk
= Jie P> (2.3)
by (2.1) and (2.2).

Occasionally, it will be convenient to have a notation for the expectation appearing in (2.3).
Let

Y = E Ciﬂz]'

The risk premium relativity between two cells {il, I kl} and {iz, I kz} will be defined as
P .., / P, ., - Rather than considering all pairs of cells, it will usually be convenient to express
rcll;%:ilvities in terms of a base, or in some sense typical, cell {io, Jo» ko}.

In this case, one may speak of just the relativity of cell {i, 1 k}, defined as:

P, £ a,
ry*=ij =[fy ][aykl. (2'4)
ioicko foioko Sofoko

The decomposition on the right shows that:

risk premium relativity = (claim frequency relativity)x (claim size relativity). (2.5)

As will be seen later, it is often useful to consider relativities obtained by varying only one
covariate, e.g. P.., /P.. . which might reasonably be referred to as the relativity of

& Siikel Tiniok & y v
covariate i .

Let
E = ﬁEﬁ = total exposure in data;
C = %Cg} = total claim cost;
P = ’_%E%P.ﬁ = total risk premium.
By (2.3),

P = E[C]. (2.6)

03/06/97 11:18AM S\GAMSONM\GENERAL\G118.09



3 Premium relativities and aggregate

It is apparent from (2.4) that the whole risk premium scale is specified by:

. the complete set of relativities 7, ; and

ik >

. the base premium Pioi b

It will be seen in Section 7.4.1 that the analysis which leads to estimates of ther,;, will also

provide an estimate of Pioi "

However, the remainder of the present section explains why this last estimate may be passed
over in favour of an alternative, related more directly to the aggregate experience of the
portfolio.

Substitution of (2.4) in (2.6) yields:

EICY = Py, 2By (3.1

whence P,.O’. 4

| is estimated by
Fiito = &/ 2By (32)

with C some suitable estimator of E [C].

This shows that the base premium can be estimated once all relativities have been found and
an estimator of the underlying (i.e. after removal of extraordinary effects) aggregate claim cost
obtained.

The estimator C may be formed from historical aggregate costs. Here some care will be
required to take into account any changes in portfolio composition which may have occurred
within the period of the historical data.

An alternative form of (3.1) is:

E[C/ E] =P, ;L_zwijkrijk’ 3.3)
where the w,, form a set of weights:

w, = E,/E. | (3.4)

This shows that the left side of (3.3) depends on the weighting of the various cells in the
experience.

02/07/97 02:29PM S:\GAMSONM\GENERAL\GI18.09



5

Suppose that C and E are available for a number of past quarters. Denote these quantities
by C®, C#D, etc. in reverse time order. Suppose that this series has been corrected for
inflation and seasonality. Each of the quarters #~s will have an associated set of weights
{w¢*}. Equation (3.3) shows that strictly the C ¢ are directly comparable if these sets of
weights do not vary over time. If they do, the C ™ should be corrected accordingly.

The counterpart of (3.3) with the time index taken into account is:

-5 -5} _ (-5
EC® /E®) = P, g%wﬁ ” | (3.5)

whence the base premium is estimated from the data of quarter z-s by

pED _ ct
7 - 3.6
E¢ s)gwﬂ i (3.6)
i

The summation appearing in the denominator is the average relativity taken over the whole
portfolio.

The estimate of base premium using all the data is

z C (#-5)

3 s

Piofuko - (t-5) @#-5) )
¥[E Ewﬁ r’.ﬂe]
s L/

(3.7)

A numerical example will illustrate. Consider the situation set out in Table 3.1.
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Table 3.1
Claims history adjustment

Average claim cost Estimated
Quarter Exposure  Claims per year of Average base
E C exposure C/E relativity  premium @
$M
Dec 93 52,347 22.68 433.2 1.0251 422.6
Mar 94 52,579 22.95 436.4 1.0223 426.9
Jun 94 53,333 23.23 4355 1.0233 425.6
Sep 94 53,012 22.31 420.8 1.0099 416.7
Dec 94 52,549 22.56 429.3 1.0253 418.7
Mar 95 52,552 23.16 440.7 1.0397 423.9
Jun 95 53,341 23.11 433.3 1.0336 419.2
Sep 95 53,994 23.57 436.4 1.0336 4223
Dec 95 54,501 23.65 4340 1.0305 421.1
Mar 96 54,763 23.24 4244 1.0120 4194
Jun 96 54,788 23.16 422.7 0.9997 422.9
Sep 96 55,002 22.95 ‘ 417.3 0.9853 4235
Weighted average® 421.9

Notes: @ According to (3.6).
g
® According to (3.7).

These results are illustrated graphically in Figure 3.1.

Fig 3.1

Relatlvity adjustment of clalms history)

$450

$440 |-

$420 |-

$410 1 1 L 1 1 1 1 1 1 L . 1 1
Dec-63 Jun-94 Dec-04 Jun-85 Dec-95 Jun-96
g Clalm cost per unit exposure o Estimated base premium — Welghted average estimafo of base premluml

03/06/97 11:18AM S\GAMSONM\GENERAL\GI18.09



7

In practice it may be difficult to estimate the base premium with such precision. For example,
while the aggregate quantities E and C may be available by quarter for the 3-year period
addressed in Table 3.1, the fine detail required to calculate the series of average relativities over
the whole period may not be.

Suppose that the portfolio is known to have undergone changes in the proportion of policies
free of an excess, but no other systematic changes in portfolio structure have been identified.
A summary of the situation is given in Table 3.2, where the “Actual” average claim cost per
year of exposure is reproduced from Table 3.1.

Table 3.2
Claims history
Quarter  Proportion of Average claim cost
exposure per year of exposure
with no excess
Actual Fitted
% $ $
Dec 93 28 433 431
Mar 94 26 436 430
Jun 94 29 435 432
Sep 94 30 421 432
Dec 94 34 429 435
Mar 95 33 441 434
Jun 95 35 433 436
Sep 95 35 » 436 436
Dec 95 27 » 434 431
Mar 96 19 424 426
Jun 96 14 423 423
Sep 96 8 417 419

The table reflects the marked shift away from excess free policies, beginning in the December
1995 quarter. Note that this is consistent with the decline in average relativity, over the same
period, appearing in Table 3.1.

A simple regression of average claim costs against proportion of policies excess free yields the

fitted average claim costs in the final column of the table. The situation is illustrated in Figure
3.2.

03/06/97 11:18AM S\GAMSONM\GENERAL\GI18.09



Fig. 3.2
Approximate adjustment of clalms history
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If the regression line is taken as providing an estimate of the portfolio average risk premium
for each quarter, then it implies a time series average relativities. The implied average relativity

for quarter ¢-s is:

average relativity for Dec 93 quarter

X

Fitted average claim cost for quarter t-s

Fitted average claim cost for Dec 93 quarter

(3.8)

If the average relativity of the Dec 93 quarter is taken as 1.0251, as in Table 3.1, the average
relativities (3.8) yield a series of approximate base premium estimates. Figure 3.3 compares

these with those based on exact average relativities in Table 3.1.

03/06/97 11:18AM
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Fig 3.3
Comparison of claims history adjustments
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Note that the approximate estimates of base premium follow the exact ones reasonably well,
but display somewhat greater volatility. This is to be expected since they do not recognise any
source of variation in portfolio structure other than change in the proportion of policies free
of excess.

Note that the base premium of $421.9, estimated in Table 3.1, is alssumcd applicable to all
past quarters, subject to inflation and seasonality adjustments. Likewise, it may be assumed
applicable to all future periods, unless there is some specific reason to the contrary.

This constancy of base premium holds despite the decline in portfoﬁo average risk premium,
this decline being accounted for in the average relativity rather than the base premium.

The average risk premium may continue to decline in future, but th#rc is no need to project
this when rating future premiums. In fact, to do so would double count that effect since it is

already allowed for in the relativities (the future portfolio will contain a greater proportion of
policies with low relativities). |

4 Outline of relativity estimation

The remainder of this paper will be concerned with relativities of the various sorts discussed
in Section 2. There are several distinct stages in this procedure.

First, there will be some decisions to be made in assembling the data and deciding which
quantities are to be modelled. These matters will be discussed in Section 5.

Second, there are practicalities to consider in making the most effective use of GLMs. These
are treated in Section 6.

03/06/97 11:18AM S:\GAMSONM\GENERAL\GI18.09
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Third, there are some matters, specifically the rating of:
Geographic zone;
Excess;

No Claim Discount (NCD);

which do not fit altogether comfortably into the GLM framework. The alternative, or
supplementary methodologies are discussed in Section 7.

Finally, there is a need to validate whatever model is produced by the methods of Sections 5
to 7. Procedures for doing so are described in Section 8.

5 Data and model set-up

5.1 Claims incurred

All of the development of amounts of claims in Sections 2 and 3 was in terms of claims

incurred. These quantities are supposed known for one or more periods, i.e. accident
periods.

The fact that C;, relates to an accident period raises the question of its IBNR and IBNER
components. Decompose Cy;, as follows:

Cy = C *+ Cyas (5.1)
where

C,;,‘ = the reported component of Ci> i.c. losses paid to the date of the
analysis plus estimate at that date of losses unpaid in respect of
reported claims;

C!-;; = the unreported component of C» 1.e. the difference between C,i and
its ultimate value when all claims from the accident period in question
have been settled.

Let
Vi = E[Cql, (5.2)
Yz = E[Cyl (5.3)

The risk premium relativity Tk defined by (2.4) is

03/06/97 11:18AM S:\GAMSONM\GENERAL\GI18.09 .



| 11
= (v y’k/ ;ﬂe)/ (Y.Weo/ E.Weo)a (5.4)

by (2.3).

For the present sub-section only, it will be convenient to abbreviate the subscnpts 1ol and #k
to just 0 and blank respectively. With this understanding, (5.4) bccOmcs

(v/v0) /(€ /Ey)
_Y+Y /E
Yo+ Yo/ Eo (5.5)

<
n

Suppose that the unreported components in (5.5) are simply 1gnored so that » is replaced by
the quantity

o - /%) 5 /B | 5.6)

By (5.5) and (5.6), #' is in error by the factor

ro_ 1wy | 57

v/ 1+ y:/y; v ‘ )
which equals 1 if

Y'/Y = Yo/Yo- | (5.8)

Relations (5.7) and (5.8) show that ignoring IBNR and IBNER claims creates errors in risk
premium relativities only to the extent that the rate of recogmtlon of these components
over time differs from cell to cell.

Note that #’ would not be improved by the inclusion of ay” (& const.) as an estimator of y*,
since this would not change (5.6). |

An example will illustrate the magnitude of the errors (5.7). Suppose the data used to estimate
relativities for a motor property damage portfolio relate to two complete accident years.
Typically, y*/y", taken over the whole portfolio, might be of the order of a few percentage
points, say 2%4%.

Suppose in addition that, taken over all cells,

0.8 vo/Yo < ¥*/Y < 1.2 /Yo | (5.9)

03/06/97 11:18AM S:j\GAMSON M\GENERAL\GI18.09
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Then rough bounds on the error factorr/r’ are:

0.995 < r/r’ < 1.005. ‘ (5.10)

In this example, ignoring IBNR and IBNER claims leads to etrors of less than %%, in most
cases much less, in respect of individual cell risk premium relativities.

