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Abstract

This note describes a property the Asian option process, which neatly links
the process at p to the one at —gu, where g is the drift of the geometric
Brownian motion. The proof is based on (i) a known result due to Yor, on
the law of the Asian option process taken at exponential times, and (ii) a
recent result on beta and gamma distributions.
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1. Relation between the Asian processes at p and —pu

Suppose W is one-dimensional standard Brownian motion, and define what
this author calls the Asian option process, for want of a better name:
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Theorem 1 (Yor, 1992). Let T\ be an exponentially distributed random variable,
independent of W, with mean 1/X. Then
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where B1,, ~ Beta(l,a) and Gg ~ (3,1) are independent, o = % + —2—\/2/\ + u?,
0=a-—pu.

Theorem 2 (Dufresne, 1998) For any a,b,c > 0,

1 £ Gete (11)

where G, ~ Gamma(a,1), G, ~ Gamma(c,1), Bpa4c ~ Beta(b,a + ¢), Bpa ~
Beta(b, a) and all variables are independent.

Theorem 3 For any u,t > 0,
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where G, ~ Gamma(u, 1) is independent of W.
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The last result follows directly from the two previous ones, upon setting a =
B8, b =1, ¢c = p, and then inverting the Laplace transform represented by the

exponential time T.

Theorem 3 allows us to recover the following well-known formula.

Corollary 4 For any u > 0, ~ Gamma(y, 1).
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Theorem 5 Let {Uy; k > 1} be independent variables with the same distribution as

U= —, By ~ Beta(ﬁa ,LL), By ~ Beta(l + ,8/#)

where By and By are independent, i > 0 and 3 is the same as in Theorem 1. Then
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In (a), Agii) and G, are independent; moreover, given G, and U with the given

distributions, the solution I/ZA%) is unique (in distribution). In (b), {G,(f); k>1}
is a sequence of independent variables with a common Gamma(u, 1) distribution,
indepedent of {Uy; k > 1}.

Part (a) follows from computing the Mellin transform of each side, which from
Theorem 1 is
[(1-s)I(B+s)T1+B+p)  TA-sT(BE+s)I(1+a)
(14 6+ p—s)IT(B) Fl+a-s)T(B)

Part (b) results from iterating (a) (see also Theorems 3 and 4 of Dufresne (1998)).
Parts (c) and (d) result from conditioning on {Ux; k > 1} in (b).

Theorem 5 (b) is another instance of the relationship between perpetuities and
the Asian option process, observed in Dufresne (1990).
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