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Summary. The chain ladder forecast (CLF) has previously been shown to be biased
upward. The present paper calculates the second order approximation to the
magnitude of the bias, ie the Taylor series for the bias truncated at terms involving
second order moments of observations. Some order relations between data triangles
are obtained with respect to this second order bias. While the prediction error of the
CLEF, as a predictor of loss reserve, does not have zero mean, it does have zero median
under certain circumstances. Some numerical consequences are explored.
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Introduction

Taylor (2001) showed that, subject to a couple of technical conditions, the
chain ladder estimate of a loss reserve is biased upward. This finding applies
separately to each accident year.

The proof involved the Taylor series expansion of bias and the observation
that its leading term, that involving second order moments of observations, is
positive. The isolation of this term, referred to here as the second order bias,
provides an approximation to the total bias.

The present paper is concerned with that approximation. Section 5 expresses
it in a form that can be readily evaluated. Section 6 takes advantage of this
form to obtain some orderings of data triangles with respect to bias on the
basis of some simple parameters underlying those triangles.

Section 7 shows that, while the chain ladder provides a biased predictor of loss
reserve, its prediction error has zero median under certain circumstances.

Section 8 provides a numerical example of the evaluation of second order bias,
and Section 9 also examines numerical results.

Framework and notation

Consider a square array X of stochastic quantities X(i,j)=0, i = 0,1,...,];
j=0,1,..,L

Denote row sums and column sums as follows:

J

R(i,j)=ZX(i,h) 2.1)
c(i, j)=z;0X(g, ). 22)

In addition introduce the following notation for the total sum over a
rectangular subset of X:

i

7(i,4) =Y 3. X (8.h)

g=0 h=0

=Y c(i.h). 23)
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b
Generally, in the following any summation of the form Z with b < a will be

a

taken to be zero.
In a typical loss reserving framework, i denotes accident period, j

development period, and available data will consists of observations on the
triangular subset A of X:

A={X(i,j),i=01,..,I;j=0,L,..,I-i} (2.4)

Figure 2.1 illustrates the situation.

Figure 2.1
Data
A array Development period
0 J
0 _
T(I-j-1,j-1) C(I-j-1j)
Accident
periOd . V ' X (I -j,j
I-j | R(I-j,j-1)

Still in a loss reserving context, A would represent some form of claims
experience, eg claim counts or claim amounts. The loss reserving problem
consists of forecasting the lower triangle in Figure 2.1, conditional on A.

There is particular interest in forecasting R(i,I}14A, i=1,..,1I.
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Chain ladder forecast
Define

v(J)

T(I—j—l,j+1)/T(I—j—1,j)

~

—j-1 1-j-1

= 2 R(g.j+1)/ ). R(g.J)
=1+C(I-j-1j+1)/T(I-j-1,})) (3.1
and
m-1
R(i,m)=R(i,1-i) T (k). (3.2)

The value of ﬁ(i,m) calculated in this way will be referred to as the chain
ladder forecast (CLF) of R(i,m).

A special case of (3.2) is that for which m = I, where the CLF ﬁ(i,l ) is the
forecast of the ultimate total of row i.

Previous results

Taylor (2001) considered the CLF under the following assumptions.
Assumption 1. E[R(i,j+1)]/E[R(i, j)]=n(J). 4.1)
Assumption 2. X (i, ;) and X (i,, j,) are stochastically independent for
(i, 1) # (20 12)

Define the set

D, ={(g.h):g<T-k-Lh<k+l, k=I-i,..I-1}. 4.2)
Assumption 3. T(g,h)>0 for (g,h)e D,.

Remark 1. It is implicit in Assumption 1 that E[R(i, j)|#0. It then follows

from the assumed non-negativity of the X (i, j) that E I:R(i, _])] >0 for each
i

Remark 2. By Assumption 3, applied to (3.1), all ¥ (k) appearing in (3.2) are
defined and strictly positive.

Taylor obtained the following result.
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Theorem 1. Define

1

I-
Y =[] 9(k). 4.3)
k=I-i
Then
0’Y
———=0 for (g,h)e D; :
X(gn 0 lor (g:h)eD (4.4)

for (g,h)e D, and h < I -1,

1Y Ifl C(I-k-1,k+1)
=2

YoX (gh) & T ~k—Lk+1)T(I-k-Lk) "

1 : R(I-1,1) “.5)
+ -
T(i-1,1-i) S T(I-1-1L1)T(I-11)

for (g,h)e D, and h>1—1i,
1 9% & C(I-k-1k+1) i R(I-L1)
—— = B » . (4.6)
YoxX*(g.h) & T(I-k-Lk+)T(I-k-LE)ST(I-1-1,)T(I-1,1)
These results do not depend on the Assumptions 1, 2 and 3. O

Magnitude of bias

Bias in the CLF can be estimated by the usual Taylor series method. Write Y
as a function of the vector X whose components are the X (g,h)e A:

of (1)
oX (g.h)

V=7 (X) = (1) + X (1))

H2 2K (e k) - (em) X (k) -n(eD)] ax(Zzif;(a;lf)(kJ)

+.. 5.1

where the summations run over A, u(g,h)= E[X (g,h)] ,and W is the vector
with components 1(g,h).