The only way of improving on this situation would be to estimate they*/y” differentially over
cells. This would require considerable sophistication, with very limited scope for improvement.
It would not usually be attempted.

While the above discussion has been framed in terms of risk premium relativities, parallel
arguments apply to claim frequency and claim size relativities.

5.2 Claim Type

Claims in most portfolios can be separated into a number of distinct types. For example, motor
accidental damage claims might be classified as a:

. collision;
. theft;

. fire;

etc.

As another example, house (building) claims would include:

. windstorm;

. flood;

. other water damage;
. fusion;

ctc.

Even within these claim types, further subdivision may be possible. For example, in motor
insurance, collision claim payments may be dissected into:

. insured’s own damage;

. third party damage;

. third party recoveries;

. salvage.

Note that payments under some of these types would be dependent on other types, so that the
tree diagram indicating causality in the modelling might look like Figure 5.1.

02/07/97 02:29PM S:\GAMSONM\GENERAL\G}18.09
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Figure 5.1
Motor (Property Damage) -
causality between payment types

Total claim
payments

]

Collison Theft Firg elc.
, similar to Colfison similar fo
Third
Own damage dl party Collison Collison
amage Own Damage Own Damage

L

Third party
recoveries

Salvage Salvage

Strictly, each claim type can be viewed as a subject to a separate model, despite the fact that
certain claim types may be compulsorily bracketed together in the coverages available to policy
owners. Consider the implications of this for modelling.

Let

P,;,, = the value of P, for clim type ¢ .

Anticipating Section 6.1 somewhat, suppose that P,;,, has the multiplicative form:

2 t t t t
Py = Py by by by (5.11)

where &y, bztj, by, are constant multipliers applicable to claim type # .

Consider a policy providing coverage under all claim types ze some set T. The risk premium
for this policy is

P,

Y P

teT

Y P... bl.b. b
el L (5.12)

03/06/97 11:18AM SN\GAMSONM\GENERAL\GI18.09
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by (5.11).

In general, P, cannot be put in multiplicative form even though its components can - in
general, multiplicative models are not closed under addition.

A trivial example will illustrate. Suppose there are only 2 claim types, T = {1, 2}, and suppose
there are only 2 covariates (k£ may be omitted from (5.11)), and each takes only 2 values.
Suppose the relevant parameters are as a follows.

Claim type 1 Claim type 2
P, = 300 P} =50

blll =1 b121 =1

by = 1.2 bl = 1.1

b211 =1 b221 =1

by = 0.9 b2, = 1

The resulting risk premium schedules are as a follows.

Claim type 1 _ Claim type 2
Covariate 2 Covariate 2
1 2 .'1 2
Covariate 1 300 270 Covariate 1 50 50
1 1
2 360 324 2 55 55

Claim types 1 and 2
Covariate 2

1 2

Covariate 1 350 320
1

2 415 379

Note that this last schedule is not multiplicative. It would be if the figure of 379 were
replaced by 379.4, or some corresponding change made elsewhere in the schedule.

03/06/97 11:18AM ' SA\GAMSONM\GENERAL\GI18.09



15

Thus, the fitting of a multiplicative form to risk premiums for coverage T will introduce some
distortion (on the multiplicative assumptions made in respect of the component coverages).
The distortion will increase as the differences between the &, for different ¢ increase.

On the other hand clalm type will contribute to the non-multiplicativity of total risk premium
in proportion with P; iok,- 1 the costs under claim type ¢ are generally small, then its
contribution to non-multlphcatmty will also be small.

Thus, the final choice of which claim types should be modelled separately will depend very
much on questions of materiality.

6 Application of GLMs

6.1 Basic concepts

The use of GLM:s has been dealt with extensively by Brockman and Wright (1992) and earlier
authors. Hence, only the briefest definitions are given here. Subsequent sub-sections are not
intended to constitute a full discussion, but rather just to add to the commentary of the
previous authors.

Let Y;,1 = 1, 2, ..., #, be observations on some random variable. Suppose that they are
modelled as a follows:

Y, = b7 (o B) ¢ ey (61)
where
h = some one-one function with range (-e,+ ), called the link function;
x; = a p -vector of covariates associated with the ¢ -th observation;
o = a scalar parameter, (the offset);
p = a parameter p -vector;

a drawing from a centred (zero mean) distribution.

e

13
The ¢, are not necessarily i.i.d., but the distribution of ¢, is fixed by «; and f.
The x; may include a component 1, applicable to all £ .

Note that
E[Y]=h"(e, +x ) (6.2)

03/06/97 11:18AM S:\GAMSONM\GENERAL\GI18.09
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Consider a log link function. In this case

b @) = exp = | 6.3)

Then (6.2) gives

E [YJ = exp (oc’. + x,.T [3)

= exp (o) exp (x; B,) exp (x;, B)) ...exp *,B,) (6.4)

where the x; are components of the vector x; and B; are components of $. This may be
rewritten as:

E[Y] = exp () &, b, ... by ‘ (6.5)
with
b, =explx,B,),m=12 .,p. | (6.6)

Note that the meaning of 4, is different from that used in Section 52

Thus, E[Y,]is the productof (p + 1) factors. Such models are called multiplicative. That this
is the same as a the multiplicative form anticipated in (5.11) may be seen as follows. Suppose
that Y is indexed by the triple #k, putting (6.5) in the form:

E Yijk] = exp (oc‘.].k) bigr by bys for p=3. : (6.7)

A special case of this is given by:

b. =b., b. =b b, =b

ikl i Y2 T Y Yips k3>

making (6.7) equivalent to (5.11).
Let

%, ® x = the cross-classification of vector x; with itself,

02/07/97 02:29PM SA\GAMSONM\GENERAL\GI18.09
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. . 2 . _
ie., x, ® x isap” - vector with components X, %575 =1,2, ., p.

The GLM (6.1) can be generalised to the following:

Y, =hl(o, vn B+, ®@x)y) v, 3 (6.8)

1

where

Y = a parameter p2-vector.

Each of the terms y,, x,, x, appearing in (6.8) is called a 2-way intéraction term.

In principle, it is possible to include #-way interaction terms, involving x; ® x; ® ... ® «,
(» factors), in the model.

Note that a log link model which includes one or more interaction terms is not multiplicative.
If it were, the interaction term could be eliminated by absorption into the 1-way terms.

The statistical packages most commonly used to fit such models, at least in the UK and
Australia, are SAS, GLIM and S-PLUS.

It is helpful to interpret the vector «; further. It concatenates the covanatc values for the ¢ -th
cell. The covariates will be of two types conventionally called categoncal (or nominal) and
continuous (or ordinal). Categorical variables are referred to as a FACTOR variables in
GLIM and S-PLUS, and as a CLLASS variables in SAS.

The structure of the vector ¥, is most easily illustrated by means of an example in which there
are just 2 covariates, one continuous, one categorical. Then x; will be conventionally
represented with a double subscript 45, where ¢ indexes the continuous variable and § the
categorical variable. That s, |

% = {5 %), ‘ (6.9)

with x; denoting the values assumed by the two covariates in question.

A continuous variable takes values from an ordered subset of the real numbers, the ordering
being physically meaningful. An example would be age of insured. '

The direct inclusion of continuous covariates in (6.1) would cause them to contribute linearly
to the bracketed term there. This may not be appropriate. They will often be subjected to
some non-linear transformation (see Section 6.4) before inclusion in (6 1). In this case (6.9)
is replaced by:

03/06/97 11:18AM S:\GAMSONM\GENERAL\GI18.09 .
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= [p), =), (6.10)

where x, is the continuous variable, and g(.) is the transformation applied to it.

A categorical variable simply assigns cases to categories. For example, motor expetience may
be recorded according to vehicle category, which might take the valuesA, B, C, etc.
Sometimes a categorical variable takes numerical values. For cxémple vehlclc categories
A, B, C, ... mayberelabelled 1, 2, 3, ..., but the numerals then serve as no more than labels;
they do not ncccssanly imply any parucular ordinal relation bctween cells involving different
values of the variable concerned.

Suppose the categorical variable; has 4 possible values, say €, ... E where the € ’s are labels

of any type. The convcmcnt rcpresentatlon ofx; is a bmary q -Vector specifically X =& is

denoted by (O, ..., . 0).
r- th

In more concise notation x; is represented here by #,, the 7 -th natural basis vector in g-
dimensional space. The representation ofx;, in (6. 10) is then replaCcd by:

= [pt), u(x,.>], | (6.11)

where u: x, - {natural basis g-vectors}.
Note that, in this example, although there are only 2 covariates,x.. isa (g+1) -vector.

Now consider the meaning of the termx; TB (x; B in the present notauon) appearing in (6.1),
as it applies to the present example. One calculates

x;B = B, gx) + B, u(x), | (6.12)
where B isa (g +1) -vector given by

B” = (B, B2, | (6.13)

with B a 4 -vector.

In the case dealt with above, in whichxj . = € so that u(xj) = #,, (6.12) reduces to:

%P = B ) * B, ; (6.14)
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where B, is the # -th component of B, .

This indicates the selector action of #. For each cell i, % sclects the component of B,
associated with ;.

The GLM statistical packages usually allow the stochastic term ¢, in (6.1) to be chosen from

the exponential family (see e.g. McCullagh and Nelder, 1989). The uncentred density of this
family takes the general form:

) ¥6 - 5(8) | ‘
fy) = exp {—————¢ p- c(y,d>/1v)}, (6.15)

for parameters 6 and ¢, functions @, & and ¢, and a weight » \f:vhich is specific to each
observation.

This family accommodates many well known distributions.

Let the mean of this distribution be denoted by p. It is possxblc to shown that its variance
may be expressed in the form:

V) b/, | (6.16)

where V(') is referred to as the variance function.

Let I(y, u) be the log likelihood, expressed in terms of the observations ¥y and model mean
[T

The scaled deviance of a model is defined as

D(ya B) = 2[1(}', y) - l(y: ”’)] (6.17)

For nested models, the difference between deviances has a hmmng du-squarc distribution
under certain regularity conditions. Specifically, D(y, v) - D(y, p) ~ xp, where u, v are the
respective predictions of the models under comparison, with second model nested within the
first, and with a difference of p degrees of freedom between the two models.

6.2 Relativities

Models such as a (6.1) and (6.8) can be interpreted in terms of the' rclauvmcs introduced in
Section 2.

In the case of (6.1), this is most easily illustrated by means of the éxamplc involving only 2

covariates, represented by (6.9). Assume there is no offset term in (6.1). By the definition
given just after (2.5), the relativity of the continuous covariate ¢ is:
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exply B)/ expl, ) |
= expB,a(x) - (%)) | (6.18)

by (6.14).
Here the variable x; ranges over all cells, i.e. over all values actually bbserved. However, the
application of (6.18) may be extended to the continuum of values of x; lying between its

extremes of observation.

For cxamplc suppose that x; represents sum insured. It may be found that a reasonable form
of g is:

g(x) = log x. (6.19)
Then (6.18) yields a relativity of:

WIS (6.20)

This means that, if variable %; is held constant, the quantity w1th which the relativity is
associated (e.g. risk premium) varies in proportion with the B, power of sum insured.

