THE UNIVERSITY OF MELBOURNE

An Affine Property Of The Reciprocal Asian Option Process

by

Daniel Dufresne The University of Melbourne

RESEARCH PAPER NUMBER 63

June 1998

Centre for Actuarial Studies Department of Economics The University of Melbourne Parkville, Victoria, 3052 Australia.

AN AFFINE PROPERTY OF THE RECIPROCAL ASIAN OPTION PROCESS

Daniel Dufresne, University of Melbourne

Abstract

This note describes a property the Asian option process, which neatly links the process at μ to the one at $-\mu$, where μ is the drift of the geometric Brownian motion. The proof is based on (i) a known result due to Yor, on the law of the Asian option process taken at exponential times, and (ii) a recent result on beta and gamma distributions.

OPTION PRICING; ASIAN OPTIONS, BETA DISTRIBUTION, GAMMA DISTRIBUTION

1. Relation between the Asian processes at μ and $-\mu$

Suppose W is one-dimensional standard Brownian motion, and define what this author calls the $Asian \ option \ process$, for want of a better name:

$$A_t^{(\mu)} = \int_0^t e^{2\mu s + 2W_s} ds, \qquad t \ge 0, \quad \mu \in \mathbb{R}.$$
 (1)

Theorem 1 (Yor, 1992). Let T_{λ} be an exponentially distributed random variable, independent of W, with mean $1/\lambda$. Then

$$A_{T_{\lambda}}^{(\mu)} \stackrel{\mathcal{L}}{=} \frac{B_{1,\alpha}}{G_{\beta}},$$

where $B_{1,\alpha} \sim \text{Beta}(1,\alpha)$ and $G_{\beta} \sim (\beta,1)$ are independent, $\alpha = \frac{\mu}{2} + \frac{1}{2}\sqrt{2\lambda + \mu^2}$, $\beta = \alpha - \mu$.

Theorem 2 (Dufresne, 1998) For any a, b, c > 0,

$$\frac{G_a}{B_{b,a+c}} + G_c' \stackrel{\mathcal{L}}{=} \frac{G_{a+c}}{B_{b,a}}.$$
 (11)

where $G_a \sim \text{Gamma}(a,1)$, $G'_c \sim \text{Gamma}(c,1)$, $B_{b,a+c} \sim \text{Beta}(b,a+c)$, $B_{b,a} \sim \text{Beta}(b,a)$ and all variables are independent.

Theorem 3 For any $\mu, t > 0$,

$$\frac{1}{2A_t^{(\mu)}} + G_{\mu} \stackrel{\mathcal{L}}{=} \frac{1}{2A_t^{(-\mu)}},$$

where $G_{\mu} \sim \operatorname{Gamma}(\mu, 1)$ is independent of W.

Affine property of reciprocal Asian option process

The last result follows directly from the two previous ones, upon setting $a = \beta$, b = 1, $c = \mu$, and then inverting the Laplace transform represented by the exponential time T_{λ} .

Theorem 3 allows us to recover the following well-known formula.

Corollary 4 For any $\mu > 0$, $\frac{1}{2A_{\infty}^{(-\mu)}} \sim \operatorname{Gamma}(\mu, 1)$.

Theorem 5 Let $\{U_k; k \geq 1\}$ be independent variables with the same distribution as

$$U \stackrel{\mathcal{L}}{=} \frac{B_1}{B_2}, \qquad B_1 \sim \text{Beta}(\beta, \mu), \qquad B_2 \sim \text{Beta}(1 + \beta, \mu)$$

where B_1 and B_2 are independent, $\mu > 0$ and β is the same as in Theorem 1. Then

$$(a) \qquad \frac{1}{2A_{T_{\lambda}}^{(\mu)}} \stackrel{\mathcal{L}}{=} U \left(\frac{1}{A_{T_{\lambda}}^{(\mu)}} + G_{\mu} \right)$$

$$(b) \qquad \frac{1}{2A_T^{(\mu)}} \stackrel{\mathcal{L}}{=} \sum_{k=1}^{\infty} U_1 \cdots U_k G_{\mu}^{(k)}$$

$$(c) \quad \mathsf{E} \, e^{-s/2A_{T_{\lambda}}^{(\mu)}} = \mathsf{E} \left(\prod_{k=1}^{\infty} \frac{1}{1 + sU_1 \cdots U_k} \right)^{\mu}$$

$$(d) \ \ \mathsf{E} \, e^{-s/2A_{T_{\lambda}}^{(-\mu)}} \ = \ \mathsf{E} \left(\frac{1}{1+s} \prod_{k=1}^{\infty} \frac{1}{1+sU_1 \cdots U_k} \right)^{\mu} \ = \ \left(\frac{1}{1+s} \right)^{\mu} \mathsf{E} \, e^{-s/2A_{T_{\lambda}}^{(\mu)}}.$$

In (a), $A_{T_{\lambda}}^{(\mu)}$ and G_{μ} are independent; moreover, given G_{μ} and U with the given distributions, the solution $1/2A_{T_{\lambda}}^{(\mu)}$ is unique (in distribution). In (b), $\{G_{\mu}^{(k)}; k \geq 1\}$ is a sequence of independent variables with a common $Gamma(\mu, 1)$ distribution, independent of $\{U_k; k \geq 1\}$.

Part (a) follows from computing the Mellin transform of each side, which from Theorem 1 is

$$\frac{\Gamma(1-s)\Gamma(\beta+s)\Gamma(1+\beta+\mu)}{\Gamma(1+\beta+\mu-s)\Gamma(\beta)} = \frac{\Gamma(1-s)\Gamma(\beta+s)\Gamma(1+\alpha)}{\Gamma(1+\alpha-s)\Gamma(\beta)}.$$

Part (b) results from iterating (a) (see also Theorems 3 and 4 of Dufresne (1998)). Parts (c) and (d) result from conditioning on $\{U_k; k \geq 1\}$ in (b).

Theorem 5 (b) is another instance of the relationship between perpetuities and the Asian option process, observed in Dufresne (1990).

Affine property of reciprocal Asian option process

Acknowledgments

Support from the Australian Research Council and the Natural Science and Engineering Research Council of Canada is gratefully acknowledged.

References

Dufresne (1990). The distribution of a perpetuity, with applications to risk theory and pension funding. *Scand. Actuarial. J.* **1990**: 39-79.

Dufresne (1998). Algebraic properties of beta and gamma distributions, and applications. Adv. Appl. Math. 20: 285-299.

Yor, M. (1992). Sur les lois des fonctionnelles exponentielles du mouvement brownien, considérées en certains instants aléatoires. C. R. Acad. Sci. Paris Série I 314: 951-956.

Daniel Dufresne Department of Economics University of Melbourne Parkville, Victoria Australia 3052 dufresne@clyde.its.unimelb.edu.au