By (5.1),

o’ f (W)

E[Y]=f(un)+%
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where Assumption 2 has been used to eliminate the quadratic cross terms.

By (3.1), (4.1) and (4.3),

I-1

f(u)=k1:l[in(k)=E[R(i,l)]/E|:R(i,I—i)]. (5.3)
By (3.2) and (4.3),
E[R(i,1)|=E[R(i,1-1)Y]. (5.4)

It may be checked from (3.1) and (5.3) that ¥ depends only on rows 0 to i — 1
of A, and so, by Assumption 2, Y and R(i,I-i) are stochastically
independent. Hence

E[R(i,1)|=E[R(i,1-i)]E[Y]

=[f(w)+Q(@i.I-i)+..]E[R(i.I-i)] (5.5)
by (5.2) with
R ’f(n)
0(i,1 ’)‘Z(g%,),. aXz(g,h)G (g.h) (5.6)
with .
o’ (g.h)=V[X(g.h)]. (5.7)

The range of summation over (g,h) has been reduced from A to D; by virtue of
(4.4). '

Substitute (5.3) in (5.5):
E[R(i,1)|=E[R(i,1)]+Q(i.1-i)E[R(i,] -i)] (5.8)

omitting terms of third and higher order. Thus, the second order bias in
ﬁ’(i,l) as a predictor of R(i,1) is Q(i,I—i)E[R(i,I—i)].

The following results consider two triangles of the form (2.4). Denote them

A, and A,. All quantities associated with A_ will be subscripted by r, eg
X, (g,h) denotes the observation X (g,h) in A, .
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Theorem 2. Suppose that:

M, (8.h) = (8.h) (5.9)
o;(g.h)=Ko; (g,h) (5.10)
for (g,h)e D,. Then

0, (i,1-i)=KQ, (i,I-i). (5.11)
That is, the second order bias in IAQZ (i,1) is K times that in ﬁl (i,1).

Proof. Follows directly from (5.6). O
In other words, if the variances of all observations in a triangle are changed by
a common factor, then all second order biases of CLFs are changed by the

same factor.
Recall Assumption 1, and note that an equivalent form to (4.1) is:

w(i,j)=E[ X (i, j)]=a(i)b(J) (5.12)
for some functions a(.)b(.).

By (2.1) - (2.3),

E[R(i,j)]=a(i)B(J) (5.13)
E[C(i,])]=A()b(J) (5.14)
E[T(i./)]=A()B(J) (515
where

A()=3a(s) 516
B(J)=3b0) .17

Remark 3. Note that Remark 1 and (5.13) imply that

a(i)>0 foreachi=0,1,...,1 (5.18)
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B(j)>0 foreachj=0,1,..,1. (5.19)

Theorem 3. The quantities 0°f (11)/0X*(g,h) appearing in the bias term
(5.6) are evaluated as follows:

For (g,h)e D, and h<I-i,

1 0*f(n) & b(k+1)
(1) 90X (g.h) 2k§‘,AI k—1)B(k)B(k+1) "
X a(1-1)
[A(z 1)B( +,Z‘+1AI 1-1)A(1-1)B(l) 20

For (g,h)e D, and h>1-i,

1 9’ f(n & b(k+1)
F(R) 3% (g.h 2,;,,,41 k1) B(k)B(k+1) "
; a(1-1)

. 5.21
2 1) (-DB() 2D
Proof. Note that 9°f(n)/0X*(g,h) is just 9°Y/0X*(g,h) evaluated at

X =p and the second derivative is given by (4.5) and (4.6). Substitute X =L
in those equations and then apply (5.13) - (5.15).

|
Ordering of triangles with respect to bias
Write (5.8) in the alternative form:
E[R(i,1)|=E[R(i,1)]+q(i.0=i) f (W) E[R(i- ] i)] (6.1)

where

q(i.1—i) =Q(i,1 i)/ £ ()

=1 .1 azf(u) 2o b 62
2(gge’z)if(ll) aXz(g,h)G (g’ ) (6.2)

by (5.6).