The relativity of the categorical covariate § is:

exple; B) /exply;,B)

= exp(B,,~By,) (6.21)

where x, = g . It is always possible to absorb the quantity cxp (- B,, ) into the base
prcmmm so that the base case corresponds to BZr = 0. Then the rclanwty (6.21) reduces
to:

exp B,,. (6.22)

This indicates how B, may be regarded as a vector of scores associated with the corresponding
levels of the categorical variable %;. Exponentiation converts these scores to relativities.

6.3 Separate modelling of claim frequency and size
Since the ultimate objective of a pricing exercise is to calculate premlums it is occasionally

suggested, on the grounds of directness and simplicity, that modelling should focus on risk
premium rather than its factors, claim frequency and average claim size.
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A contrary argument would be that a greater understanding of the portfolio would be
obtained by analysis of the factors. However, from a technical chpomt ‘there is another,
highly compelling, argument, concerned with the stochastic propcrtles of the quantity under
analysis.

If the claim counts and average claim sizes of the cells are subjected tb separate analysis, it will
be possible to make a reasonable assumption about the stochastic properties of each (e.g. see
Sections 6.6 and 6.7). Consider, however, the situation when only the aggregate claim
amounts for the cells are analysed. ‘

In the notation of Section 2,
# |
M }icﬁb, (6.23)
where
C,s, = amount of n-th claim in cell %k (>0).

Note that N, in (6.23) is stochastic, and so C,; has a compound dnstnbutlon For example,
if N, is P01sson Cj is compound Poisson.

Let

% = B[Ny (6.24)

Under the Poisson assumption,

Prob[N;=0] = exp(-n,,), ; (6.25)

and this is materially positive for #,, small.

Note that

Prob|C,, =0] = Prob[N,,] = 0, | (6.26)

and so this will have positive probability (6.25).
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The conditional distribution of C it 2 1 will be continuous if ;thc individual claim size
distribution is continuous. |

Thus the probability density of C,; will be mixed, as illustrated in Figurc 6.1.
Consider two cases of i

Caée I: i small

In the case illustrated by Figure 6.1 s, = 0.25, and the probabxhty mass of 77.88% at
Ny = 0 (shown as a finite density hcre) is visible.

The remaining mass of 21.12% is distributed continuously allowiﬂg for an individual claim
size distribution which has mean $2,000 and standard deviation $8Q0.

Figure 6.1

Distribution of claims amount for small exmsdm

Probability density

Thousands
Claims amount ($)

Case IL: #n,, large

This time, assume Py = 25, so that Prob[Ny = 0] is essentially zcro The probability mass
at zero for Cy is clumnated and the density is as in Figure 6.2. Thls illustration is based on
the same individual claim size distribution as in Figure 6.1.

03/06/97 11:18AM S %\GAMSONM\GENERAL\G! 18.09



23

Figure 6.2

Distribution of claims amount for large exposure

Probability density
Thousandths
T

1 1 - |

-20 0 20 40 60 80 100 120
Thousands

Claims amount (§)

Consider the modelling of Cy, in the context of those two examples. The modeller requires
a family of distributions with thc following properties:

(a)  mixed distributions with a probability mass at zero must be a‘dmissib,lc-

(b)  the size of this mass is not independent of the remainder of distribution, since both
depend on 7,

It is not easy to see how such a family can be obtained from the standard distributions
provided with packages like SAS. For most purposes, separate model]mg of claim frequency
and size seems preferable.

6.4 Claim size variable

The choice of a model distribution for individual claim size will bé considered in detail in
Section 6.8. There are, however, some preliminary questions about this issue which should
be considered at an early stage of the analysis. :

Not least of these is the definition of the claim size variable. Wh1lc it is always possible to

work with the amount incurred as claim size, this will not always be the most advantageous
|

course. 1

Consider, for example, the following distribution of claim sizes for hOS}JSC (building) insurance.
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House (building) clalm size dlstrlbutlon

Claim Size

$

Cumulative
probability

%

200
500
1,000
2,000
5,000
10,000
20,000
50,000
100,000
200,000
500,000

63.8
73.1
80.4
87.3
94.6
98.0
99.5
99.94
99.98
99.997
100

Mean

CoefTicient of variation

$1,210
3.76

This distribution is very long tailed, and estimation of its mean corrcspondmgly difficult. This

situation can be eased somewhat by recognising that

claimsize = suminsured X

(%)

claim size
(% of sum insured)

(6.27)

and that the distribution set out in Table 6.1 is the compound of the two in Table 6.2.
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Table 6.2

Sum insured and claim size distribution
Sum Cumulative Chimsize = Cumulative
insured probability (% of sum insured) probability
$ % % %
20,000 2.9 2 85.9
40,000 13.3 5 944
60,000 28.2 10 | 98.3
80,000 439 20 99.7
100,000 58.0 50 99.95
125,000 72.0 100 100
150,000 82.1 |
175,000 88.9
200,000 93.2
250,000 97.6
300,000 99.2
350,000 99.8
400,000 99.92
450,000 99.98
500,000 100
Mean 100,317 1.21
Coefficient of 0.61 3.17
variation

The distribution of claim size is still awkwardly long tailed, but less so than in Table 6.1; a
part of the variation of $ claim size has been removed as rcprescnnng variation in sum insured,
which is known. ‘

Typically, a house insurance analysis would model claim size as a proportion of sum insured.
This is less common in motor accidental damage, however, where third party costs tend to
break the nexus between sum insured and claim size. But ifa separdtc model of own damage
is constructed, as illustrated in Flgurc 5.1, it might usefully relate clmms to sum insured.

Similarly in that example, the amount of third party recoveries rmght be modelled as:

third party = own X proportion of

recoveries damage damage recovered. (6.28)

6.5 Significance testing of model

Consider a model of the form (6.8). It will be possible to find thc maximum likelihood
estimates of the vectors f3, vy, but some assessment of the s1gmﬁcancc of their components will
be required. ;
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As in Section 6.1, it will be useful to consider continuous and catcgoncal variables separately.
Again, the example of (6.9)-(6.14) will be useful. *

A statistical package such as those mentioned earlier will produce an estimate of the parameters
(6.13), together with standard errors and significance statistics. For the case 4 = 4 in the
example, this would typically take the form set out in Table 6.3. |

Table 6.3
Parameter estimates
Parameter ‘
Variable ) 1 ]
Estimate Standard Chi-square
error probability
gx,)  Age (continuous) -0.0040 0.0008 0.000
variable
X, Vehicle category
A 0.2963 0.0403 0.000
B 0.1894 0.0554 0.002
C 0.1115 0.2002 0.531
D 0

In this table, the “Chi-square probability” is the significance statistic, the probability that an
estimate of the relevant B greater than that tabulated would have arisen by chance under the
null hypothesis that p is zero. It is the xi test statistic obtained by comparing the scaled
deviances (6.17) with and without the variable value under test.

The treatment of the continuous variable in the table is straight&;)rward. ~ The coefficient
~0.0040 is shown to be highly significant, and should be incorporated in the model under test.

As to the categorical variable, the form of the output requires a little discussion Note first that
the coefficient associated with vehicle category D is estimated as cxactly zero, with no standard
error or significance information.

This reflects the redundancy inherent in the use of catcgoncal Vanablcs Although the
example of (6.9)-(6.14) is expressed in terms of only the 2 covariates %, and x,, the model
would usually contain an “intercept term” B %, also, where %, is a scalar takmg umt value for
all observations. This possibility was mentioned just prior to (6.2).

With this addition, (6.12) becomes

x; B = By + By g(x) + By ulx). (6.29)

Written more explicitly, with B; = (B,;, B,,» Bys B,,) this is:
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4 ?
% B = By + Byg(s) + By, (5)

4
= By + B *+ Byas) + T (By-Byy) 4 (5), (6:30)

whcrc use has been made of the fact that u(x) is a natural basis vector, whence

Eu(x)—l

Now (6.30) shows that the fourth component of B, can be absorbcd into the intercept B,
with adjustment of f,, to B,, - B,,. In this case, the fourth componcnt of B, becomes
identically zero and so has no stochastic properties, as Table 6.3 mdlcatcs

The appearance of §,, - B,, in (6.30) emphasises the fact that in thc cxamplc the results for
vehicle categories A, B and C measure their respective differences from D. The significance
statistics indicate that A and B, but not C both differ significantly fr¢m D.

In general, whenever the model contains an intercept term, the B’s associated with a
categorical variable will measure the differences between the experience at different values of
that variable and some base case. The most informative results will be obtained if the base case
is selected judiciously. This usually means setting the base cqual to a value of the relevant
variable for which there is a reasonable volume of data.

An injudicious selection can produce unhelpful results. For cxamplc suppose vehicle category
C had been chosen as the base case in Table 6.3. The results nught havc appeared as in Table
6.4.

Table 6.4
An injudicious choice of base vehicle categdry
Parameter
Variable , Z .
Estimate Standard Chi-square
error probability
glx) Age (continuous)  -0.0040 0.0008 | 0.000
variable 3
X, Vehicle category :
A 0.1848 0.1924 | 0.688
B 0.0779 0.1778 0.583
C 0 3
D -0.1115 0.2002 . 0.531

In this representation, no vehicle category appears significant. Thls is because all three
tabulated standard errors are large. But recall from the comments earlier in the present sub-
section that Table 6.4 in fact indicates that the vehicle categorics A, B and D are
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|
insignificantly different from C. Equivalently, vehicle category C }s insignificantly different
from A, B and D. 3
Returning to Table 6.3, recall that categories A and B were found siéniﬁcantly different from
D. But the table provides no information on whether they differ significantly from each other.

Using the same notation as appears in (6.27), let ﬁu be an cstirri,xate of B,,, let o: be its

estimated standard etror, and let p,, be the estimated correlation between 62* and ﬁu- Then B,, - B,
is estimated by f,, - B, and

V[ﬁu - ﬁu] = ": + 012 - 2p,0,0, (6.31)

As a very rough test of the null hypothesis B, = B,, one might examine the significance of the
statistic: g

Uy = Bu - B2) / 0k + f - 20,0,0)% (6.32)

against a standard normal distribution.
|

Suppose the matrix of correlations p,, associated with Table 6.3 wcrj’c:

1 0.61 029 0.12]
1 052 0.34

1 049

1 J

The matrix of test statistics U, would be as in Table 6.5.

Table 6.5
Significance of differences between vehicle categories
Test statistic U, for I = i
k= A B C D

A 0 241 0.96 71.35

B 0 0.44 342

c | 0 057

D 0
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The table suggests that A and B are significantly different from each other, as well as D.

Relation (6.31) also explains the large standard errors in Table 6.4. For

V[ﬁu - é‘zc] = "f + "?: = 2P0, 0,
oé[l_ZPEC(ok/ oc) + (0,/ oc)z]
oc{l-pyc(o,/o0)f + (1-pic) (o,/ °c)f}’ (6.33)

I
|

|
which is dominated by oé when p, . (0,/0,;) is small. Thus, in a case such as represented in
Table 6.3, all values of V[ﬁu— ﬁzc] will be of the order 0.2, as indeed appears in Table 6.4.

6.6 Continuous covariates

|
By (6.8) and (6.10), a continuous covariate appears in the model in the following way:

Y, =h (. +Bgx) +..) e, (6.34)

where P is a scalar and g is some real-valued one-one function defined over the range of the
continuous covariate ;.

Typically, there will be little, if any, prior knowledge of the form of g. This will need to be
determined empirically.

The standard procedure for making this determination is to treat the covariate ¥; initially as
categorical. This is done by dissecting its continuous range into a number of bands, or sub-
ranges. The number of these should be sufficient to provide an indication of the shape of g,
but not so many that the data in each band become sparse and provide unreliable results.

l

As an example, consider the effect of sum insured on claim frequelncy in a Motor collision
damage experience. Table 6.6 indicates the results obtained when sum insured is treated as
a categorial covariate. The model contains a log link.

2]
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Table 6.6
Effect of sum insured on claim frequency
Range of Estimated Standard
sum insured B error
$ -
up to 3,000 -0.143 0.041
3,000 - 4,500 -0.090 0.03?,
4,500 - 6,000 -0.074 0.029
6,000 - 8,000 0 0
~ 8,000 - 10,000 +0.018 0.02;
10,000 - 14,000 +0.041 0.0ZP
14,000 - 20,000 +0.066 0.028
20,000 - 30,000 +0.091 0.033
30,000 - 50,000 +0.103 0.04;1
>50,000 +0.033 0.088

|
!
t
|

Figure 6.3 plots the estimates of B parameters against the mid-valttlcs of the ranges of sums
insured. The end-ranges are treated as concentrated at $2,000 and $70,000 respectively.
|

The plot indicates a fairly clear upward convexity. This suggésts the possibility of a
logarithmic representation of g(-). This is encouraged by Figure 6;.3, which also includes a
logarithmic fit to the estimated p parameters. E

The fit has been obtained by simple linear regression of these cstir:natcs against the logged
central values of the sum insured ranges though with sums insured in excess of $25,000
recognised as only $25,000. While this is a very crude fitting procl:durc, it is superseded at
the next step. Once the logarithmic form of g(-) has been dccidcd,git is formally included in
(6.34) and P estimated properly.
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Fig 6.3

Fit of continuous form to categorical coefficients
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Note that with g(-) = log (min (-, 25,000)) and a log link, (6.34) yields:

E[Y] = ... [min (v, 25,000)P ...,

(6.35)

indicating that sum insured influences claim frequency according to a power law.

Table 6.7 gives a comparison of the model obtained by treating surn insured as a categorical
and continuous variable respectively. It shows that adoption of the latter rather than the

former increases scaled deviance by only 2.2 while increasing the

£. by 8. The increase in

deviance is
Table 6.7 E
Comparison of categorical and continuous forms
of modelling sum insured {
Representation of Scaled Degrees é)f freedom used
sum insured deviance by sum insured model
Categorical 117583.8 9
Continuous 117586.0 1
Change +2.2 -8

quite significant as a x28 variable (see the discussion following (6.17)), indicating that the

continuous model is preferable.
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It is worthwhile carrying a small toolkit of basis functions for use'in modelling continuous

variables. Obvious candidates for inclusion would be as listed below.

Identity function

gx) = x.

Broken stick functions

g(%) = max(0, x-c)

and

g(x) = min(x, ¢),

for some constant ¢ .

Power functions

gx) = #,
for some constant p = 0.

Logarithmic function
g(x) = log

Curve of squares

.g(x) -1 +[1 + (x—c)/k], c-k<xse,

+1 - [1 - (x—c)/k]z, c<xsc+k,

for constants £ > 0 and ¢ .

Models for continuous covariates would be constructed as combinations of the basis functions.

For example, the curve fitted in Figure 6.3 combines the logarithmi
broken stick functions.

The identity and broken stick functions may be used to generate the

03/06/97 11:18AM
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g(x) = Box + _;E Bj max (0: x_cj): (636)

for givenknots ¢; < ¢, < ... < ¢, and unknown parameters B, ... i B,,, which is a piecewise
linear function, with grad1cnt B, for % < c,,gradient B, + B, for ‘1 < x < ¢y, etc

Often the effect of age of insured on Motor claim frequency takes thc general form indicated
in Figure 6.4.

Fig 6.4

Claim frequency by age
Z L
c
()
S L
o
o
h —
E
-
X
D L
(o]
=
1 1 1 1 1 1 1 1 1 1 1 - 1 1
10 20 30 40 50 60 70 80

Age of driver

This can be modelled in the form (6.36), although this is liable to produce a small, statistically
insignificant, but non-zero value of [50 + B, for the gradient over age range 25-50. It may be
preferable to modify the representation of the linear spline to set its gradlent explicitly to zero
over this range: ,

g) = By max (0, 25-x) + B, max (0, 5-50) + B, max (0, x-65).  (6.37)

The curve of squares is useful for interpolation between two levels, thus

i
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gx) = By + B, s(x), c-k < x < c+k,
=B0+Bl’ xzc.'-k’

=B, - By x<c-k (6.38)

where s(x) is the curve of squares given earlier. Note that g(x) is smooth (continuously
differentiable) in (6.38).

6.7 Claim frequency -
The number of claims observed in respect of a single policy over one year is typically assumed

Poisson. Ifall policies in cell {4, 7, k} are identical, then the number of claims observed in that
cell is ,

N, ~ Poiss (Eijk f;jk)' (6.39)

One consequence of this is that

V[Nijk] = E[Nijk] = B, fin- (6.40)

As has been observed on numerous occasions in the literature (e.g. Johnson and Hey, 1971,
216-220), (6.40) does not hold over relatively large subsets of a porHOHO. In fact, a negative
binomial distribution is often found to provide a superior fit (e.g. Beard, Pentikiinen and
Pesonen, 1984, p.45) since it is consistent with the empirical fact th;at

V[Nijlc] > Nijk]> | ‘ (6.41)

instead of (6.40).

This last relation is usually attributed to within-cell heterogeneity, and there is perhaps a
question as to whether such heterogeneity occurs even within small cells. It can be shown (e.g.
Panjer and Willmot (1992, p.92) that N!.ﬂ, will be negative binomiai[ if:

I H
. each unit of exposure in the cell is subject to its own unique frequency; and
| :
. these individual frequencies are gamma distributed with mca;n f"] X
|
The relation (6.4) is referred to as over-dispersion. There are two main methods of dealing
with it.
|
03/06/97 11:18AM S:\GAMSONM\GENERAL\GI18.09
z

!
i



35

Quasi-Poisson frequencies
First, one may replace the Poisson error assumption (6.39) by quasi-Poisson. This means
freeing ¢ to take any positive value in (6.15) rather than fixing it at unity, as is the case for
a Poisson distribution.

This leads to the following special cases of (6.15):

Poisson:

fy=efPl, y=0,1,2 ec | (6.42)

Quasi-Poisson.:

) = TP, y=0,1,2 et (6.43)

Note that (6.43) is not a true likelihood for ¢ # 1, since it does nOt integrate to unity. It is
referred to as a quasi-likelihood (see e.g. McCullagh and Nelder, 1989).

The fitting of a quasi-Poisson GLM gives the same cocﬁicicnts%as for a Poisson GLM.
However, the change in dispersion changes all standard errors and pesulting significance test

statistics. The major GLM packages provide a reasonably acccssible;quasi-PE)isson option.

Negative binomial frequencies

The frequency function is:

fiy) = (}' + ; - 1) P’ 4%y =0,1, 2, etc., (6.44)
with

q=1-p0<p <1l a>0. (6.45)

The associated cumulant generating function is:

o log [q/( 1-pe "‘)]. (6.46)

A reasonable assumption for N, is then
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Niﬂz ~ Neg Bin (p, Eﬂ aal), (6.47)
which gives
EN,| = By o /1, (6.48)
VNG| = By o 2/9°, (6.49)

and hence an over-dispersion factor of

V[ yi]/E[Nijle] = l/q > L (6.50)

By comparison of (6.48) with (2.1),

O = S 1/, (6.51)

and so, just as for the Poisson case, it is natural to model log @ as a linear function of
covariates. E
The negative binomial distribution, by virtue of (6.50) prov1dc§ a genﬁmc distribution
incorporating over-dispersion. The form of over-dispersion is sunplci being constant from cell
to cell. Unfortunately, however, the distribution does not fall W1th1n the exponential family
(6.15). It is not, therefore, a straightforward application of the mapr GLM packages.

6.8 Claim size

Suppose initially that an individual claim size is modelled simf)ly as a dollar amount.
Variations of this assumption will be considered later in this sub-sec(;:ion.

Unlike claim frequency (Section 6.7), claim size is not subject toi “natural” distributions.
Virtually any distribution concentrated on the positive half-line is a éandidate.

Those which fit into the exponential family and are explicit opuons in the major GLM
packages are: |

. normal;
. gamma; |
. inverse Gaussian '

l
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together with their one-one transformations. Selection from this
discussed in Section 7.1.

Consider (6.1) applied to claim size. It would be possible, as with
with cells, in which case Y, would be the cell average claim size.

37
range of possibilities is

claim frequency, to work

It is advisable not to do this, however, but to work with individual claim sizes. A number of
the families of claim size distributions considered below are not closed under averaging. For
example, the average of a set of log normal variables is not log normal. In this case, a log
normal assumption for individual claim sizes leads to an unknown form of ¢, in (6.1), as

applied to cells.

Even in the case of families closed under averaging, e.g. gamma, the :

iveraging can destroy the

identity of distribution in the ¢,. This would cause the standardised residuals of different cells
(Section 7.3) to be differently distributed, and would cause difficulty in the construction of

quantile plots.

The allowance of claim size transformations generalises (6.1) to the

g(Y) = b Ve, + 7B) + e,

with one-one g: (0, ) = (-, +).

following:

(6.52)

These transformations considerably widen the family of claim size distributions available. For
example, if g(*) = log("), then ¢; normal (gamma) gives Y, ~ loé normal (log gamma).

Note that log gamma includes Pareto as a special case (when
degenerates to negative exponential).

Considerable care is needed in the implementation of non-linear tran
since

E[Yi] = E{g 'l[h ’l(a‘. + x,-TB) + 5‘.]}
=57 b o, + 5 B)]

even though E [e’.] = 0.

Write instead

EY] =g b (e, + %7 B)] X &,

03/06/97 11:18AM
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sformations g in (6.52),

(6.53)
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where bi is the bias correction factor:

_Blg b (a, + 5B) + o]}
s p e, + 5B

Not all transformations g yield multiplicative models in conjunction w
(g, #) which do so are as follows.

link g
identity log
log power

38

(6.55)

vith a given link 4. Pairs

The power transformation appearing here takes the form

g0) =yt p + 0.

Note that the identity transformation is included as a special casc (p =

transformation. In this case, (6.55) reduces immediately to &, = 1,
required.

(6.56)

1) of the power
and no bias correction is

This renders the inverse Gaussian distribution a favourable choice for

ﬁong taiicd distributions,

since it accommodates such distributions without a data transformation, and eliminates the
potential difficulties arising from bias correction (see e.g. Section 7.4.2).