Substitute (5.3) into (6.1):

E[R(i,1)]|=[1+q(i,1-i)]E[R(i.1)]. 6.3)
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On the basis of (6.3), ¢(i,] —i) may reasonably be referred to as the relative

second order bias in R(i,I) as a predictor of R(i,]). Note that this

quantity, as given by (6.2), is well adapted to evaluation, since the quantities
[1/F (u)]9*f (n)/9X*(g.h) are given by (5.20) and (5.21). These last

relations may be used to obtain a partial ordering of the g(i,1 —i) for different
triangles.

In the following, let subscripts have the same meaning as in Section 5.

Theorem 4. Relative second order bias g(i,I —i) is scale independent. That
is, if X,(i,j)=KX,(i,j) for all ij and for K const. > 0, then

qz(i,l—i)=ql(i,l—i).

Proof. Note that 65(g,h)=K’c;(g,h). Note also that the condition of the
theorem can be achieved by setting a, (i)=Ka, (i), b,(j)=5b(j). Then a
change in the X (i, j) by a factor of K causes the quantities (5.20) and (5.21)

to change by a factor of 1/K>. This offsets the effect of the change in the
c’(g,h) in (6.2).
(8.h) 0

Theorem 5. Suppose that the following three conditions hold for all
(g,h)e D;:

o, (8)/ A (g)2a(g)/ Alg) (6.4)
b, (h)/ B,(h)2b,(h)/B,(h) (6.5)
o;(g.h)/ E*[T,(1,1)]2 6} (g,h)/ E*[T,(I.1)] (6.6)
Then

0, (i, 1=i) 2 q,(i,1-i). (6.7)

If strict inequality holds:

. in (6.4) for at least one g,1< g <i—1;
) in (6.5) for at least one h, ] —i+1<h<1I;and
o o; (g,h) >0 for this choice of (g,h); (6.8)

then strict inequality holds in (6.7).
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71

If strict inequality holds in (6.6) for at least one (g,h)e D,, then strict
inequality holds in (6.7).

Proof. See Appendix A. O
Median estimation

Theoretical

Since Taylor showed that the CLF of R(i,) is not unbiased for E [R(i,l )] ,

it is interesting to consider other estimation properties of the CLF.

Consider the chain ladder ratio

Z(i,j)=R(i, j+1)/R(i, j)

and define

Y (i, j)=log Z(i, j)=log R(i, j+1)—log R(i, j)- 7.1

In Theorems 8 and 9, observations Z(i,j) will be regarded as predictors of
ratios Z (i, j) (different i, same j), as yet unobserved. Similarly, ¥(j) will be

regarded as a predictor of the Z(7,j), Y(ij) a predictor of Y(i’,j) and
R(i,m) as a predictor of R(i,m).

Subsequently, Z(i’, j) will be referred to as a predictand of Z(i,j) and V().
Similarly, Y (', j) and R(i,m) will be referred to as predictands of ¥(i,j) and

ﬁ(i,m) respectively.

Generally, if a variable U predicts U, then U-U will be referred to as its
prediction error (with respect to U).

Definition. A random n-tuple (U,,...,U,) will be said to be symmetrically

distributed about (,,..., 10, ) if

Prob[U, Sp, —w,i=1,2,..,n]=
Prob|U, 2, +w,,i=1,2,...,n] for all w,,...,w, 20. (7.2)

L4

Only the cases n = 1, 2 will be required below.
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Remark 4. If U and V are both symmetrically distributed, then U — V is
symmetrically distributed. If U is an unbiased predictor of U, then U -U is

symmetrically distributed about zero, and hence the prediction error of U has
zero mean and median.

Remark 5. If the prediction bias of U with respect to U has zero median,
then so does the prediction error of f ((7 ) with respect to f{U) for any one-one

transformation f.

Definition. Random variables U and V with joint d.f. F will be said to be
exchangeable if F(u,v)=F(v,u).

Theorem 6. Let R(i, j+1) and k R(i, j) be exchangeable for some constant
k. Then Y (i, j) is symmetrically distributed about log k.

Proof. See Appendix A. ]

Remark 6. There is no assumption here about stochastic independence.

Theorem 7.  Let the ordered pair [logR(i,j+1),logR(i,j)] be
symmetrically distributed. Then Y (i, j) is symmetrically distributed.

Proof. See Appendix A. m

Theorem 8. For given j, let each pair R(i,j+1) and k,R(i,j),
i=0,1,....,I - j—1, be exchangeable for some constant k,. Then each Y (i, j)
is symmetrically distributed. Moreover, the prediction error of each Y (i, j),

Z(i,j) and V(j) with respect to its predictand has zero median. If the
hypotheses hold foreach i=0,1, ...,1, j=0,1, .., -1, then the prediction
error of each ﬁ(i,m), i=12,...,I; m=1I1-i+1,..,I with respect to R(i,m) has
zero median.

Proof. See Appendix A. M

Remark 7. The conditions of the proposition require only pairwise
exchangeability of the R(i,j+1) and k,R(i,j). For different i, the
distributions involved may be quite different.