The identity-log case is dealt with in (6.1)-(6.6). For the log-powe
member on the right side of (6.54) is

o7 e+ D) = [ep (o ¢ B

exp [(a/p) + % (B/p))-

This demonstrates the model to be multiplicative, but also shows tha

I case, note that the first

(6.57)

t the B coefficients need

to be divided through by p before they can be regarded as scores in the sensé described at the

end of Section 6.2.

Appendix A calculates the bias correction factor (6.55) for three useful cases, viz.

(1) log transformation - identity link
(a) log normal distribution
(b)  log gamma distribution
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(2)  power transformation - log link

power gamma distribution
The results of Appendix A may be summarised as follows.

Log normal Assume that

log Y, ~ N (i, 0%, (6.58)

where y, is modelled linearly, as in (6.52):

W= o v B, | (6.59)

and ¢ is independent of 4 .

This last assumption is equivalent to assuming that all claim sizes haxi?c the same coefficient of
variation. It then follows (see (A.3)) that all claim sizes have the san;u: bias correction factor.

Power gamma Assume that Y, p # 0, is gamma distributcid with mean (6.59) and
coefficient of variation independent of ¢ . It follows once again (see (A.13)) that all claim sizes
have the same bias correction factor. 5

Log gamma Assume that log Y, is gamma distributed with mcani(6.59) and coefficient of

variation v, independent of 7 . In this case (see (A.10)), the bias correction factor is not the
same for all claim sizes. It is, in fact, :

b= (1 - w7 exp (-u), (6.60)

which is shown in Appendix A.1.2 to increase with u.

It is possible to arrange that the log gamma bias correction factor is c(i)nstant for all claim sizes
by allowing v to vary with p. In this case, the constant v is replaced by v(w,) and (6.60) by:

b= (1 - )] exp (1. (6:61)

Then v(-) is chosen to render &, independent of w,;. This is awkward, however, as the
required v(-) cannot be expressed in closed form.
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In any event, the application of this functional relationship between'v and a; would be valid
only if justified by the data. Indeed, the same remark may be made +bout the assumptions of
constant coefficient of variation which occur above in connection with log normal and power
gamma claim sizes. The testing of such assumptions forms the subject of Section 7.2.

Bias corrections that are constant for all claim sizes have the great attraction that they factor

out of claim size relativities. In this case, all claim size relativities m
any consideration of bias correction.

ay be calculated without

If, however, one wishes to compare actual and model claim sizes (see Section 7.3), the

correction factors will be required.

6.9 Interactions

Consider the interaction terms appearing in (6.8). A saturated second order model, one

including all possible 2-way interactions, will contain a great many p
certain to be over-parameterised, in which case even the estimates of
in (6.8)) will be unstable.

arameters. It is virtually
the main effects (the p’s

Care is thus needed in the inclusion of interactions. For the most part, it seems advisable to
defer their consideration until after completion of modelling the main effects,

Exceptions to this dictum may be made in respect of specific preconceptions. For example,

one may commence a Motor study with a strong view than an age-
present. Figure 6.5 might exemplify the expectation.

ender interaction will be

Fig 6.5

Claim frequency age-gender interaction
~~
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Figure 6.5 reproduces Figure 6.4 as the male age profile of log (cla1m frcqucncy), and adds
a female age profile to it. The two profiles are represented by the followmg vanauon of
(6.37).

g(x,y) = B, max (0, 25-x) + B, max (0, x-50) + B, max (O,i x-65) [age effect]
+ B, I(y) [gender effect] '
+ vy I(y) max (0, 25 -x) [age-gender interaction]i (6.62)

where I(-) is the binary gender variate:

I(y) = 0 if y = male;
= 1ify = female. (6.63)

Note that the existence of an interaction is indicated by non-parallclibm of the two profiles in
Figure 6.5. Parallelism (y = 0) would have indicated a constant female/male relativity
(of exp B,). The interaction allows this relativity to vary at ages bclow age 25, where Figure
6.5 indicates that male frequency increases more rapidly than female Wlth decreasing age.

Even if interactions other than exceptions such as above are deferred um:l the main effects have
been modelled, there remain many of them to be considered. The ﬁlost practlcal procedure
appears to consist of testing 2-way interactions one by one for 31gmﬁcance and then testing
a model which incorporates simultaneously just those interactions Wthh are significant in
isolation.

Usually, 3-way (and higher order) interactions will be too numcroﬂs for exhaustive testing,
and would only be tested on the basis of some preconception; e.g. vchlclc age-policy age-sum
insured, where there is likely to be a high degree of association bctwccn the three nominated
variables. l

Moreover, the feasibility of reliable estimation of interactions will be hcavﬂy dcpcndcnt on the
volume of experience under analysis.

In summary, the suggested procedure is as follows.

1 Model all main effects.
2. Test 2-way interactions one by one for significance. »
3 Test a model which includes main effects and all 2-way mtcracuons which pass a

significance test in isolation.
Possibly eliminate some of the terms in model 3.
Consider whether any 3-way interactions should be mcludcd

o

.
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7 Model validation

7.1 General

42

The procedures of model formulation (Section 6) and model Yalidatio,n are presented
sequentially here. In practice, however, there is likely to be a good deal of cycling between the

two.

For example, the selection of a family of claim size distributions with which to work in Section
6.8 can be made properly only with application of the claim size validation technique discussed

in Section 7.2.

Similarly, application of the further validation techniques set out in Sections 7.3 and 7.4 might

lead to modification of the model under consideration.

7.2 Quantile plots

These are used to check whether observed claim sizes are consistent with the family of
distributions assumed for them in the error term of (6.52). Details of the plot’s construction

depend on the family tested, but the general procedure is as follows.

Let s(Y,) be a standardised observation associated with the i-th Llaum size. This will not
necessarily be of the same form as the standardised residuals conventionally defined in
connection with General Linear (Gaussian) Models, but will be constructed in such a way that

the s(Y;) are #d when (6.52) holds. Let D denote the common dls+r

The s(Y,) are then ordered to produce an empirical distribution. Spl,

ibution.

cifically, let
Qp = value of standardised observation which has 100p% of these values below it;
p? = the probability of falling below Q, in the distribution D.

The quantile plot consists of a plot of p” against p , taken over all residuals.

Now

»° = DQ,),

(7.1)

if D(-) is used to denote the 4.f. of distribution D. Further, if (6.52) holds, then the

definition of Q, yields:

D(Q,) = p + sampling error,
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so that

pP = p + sampling error.
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(7.3)

It is evident from (7.3) that linearity of the quantile plot (subject to sampling error) supports
the family of distributions hypothesised for ¢; in (6.52); and non-linearity contradicts this

family.

A different form of s(-) needs to be defined for each choice of e; in (6.52).

Log normal error term

Let ¢; be log normal, i.c.

log g(Y,) = (e, + %,B) + €,
with

e, ~ N(0, o),
for some constant 62 > 0.

Usually g(-) would be the identity transformation.

By (7.4) and (7.5),

|log #(Y) - (o, + % B)] ~ N(0, o).

It is also true that the s(Y;) are equi-distributed when defined as:

s(Yy) = log g(Y) - 4,

(7.4)

(7.5)

(7.6)

(7.7)

with fi, the GLM estimate of &, + x,-TB. These s(Y,) will then serve for the construction of

the quantile plot.

In fact, it is more usual to define
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s(Y)) = [log 4(Y)) - 4]/6,

where 6 is the GLM estimate of 6. The standardised observation ti
standardised residual (Section 7.3).

Gamma error term

Let ¢; be gamma in (6.52). This covers the case of Y; power gamma
suppose that

Y? -~ I‘(”‘,') ),

meaning that Y} is gamma distributed with a mean of p; and a coef]
ie. YY (= Z, say) has the pdf

[T ¢ 27 exp - ¢3,
with

_—
By (7.9),

Y /u, ~ T, v),

which is independent of ¢ . Thus, define equi-distributed

S(Y) = ¥/,

where {; is again the GLM estimate of p,.
Log gamma error term

Let ¢; be log gamma in (6.52), i.e.

03/06/97 11:18AM S

(7.8)

hen becomes equal to the

distributed. Specifically,

(7.9)

ficient of variation 1/y*,

(7.10)

(7.11)

(7.12)

(7.13)
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lOgg(Yl) ~T (l-",') Y)

As for log normal, g(-) would usually be the identity transformation.

By the same reasoning as for the power gamma error, define

S(Y) = (log Y,/

Inverse Gaussian error term

Let ¢, be inverse Gaussian in (6.52):

Y, ~ IG(, )
meaning that Y, has the pdf

w;2myx®) ™ expl-(y-m)"/2vy].
It may be shown (Panjer and Willmot, 1992, p. 116) that

(Yi - ”;)Z/Yi ~ T (v, 1/2).

By the same reasoning as given in the gamma case, define

S(Yi) = (Yi - ﬁ‘,‘)z/ ?Yi'

Figures 7.1 to 7.3 illustrate the use of quantile plots. They are drawz
experience. Figure 7.3 deals with the power gamma case with p 3
includes the targeted linear plot.

03/06/97 11:18AM S:
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(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

(7.19)

h from a Motor Collision
+ Y. Each diagram also
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Figure 7.1
Gamma Quantile Plot

a
g
E
é
Empirical Quantile
Figure 7.2
Log Normal Quantile Plot
8
;
z
g

Empirical Quantile
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Figure 7.3
Root Gamma Quantile Plot

47

Gamma Quantile

Empirical Quantile

Note the opposite curvatures in Figures 7.1 and 7.2. When the quantile plot lies above the
straight line, it indicates that the observed number of larger observations is greater than

expected on the basis of the hypothesised distribution.
Thus, Figures 7.1 to 7.3 indicate that:
. the gamma distribution has too short a tail;

. the log normal distribution has too long a tail;
. the root gamma distribution fits reasonably well.

A protocol that is often useful in testing for distribution consists of the following steps:

1. Test a short tail (gamma) and a long tail (log normal) distribution.

2. If either appears close, adopt it or perhaps search for similar but supetior variants, e.g.

inverse Gaussian instead of log normal.

3. If Step 1 indicates a distribution intermediate between gamma and log normal,
experiment with power gamma distributions with 0 < p <:1.

4. If Step 1 indicates a shorter tailed distribution than gamma (rare), experiment with

power gamma distributions with p > 1.

At Step 3 it is advisable to test only moderate values of p, say no lower than %. Choosing
extreme values of p, e.g. 1/10, can create the illusion througim the quantile plots of
approximating the claim size distribution, but (6.57) indicates that in this case the bias
correction factor is large. This in itself introduces instability into the results.

03/06/97 11:18AM S
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7.3 Residual plots

Using the same notation as in Section 7.2, define the residual associated with the ¢-th

observation as

R, = h(ﬂ(Yi)) - A,

Define the standardised residual
¥ = Ri/ {V[Ri]}%’

which has mean zero and variance 1. The standardised residual

(7.20)

(7.21)

is closely related to the

standardised observation of Section 7.2 (though that did not necessarily have zero mean),

which may be used to produce specific forms of (7.21).

Log normal error terms

In this case the standardised residual is the same as the standardised obsefvation, given by

(7.8).
Power gamma and log gamma error terms

By (7.9) and (7.12) for power gamma, and by (7.14) and (7.12) for
7, = 1% [ble (V) - &)/n,,
for h(g(Y,)) ~ T'(, v), and with 4 an estimator of y.

Inverse Gaussian

When (7.16) holds,

E[Y] = m, V[Y] = v 1.

Then (7.21) yields

= (% - ) /8 A

03/06/97 11:18AM S:
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(7.22)

(7.23)

(7.24)
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A plot of the standardised residuals #; against any particular variable is callcd a residual plot.

The purpose of residual plots is mentioned by Brockman and Wright
discussion is expanded slightly here.

The purpose is essentially three-fold, checking for:

. bias
. heteroscedasticity
. outliers.

A residual plot can be constructed for

. each covariate; as well as
. fitted average claim size.
Bias

(1992, p. 470), and their

Since E[r;] = 0, aresidual plot should be generally centred at zero, and display no trend from

left to right.

These plots are particularly useful in checking the validity of the functional forms chosen for

continuous covariates, as discussed in Section 6.6.

Consider, for example, Figure 7.4, a residual plot against age, when the latter has been
modelled as piecewise linear, with constant gradient over the age ranges less than 30, 30-70,

and more than 70 respectively. Figure 7.5 gives the corresponding r

Figure 7.4
Age modelled piecewise linearly

idual plot for g(x) = x.
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Figure 7.5
Age modelled linearly
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It can be seen that Figure 7.4 satisfies the no-trend requirement, while Figute 7.5 does not.
Heteroscedasticity

Since Vr;] = 1, aresidual plot should display no trend from left to right in d:ispersion. Again
Figure 7.4 satisfies the requirement. Z

Suppose, however, that this plot had appeared as in Figure 7.6.
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Figure 7.6
Heteroscedastic residual plot
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Here there is fairly clear evidence of heteroscedasticity, i.e. change in
covariate. By (7.20) and (7.21), this indicates violation of the assump
with ¢ in the systematic manner assumed by the model.

Consider the general situation in which the dispersion of 7, varies wif
that this variation takes the functional form:

V) = b (x,)-

Define a new standardised residual:
v =7, [[66,)]%

so that
V=1

By (7.21) and (7.26),

v = R [{Voix)}*,

03/06/97 11:18AM S:

Vlr] with change in the
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tion that Vb(Yi)] varies

th covariate x... S
covariate X;. Suppose

(7.25)

(7.26)

(7.27)

(7.28)
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with ¥ denoting V[r,.], assumed constant in (7.21).

Thus, by (7.20), v/ is consistent with an assumption that

3

V[h(g(Yi) )] proportional to d)(xg.).

52

(7.29)

By (6.16), variance structure of this sort may be recognised through the weight function w

w, proportional to 1 / b(x;)-

Thus, the steps in correcting heteroscedasticity are:

1. Construct residual plots and search for heteroscedasticity.

(7.30)

2. If found in any plot, express it approximately in functional form, like (7.25).

3. Introduce a weight function (7.30).
4. Re-fit the model using this weight function.

5. Return to Step 1.

In practice, if heteroscedasticity occurs, it may occur in conjunction with several covariates, so

that in place of (7.25):
V[ri] = (bj (x;) for various j.
One might then experiment with

w, proportional to 1/ d)i.-(x"fx) d)fz(x"fz) -

Some trial and error with weight functions will often be required.
determine w; from (7.32) for a particular model, but Step 4 in th
changes that model.

(7.31)

(7.32)

It is simple enough to
e above procedure then

For this reason, one should not try to be too precise in determining the functions ¢,.
Moreover, excessive precision here would be likely to amount to over-fitting (i.e. excessive

parameterisation) of the model.
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Outliers

Residual plots will reveal any observations that are seriously inconsis
example, in the log normal case, with 7, given by (7.8), observations
to be treated with caution.

53

tent with the model. For
producing |7,| >3 need

Observations whose #; are sufficiently large that they are thought to exert a distorting
influence on the regression may need to be excluded. This can be done by assigning them

zero weight, w; = 0, (equivalently V[h(g(Yi) )] = o),

Outliers are, by their nature, isolated occurrences. The appearanc

c in the residual plots of

more than a handful of points of unduly large numerical value is likely to be symptomatic of

an inappropriately chosen distribution. The quantile plots should

checked.

Note, however, that the quantile plot will not usually be sensitive to outliets since these are

likely to represent just a couple of points at one or other end of the
7.4 Comparison of experience with model
7.4.1 Ratios of experience to model

By (2.3),

Eijk P it Cijk]‘

Let 13% be the estimate of P’,ﬂ , and write

C. =E. P

ik gk = k>

an estimate of E [C‘.ﬂ].

Let a dot suffix indicate the summing out of that suffix, e.g.
C; = );_‘. Ci-

Then é’.__ is an estimate of E [C‘._.], and so one wishes that

Ci../ éi.. ~ L
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One therefore examines the progression of actual/model (A/M) ratiqs (7.36) for the different
values of covariate i , hoping to see them close to 100%. Further, one pays particular
attention to whether any trend appears in this progression. For example, if the covariate
concerned is age of insured, and the A/M ratios showed an upward ttc;ld, this would indicate

that the model under-charges older insureds at the expense of the young.
Indeed, one will often be more concerned with the trend of the A/M ratios than with their
level. Consider, for example, the results set out in Table 7.1.
Table 7.1
A/M ratios by sum insured
Claim cost
Sum insured .
$ Actual Model AM
$M $M %
0 - 40,000 18.9 15.1 125
40,000 - 60,000 49.2 43.2 114
60,000 - 80,000 36.5 35.8 102
80,000 - 100,000 220 16.7 132
100,000 - 125,000 11.8 9.0 131
125,000 - 150,000 11.3 94 120
150,000 - 200,000 7.6 6.3 121
200,000 - 250,000 1.9 1.6 119
over 250,000 0.4 0.3 131
Total 159.6 1374 116
Although the model appears to under-estimate claim costs consistently, there is no obvious
trend in the degree of under-estimation with changing sum insured.

Such a situation can arise in connection with a long tailed claim size distribution (e.g. house
insurance (building)) for which an off-the-shelf distribution (e.g. loé normal) fits reasonably
well, but not precisely. A failure to fit, especially in the tail, can generate inaccurate bias
correction factors (6.55).

Note, however, that this type of consistent under-estimation does nlt affect the sum insured
relativities. The base premium (3.2) will also remain accurate provided thatC appearing
there is a reasonable estimate of E[C], i.e. is more like $159.6M than $137.4M.

While the above discussion has applied A/M ratios to total claim cost, similar ratios can be
calculated for claiim numbers and claim sizes. This assists in identifying the source of any

irregularities in the claim cost A/M ratios.

Decompose (7.34) by means of (2.3):
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Ci = E, f ik ‘igv (7.37)
wh.erc f:.ﬁ, d’.ﬂc are estimators of f;, a,; respectively. Then the A/M ratio (7.36) may be
~ written as:

Ci../ ¢ =X E; F, Ag}/ X By L ‘igv (7.38)
e *
where F,, A are the observed values of fiu %~ This may be expressed in the form:
Ci../ éi.. = E Ny Aiﬂz/ ;? N dsjﬂ:’ ' (7.39)
where
Ny, = E,, f;; = model fitted number of claims. (7.40)
Now the A/M ratio may be decomposed further:
TE,Fy/SE, TN, A,/EN,
c [6 -2 Ta T, x 2
.. ..
TEufa/TE, TN,4, /TN,
S ﬂe e t
¥ N, 4,/T N,
ke gk
N, 4., /EN,
a " % PR (7.41a)

or alternatively

03/06/97 11:18AM S:\GAMSONM\GENERAL\GI18.09




LB, Fu/SE, TN, A4,/TN,
gk sk gk Jk

G, /¢,

LBy fu/SEy TN 4, /TN,
1k e s sk

T Ny 4,/T N,
k gk

X

T N, 4,/ N,
e e

Both forms of (7.41) may be read as follows:

Ci../ ¢ = s/f.) (Ai../ 4;) X correction factor.

56

(7.41b)

(7.42)

The first factor is common to (7.41a) and (7.41b) and is the A/M ratio for category ¢ claim

frequency.

The second factor is an A/M ratio for category i average claim size, but note that it takes
different forms in (7.41a) and (7.41b). In both cases it is the ratio of a weighted average A
to the same weighted average 4. However, the weights differ as between (7.41a) and (7.41b);
in the former case they are actual claim numbers, in the latter, fitted claim numbers.

The third factor quantifies the difference between these two weighted averages of the 4.

It is useful to tabulate the claim frequency and claim size A/M ratios appearing in (7.42). This
is particularly the case when anomalies in the claim cost A/M ratios average, because it enables
them to be tracked to their source in frequency or size. It is apparerkt from (7.42), however,
that the claim cost A/M ratios factor in three directions, not just the two represented by

frequency and size.

Probably (7.41b) is the preferable form of (7.41) for this factorisatior). The use of fitted claim
numbers as weights in the average claim sizes helps to stabilise the claim size A/M ratio.

It was foreshadowed at the beginning of Section 3 that an alternative to (7.37) would be
favoured for evaluation of the base premium. The alternative developed these was such as to
ensure equality between the resulting pool of risk premiums and ag%regatc claims cost. Any

other approach, including (7.37), would not guarantee this equality..

It is instructive to examine the reasons why (7.37) might fail system:

result of sampling error) in this respect.

An adaptation of (7.42) yields:
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C/C. =FJf)A_[4) x correction factor, | (7.43)

which quantifies the difference between the contending estimates of base premium. A value
markedly different from unity indicates a wide difference. :

Consider the factor A / 4 . This is particularly vulnerable to significant diffetence from unity
whenever a data transtormation (6.52) is used, since its inversion requires the bias correction
(6.55). Any error in the choice of model claim size distribution might introduce error into
this bias correction, and hence into 4 .

Even in cases where claim sizes have not been transformed, and even when each of the three
factors in the above formula has a unit expectation, it should be n |ted that any correlation
between F; and A, will cause the expectation of C / é to assume a value other than unity.

There has been an assumption throughout this paper that F, and A, are stochastically
independent (see Section 2), but if it should be wrong then (7.37) will be correspondingly
wrong and C / é will not have unit expectation.

Errors of this nature may be difficult to control within relativities. Th(fy may be ignored there,
but it is desirable that they not be permitted to distort the premium pool in such a way that
it fails to match aggregate claim cost.

7.4.2 Data transformations

Data transformations for claim sizes were introduced in (6.52). Their inversion is dealt with
in (6.53)-(6.55).

The claim size A/M ratios introduced in Section 7.4.1 relate to untlransfon;ned claim sizes.
In some cases these will be drawn from a long tailed distribution, with large sampling error
involved in the sample mean. The A/M ratios can be statistically unstable in these
circumstances.

This is, of course, the reason why data transformations are taken. | They function as mean
stabilisers among other things. Where a claim size transformation gg) has been taken, it will
sometimes be useful to construct A/M ratios in respect of transformed claim sizes since these
are likely to be more stable than their untransformed counterparts.

The mean transformed claim size may have no physical meaning, and so construction of the
A/M ratios is necessarily somewhat ad hoc. Nonetheless, analogy with (7.41b) yields a ratio:

% Ny 5(dy) / Z Ny, b, | (7.44)

where ;2’.1} is the value fitted to g(A,ﬁ) by the model.
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An example appears in Table 7.2, which gives A/M ratios for both transformed and
untransformed data for fire, flood and earthquake claims from a House (buildings) insurance
portfolio. A log transform is involved. |

Table 7.2
Claim size A/M ratios

A/M ratio for claim size

State of insured risk

. Transformed  Untransformed
- ; 5

New South Wales 100 128
\\ Victoria 100 123
N Queensland 102 175
South Australia 100 136

Western Australia 99 95

Tasmania 97 84

Australian Capital Territory 106 309

Northern Territory 99 56

The states are listed in descending order of volume of experience.

The first comment to be made on Table 7.2, in the spirit of Section 7.4.1, is that the
untransformed A/M ratios display no trend, and so are satisfactory in that sense.

They do display a high degree of variation, however. The transformed ratios, on the other
hand, are clustered tightly around 100%, indicating very satisfactory fitting of transformed
claim sizes.

It follows that the variability of the transformed ratios has been introduced at the stage of the
inverse transformation g ', which denotes exponentiation . One is entitled to conclude that
the fit is perfectly satisfactory (in relation to state of insured risk, at‘iist), and that the variable
A/M ratios are due to the inherent variability of individual claim sizes. Indeed, the coefficient
of variation of individual claim size was estimated at 1595% in the sbove example.

This same variability provides a healthy warning of the dangers and dlifﬁcultics involved in not
transforming claim size before analysis of cases such as in Table 7.2

7.4.3 Multi-way analysis
The whole of the above discussion of A/M ratios has been in terms of 1-way analysis, in the
sense that the ratios are tabulated as a function of a single covaridte. There is an obvious

extension to multi-way analyses. ©Q

For example, 2-way A/M ratios are obtained when (7.38) is replaced by th¢ following:
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(7.45)

Multi-way A/M ratios can be useful in checking that subtle effects do not compound to the
undue advantage or disadvantage of some of the more extreme segménts of the portfolio. For
example, one might be interested to check the A/M ratio in a Motor Accidental Damage

portfolio for the segment consisting of:

. young male drivers;
. high powered vehicles;
. low NCD.

Each of these characteristics attracts a penalty. The concern would be that the compounding

of these penalties might be excessive.

8 Variables which fall outside the GLM

framework

8.1 Deductible

Suppose that a policy is subject to a deductible 4, so that, when damage of amount X occurs,

. the size of claim payable is max (0, X -4).

The application of a deductible reduces the risk premium. If ¢(d) d
in the presence of a deductible 4 and f{.) the pdf of claims amount, t

cd) = f (x-d) fix) dx.
d

The corresponding quantity in the absence of a deductible is

| c(0) = }x fix) dx,
0

enotes the risk premium
en

(8.1)

(8.2)

and ¢(d) / ¢(0) is the factor by which to adjust a deductible-free risk premium to recognise a

deductible of 4.

The representation (8.1) involves an implicit assumptions that f{x)

oes not vary with 4. In

practice, this is probably incorrect. For example, the likelihood of lodgement of a claim for
$5 is very small, irrespective of whether the relevant policy carries a c\cductib_lc of nil or $500.

03/06/97 11:18AM S:

GAMSONM\GENERAL\GI18.09




60

In other words, the imposition of a deductible modifies claimant behaviour. This is
particularly so in the presence of NCD.

It would be possible to treat deductible as simply one more coordinate in GLMs describing
claim frequency and claim size. This empirical treatment would have the desirable effect of
incorporating the behavioural aspects mentioned above in the model,

On the other hand, however, there are distinct difficulties with this approach. A typical
distribution of Motor deductibles might be as in Table 8.1.

Table 8.1
Motor deductibles
Deductible Percentage of Exposure
$ %
0 21
300 19
350 4
400 47
500 6
750 2
1,000 0.7
1,500 0.3
Total 100

The eight values of deductible listed are likely to fall into four groups:

. The nil deductible.

. The group $300-$400, comprising the current standard of $400, together with the
obsolete standards $300 and $350.

. The $500 deductible, the standard for policies carrying a younhg driver risk.

. The $750 and higher group, reflecting penalty deductibles, applied to policy owners

with:

. poor claims experience;

. traffic offence convictions;
. high risk vehicles;

. etc.

These four groups are likely to be distinct, behaviourally as well as in their imdcrlying claims
experience. Within each group, claimants are likely to be behaviourally similar, though
experience could still be expected to vary with variation in deductible
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The gradation of claim frequency and claim size as deductible varies from $300 to $400
represents some subtle effects, and it may be too much to hope that these will be accurately
identified by a GLM. These doubts are increased by the low cxposdrc at deductible $350.

The fact that some deductibles are age related, while others are related to vehicle type raises
the possibility of multi-collinearity in the GLM.

For all these reasons, the inclusion of deductible as a covariate in a GLM can be expected to
yield only moderate success. Figure 8.1 provides an example based bn real data.

Figure 8.1

Regression of claim frequency on deductible

0.50
8
S 0.00
> ©
S
qg; -0.50
&
£ -1.00
K
(8]

-1.50 1 1 1 .
80 $500 $1,000 $1,500 $2,000
Deductible
-g- Coefficient —tor-1Xs.e.

The figure plots the claim frequency B parameters (in the sense of (6.1)) for ranges of
deductibles against the mid-values of those ranges. It also plots one standard error of each B
up and down from its estimate. The B parameters are all relative to B = 0 (with zero
standard error) at a nil deductible.

Figure 8.1 indicates the general downward trend in claim frequency with increasing
deductible, though the functional form of this trend is unclear. The anomalous shape around
the region $200-300 is apparent.

The theoretical representation (8.1) might be helpful in attempting to determine this
functional form. Appendix B calculates the ratio ¢(d) /c(O) for each of the following
distributions of claim size:

. log normal;
. power gamma,
. inverse Gaussian.

In each case, it is found that

¢(d)/c(0) = D(d/a; v), f (8.3)
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for some function D(.; .), average claim size (before application of the deductible) #, and
with v a parameter measuring some form of dispersion of a claim size distribution.

This is a convenient form when v is constant over all cells, as will often be the case. For then

(8.3) indicates that the effect of the deductible on risk premi
proportion of average claim size represented by that deductible.

depends only on the

It is also of interest to note the implications of this for the manner in which the premium
reductions vary from cell to cell. To the extent that an increase in premium from one cell to
another reflects an increase in claim frequency (with no change in average claim size), a
constant deductible will generate a constant percentage premium reduction.

On the other hand, to the extent that the increase in premium reflec

claim size, the premium reduction for the deductible will:
. increase in absolute terms;
. decrease as a percentage of premium;

as premium increases.

an increase in average

Since cell-to-cell increases in premium will typically reflect both increased frequency and

increased average claim size, the usual application of (8.3) will yield,

a deductible with the properties desctibed in the preceding paragraph.

premium reductions for

These remarks must be read, of course, in conjunction with the qualification of (8.1) given

early in the present sub-section.

Subject to this, however, they raise doubts about the common market practice of awarding a
flat dollar premium reduction to all policies carrying a fixed dollar excess.

Specific versions of the function D are as follows.

Log normal

D(x; 0) = [1-®((log %)/0-Yio)| - #[1-®((log %) /o +

Yio)|, (8.4)

where exp(o®) -1 is the squared coefficient of variation of claim size, and ®(+) is the unit
normal d.f. Expansion (8.4) may be recognised as a Black-Scholes formula.

Power gamma

Suppose that YP is gamma distributed, where Y denotes claim size. !

D(x; v) = [1-T(y(&0); y+1jp)] - #[1-T(y(@); v)],
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where 1/y is the squared coefficient of variation of claim size and & is the bias correction

factor (A.13), and I'(.; .) the incomplete gamma function

D v) = [I‘(y)]’l } 2 ¢ dg,
0

Inverse Gaussian

The precise form of D(x; v) is given by (B.24) with v equal to the variance of claim size. It

appears that D(.; .) needs to be evaluated numerically.
Numerical example

Consider the power gamma case in which

Yy = 2.5,

p =05,
giving

b=14

Then application of (8.4) yields the following results.

Table 8.2
Effect of deductible on claim costs

Ratio of deductible Estimated reduction

to average claim size in claim cost
% %
0 0
10 9
20 17
30 24
40 31
50 36
60 41
70 46

Suppose the average claim size, taken over a whole Motor experience, is $2,000. The
corresponding average claim cost per vehicle year is $250. Table 8.2 suggests that for a

-“typical” policy, a standard deductible of $300 (about 15% of avcragé

a premium reduction of about 14%, or $35.
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8.2 No claim discount

An NCD system comprises:

(1) aset of rules which assigns a policy owner to an NCD category (or rating) on the
basis of prior claim occurrence experience (i.e. without reference to the sizes of any

claims; and

(2)  aprescribed level of discount for each NCD category.

In view of (1), a policy owner’s probability of occupancy of any particular NCD category at
any particular future time is a function of claim frequency (plus claiming behavioural qualities).
It follows that the appropriate level of discount is also a function of ¢laim frequency.

This problem has been addressed many times in the literature. For
(1985, 1995).

a summary, see Lemaire

In practice, it is usual to find the NCD scale (2) set more by reference to market convention
than to the above theoretical considerations, and also commonly in conflict with these
considerations. For example, anticipating the latter part of the present subsection slightly,
Figure 8.2 compares, for a particular Motor (accidental damage) portfolio, the NCD scale in

use with that justified by experience in the various NCD ratings.

Figure 8.2

No Claim Discount

NCD Rating

Comparison of NCD scale with experience

g Awarded by Company g Justified by experience

It is evident that the awarded discounts are generally considerably gre
on the basis of the experience. This is a typical result.

Thus, NCD is not usually just another covariate, to be treated in a

ater than can be justified

manner parallel to other

covariates. For one will not usually be required to estimate NCD relativities as is required in

connection with other covariates; these relativities will be given.
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There are then two main responses to any disparity between the NCD scale in force and that
justified by claims experience:

. ignore it; or
. recognise it, by optimising the fit of premium to other covatiates, taking into account
the NCD scale.

The formal description of these two possibilities is as follows. Consider (6.1) in its usual
application to claim frequency, with NCD recognised explicitly:

T T
Y, = exp(e; + Xncp; Byep + Kotheri Bother) * &> (8.6)

with Y, the number of claims in the # -th cell and ¢; a centred Poisson variate.

Ignoring the NCD effect consists of either:

. dropping the NCD terms from (8.6) and estimating just B or

Oﬂ\cr;

. estimating both B, and B_; ., but then ignoring By,

The first approach effectively estimates all effects other than NCD on the assumption that
there is no NCD effect, i.e. claim frequency does not vary with NCD category. This will

distort the estimate of B, .

The second approach explicitly estimates the NCD effect, thereby eliminating distortion in the
estimated B, , but then incorporates a different NCD effect (a%cording‘ to the scale) in
premiums. The B, estimated in this manner are those reflected in the discounts “justified
by experience” in Figure 8.2.
To recognise the disparity betwecn the NCD scale and experience; recognise that By, in

(8.6) is fixed. Specifically, the component of B, corresponding to a discount of 4% will
be log (1-4/100). Then (8.6) may be put in the form:

Yi = &Xp [(log E; + xLIT'CD,i pNCD) + (a,/ + xoTt;xcr,i Bmhct)] *6 (87)

where a; has been separated into its exposure term and the rest.

The purpose of representation (8.7) is to recognise all known effects in the first round
bracket. Everything here can be calculated; it does not require estimation, i.e.

Y, = exp [K. (“: * Xother,i Bothcr)] t e (8.8)
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where the K, constitute a set of known constants and a,{ (usually ind
are to be estimated. Note that

= log [E,(1-4,/100)]
= log [dlscountcd cxposurc],

where 4, is the NCD applying to the ¢ -th cell.

In a system such as (8.8), the K; are known as an offset, to use G

when NCD scale is given, optimal fit of claim frequency to experiel

covariates can be carried out by modifying exposure to discounted ex

Occasionally, a technical pricing analysis will require investigation

scale. It will be supposed here that the set of rules (1) mentioned 3

sub-section is given, and only the scale (2) requires determination.

One can simply estimate the B, as described above, or in some sm

care would be needed in the implementation of the resulting scale.
that Rating 1 policy owners experience a claim frequency some 26%
occurs in the presence of a 70% discount.

66

ependent of £ ) and B,

(8.9)

LM terminology. Thus,
nce with respect to other
posure in the offset term.

of an appropriate NCD
it the start of the present

oothed form. However,
While Figure 8.2 shows
lower than Rating 6, this

This large discount serves as a strong disincentive to claim lodgement. If it were reduced to
26%, a change in claiming behaviour might be induced, whcrcby the justified discount

reduced to less than 26%. If this further reduced discount were imple

in claiming behaviour might be induced, ... and so on.

mented, a further change

Rather than relying entirely on the empirical figure of 26%, it is preferable to attempt to build

an understanding of why that figure arises from the NCD system

1997). Armed with this understanding, one will be in a stronge

outcome of changes to the system.

It should be noted that some relativities can be significantly influe
in (8.8). These will normally be relativities as

exclusion of By,
correlated with NCD. The most obvious of these is age of insured.

in force (see e.g. Taylor,
r position to predict the

nced by the inclusion or
sociated with covariates

For a particular real example, Figure 8.3 graphs the categorical age effect estimated with and
without B, in (8.8).
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NCD effect on age rafing
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1.5

Beta scores for age
~h

0.5

17 19 21 23 25 27 29 3539
Age group

I; NCD ignored .. NCD in otrset]

It is seen that much of the effect of young ages on frequency is eliminated by the recognition
of NCD. This reflects the fact that the short driving record of most young insured prevents

them from having accumulated NCD. Although their claim freq
largely compensated by the lack of NCD.

9 Summary of procedures

uencies are high, this is

No pretence is made here that GLM pricing can be reduced to cookbook style. Nevertheless,

many of the issues canvassed in preceding sections recur from one as

Figure 9.1 is an attempt to place as much as possible of the for
statement of routine. Numbers appearing at the nodes of the diag
dealing with the subjects named there.

signment to the next.

egoing discussion into a
ram refer to the sections

03/06/97 11:18AM S\GAMSONM\GENERAL\GI18.09




68
Figure 9.1
Summary of pricing procedures
Select ciaim types
(5.2)
Claim Frequency Claim size
Analysis
NCD treatment Selef(basic variable
(discounts fixed?) for analysis (6.4)
(22) * ,
-
> -
¢ Experimant with claim size distribution
(basic cstfegorical model) (6.8)
Formulate model j
(see Figure 8.2)
Quantile plots (7.2)
Sefect claim size distribution
-—
- -
Comparlson of +
model with .
expedenf:e (7.4) Formulete model (see Figure 9.2)
Residual plots (7.3)
Compatison of model with
experience (7.4)
risk promium
analysls
Comparison of model
with experience (7.4}
Premium reductions for deductibles
81
Determination of NCD's? (8.2)
Relativities + complefe
Base premium (3)
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Figure 9.2 represents the model formulation stage of Figure 9.1, and applies to both claim

frequency and size.

Figure 9.2
Model formulation

v -

Fully catgorical
model

v

Significance testing
to cull variables

(6.5)

A

Introduce continuous
variables

(6.6)

v

Signficance testing
(6.5)

v

Interactions
(6.9)

v

10 Acknowledgements

This paper chronicles a number of lessons learnt in real life applicatio

ns of GLLMs to technical

pricing. The various assignments concerned with this have involved contributions from

others.

Inevitably, therefore, a number of people have contributed to the
point where the boundaries between their ideas and the author’s

aper, sometimes to the
¢ not altogether clear.

Special mention in this respect is due to Steven Lim, who has been directly involved in much
of the development and its conversion to computer code, and also to David Rasmussen, Kevin

Gomes and Geoff Trahair.

03/06/97 11:18AM

\GAMSONM\GENERAL\G!18.09




70

:Appendix A

Bias correction for average claim size

A.1  Log transformation - identity link
A.1.1 Normal error term

Write the bias correction factor (6.55) in the simplified form:

b = Blexp(u, + )/ exp

with
e, ~ N(0, 6%).

Note the assumption that ¢* = V [log Yi] is independent of i .

coeflicient of variation of log Y, is exp (6% -1.

By (A.1) and (A.2),
b, = exp %2 o?,
independent of 4 .

A.1.2 Gamma error term

Consider the case in which (A.1) holds with ; + ¢, gamma distribut
T ey exp - gy,

with ¥ > 0 independent of 4 .

The mean of (A.4) is y / ¢;. Therefore,

K; = Y/"i’
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Note that the squared

(A.3)

red, specifically with pdf

(A.4)

(A.5)
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since Ee’. = 0.

Now

Eexp(y +e) = [“[T]" ¢ 9" exp - (6-1) y dy

= [¢,/€-1)]", provided ¢, > 1.

By (A.1), (A.5) and (A.6),

b = [/ D] exp (-v/¢).

An alternative form of (A.7) is obtained by noting that

Vv = l/y,

with v denoting the coefficient of variation of u, + ;.

Then

b, = (1-p®) ™ exp (-,), provided pv* < 1,

which depends on ;. In fact,
d(log 4)/dp, = (1 - p»)™ - 1 > 0,
showing that &, increases with p,.

A.2 Power transformation - log link

Write the bias correction factor in the simplified form:

b, = Hlexpe) + o]*/[owp ]

71

(A.6)

(A7)

(A.8)

(A.9)

(A.10)

.. Consider the case in which exp (u,) + ¢, is gamma distributed with pdf (A.4). Then its mean

1S
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&p u, = Y/c,') (A.11)

and

E[CXP(}L’) + ei]llp - f[l-q(,y)]—l c’_Yyyd,ﬂ)—l exp-c,y
0
= T(y+1jp)/¢;* T(y). (A.12)

By (A.10) - (A.12),

b, =T(y + 1p)/y'? T(y), (A.13)

independent of i .
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B.1 Log normal claim sizes

Let

¢(d)

Assume

log Y ~ N(u, 6%).

Then

o) =1 [ (e-d) bx; p, 0°) d,

where ¢(.; u, 0%) is the unit normal p.d.f. with parameters u, 0.

Then

c(d) = A} [exp (u + 02) - d] (2; 0, 1) ds
k

with

k = (log d - p)/o.

It follows that

c@)/A = exp(u + %a0?) 1 - ®(k-0)| - 1 - D),

where ®(.) is the unit normal d.f., and so

03/06/97 11:18AM
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Appendix B

Effect of deductible on risk premium

risk premium per unit exposure when the deductible is set at 4 ;
claim size, before application of the deductible;

claim frequency, before application of the deductible.

log 4

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)
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cd)/o(0) = [1 - ®k-0)] - d[L - 2(®)|/exp(u + o0’
=1 - e - @/a) 1 - o)),

where

a = exp (u + ¥%0?) = average claim size,

k, = k - o = [log (d/a))/o - %o,

B.2 Power gamma claim sizes

Replace (B.1) by an assumption that Y? is gamma distributed as in

e(d) = A '[D(y)]? } (¥ -d) ¥ e dx
at

g

74

(B.6)

(B.7)

(B.8)

(B.9)

A.4). Then

= A{1-T(e?; y+1/p)] Ty+1/p)/c*® T(y) - d[L-T(ea?; V) (B.10)

where I'(.; .) is the incomplete gamma function
Te; y) = [T(y)]™ fz"’l e dz.
0

The subscript ¢ has been dropped from ¢ for convenience, and wil
through the remainder of this appendix.

Thus

e(d)/c(0) = [1 - T(ed?; y+1jp)] - [1-T(cd?; y)| dc'? T
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(B.11)

| be consistently omitted

(v)/T(y+1jp). (B.12)
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As in Appendix B.1, it is possible to express this in terms of the ratio

a = (y/c)* b,

where 4 is the bias correction factor given by (A.13):

b = T(y+1p)/y" T(y).

By (B.13),

cd? = yb(d/a)]?,

and, by (B.13) and (B.14) together,

dc' T(y) [T(y+1/p) = dfa.

Substitution of (B.15) and (B.16) into (B.12) yields
c(@)/e(0) = [1 - T(k; y+1jp)] - (@/a)[1-T(k; v)],
with
k= y[b (d/;)]f'.

Special case: gamma distribution (p=1)

In this case, (B.14) gives
b=1,
whence (B.18) gives

k = y(d/a).

03/06/97 11:18AM
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a /u. In the present case

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)
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B.3 Inverse Gaussian claim sizes
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Replace (B.1) by the assumption that Y is inverse Gaussian distributed with p.d.f.

p(2nBy®) ™ exp [- (r-p)’/28y] , y>0.
Note that

(Y] - 1 V] - b,
Then

c(d) /¢(0) = [@mBy)™ exp|- (y-u)*/2By] dy
d

- (@) [ w@wBy*)™* expl- (y-u)’/2By] dy.
a

Apply the transformation z = y/u in (B.23) to obtain

c(d)/e(0) = }(2nvz)"” exp|- (z-1)%/2vz] dz
N

= (@) } (2nvz®)™ exp|-(3-1)*/2vy| dz,
afu

with
v = B/p, = uﬁ/p,z = [coefficient of variation]?.

Thus ¢(d) / ¢(0) takes the general form:

e(d) /c(0) = D(d/u; v).

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

The second intégral in (B.24) may be evaluated (see Panjer and Willmot, 1992, p.114) as:
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O[(d/u-1) (vad /)] + e ®[-(@d/u+1) (vd /u) 7. (B.27)

The first integral in (B.24) is more difficult to evaluate. It is the integral of a reciprocal inverse
Gaussian pdf (Panjer and Willmot, 1992, p.117), which is in turn the integrated pdf of the
sum of independent Gaussian and gamma variates.
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