Theorem 9. Suppose that each ordered pair [logR(i, j+1),1ogR(i, j)],
i=0,1,..,I; j=0,,..,I-1 (that is both past and future) is symmetrically
distributed. Then the prediction error of each Y (i, j), Z(i,j) and V(j) and

R(i,m) with respect to its predictand has zero median.
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Proof. See Appendix A. 1

Remark 8. Again the distributions of the R(i, j) may differ for different i, j.

It follows from the symmetry of the distribution of Y (i, j) in Theorems 8 and
9 that log ﬁ(i,m) is an unbiased estimator of log R(i,m). That is, the
prediction error of log ﬁ(i,m) has zero mean. It also has zero median.

However, the prediction error of R(i,m) does not necessarily have zero mean,
but it does have zero median.

Examples
Example 1. Consider the case in which

R~N(u.0%), X~ N(Hx,ﬁi)

and R, X are stochastically independent. Here, for brevity R and X denote
R(i,j) and X (i, j+1). Define

k =(HR +ux)/I~LR-
Then

kR~ N (1, +py.kc})
R+X ~N(pg+py,02+6%).

If & =[(cs?e +0% )/cﬁ]}é, then

kR~ N (1 +ly,05+0%)

R+X ~ N(pg +py,0%+06%)

and kR,R+ X are exchangeable, and Theorem 8 applies.

The assumption of stochastic independence made here is compatible with
Assumption 2, but not with the assumptions under which the CLF is unbiased
(see Taylor, 2001). In this latter case, X = VR with V, R stochastically
independent. Then

log(R+X) =logR+log(1+V)
log kR =log R+logk.
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7.2

These two variables will have different variances, and therefore cannot be
exchangeable, unless V has a point distribution. Thus, except for this
degenerate case, R + X and kR cannot be exchangeable, and Theorem 8 does
not apply.

Example 2. Consider the case in which R and R + X are jointly log normally
distributed, but with R and X stochastically independent, as in Assumption 2.
Then Theorem 9 applies.

Practical

It is possible to produce examples that satisfy the conditions of Theorem 8.
For example,

X (i.j)~ N(n;.0%) (1.3)

with
J

) 74
m=0

o’ =(k; —1)203 (1.5)
m=0

and subject to Assumption 2.

This example (which is in fact a re-statement of Example 1 above) is rather
contrived, however. Equations (7.4) and (7.5) are restrictive in the relations

they allow between the pi; and o7.

In practice, the conditions of Theorem 8 are unlikely to hold precisely. It is
likely, however, that they will hold approximately, in which case its
conclusion will hold approximately.

Similar remarks apply to Theorem 9. In this case it is difficult even to produce
theoretical examples. This has to do with the fact that the quantities involved
in the proposition are logged sums of random variables. Families of variables
that are closed under addition typically do not yield tractable log forms.

Once again, however, the proposition may apply approximately. Typically,
the R(i,j) tend to be right skewed. The log transformation is right tail

reducing, and so log R(i,j) will be less skewed to the right, possibly
approximately symmetrical.
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Numerical example

Appendix B.1 reproduces incremental loss payment data from Table 3.4 of
Taylor (2000). The data relate to a Motor Bodily Injury portfolio. They have
been adjusted for inflation, ie brought to constant dollar values. The portfolio
can be seen to be moderately long tailed.

The standard chain ladder has been applied to these data, producing the

parameter estimates set out in Appendix B.2. The b(j) have been estimated
directly from the model, as described in Appendix B.2.

The a(i) are estimated from (5.13) as the quantity R(i,I-i)/B(I-i).

It has been assumed that the coefficient of variation of X(g,4) depends on just
h, ie

V[X(g.h)]/E*[ X (g,h)]=7(h). (8.1)

Substitution of (5.7) and (5.12) into (8.1) shows that an equivalent form of this
assumption is:

o (8.h)=[a(g)b(h)] ¥ (n) 8.2)

An initial estimate of the quantity ‘c(h) has been taken as the sample standard
deviation of the set {X (g,h)/a(g)b(h), g =O,1,...,I—h} )

These estimates are then smoothed to give
1(h)=0.24x(1.1)". (8.3)

The bias term (6.2) may now be calculated by substitution of (5.20), (5.21),
(8.2) and (8.3), with the results set out in Table 8.1.
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Table 8.1

Second order bias in forecasts

Accident| Paid losses| Age to | Ultimate losses Loss reserve

year to date ultimate Estimate [Relativef Estimate | Relative

i RG,I-) [factor @3)R(i,1) | bias bias

$000 $000 % $000 %

1978 55,081 1| 55,081 0 0 0
1979 42,039 1.0003| 42,050 0.001 11 29
1980 58,610 1.0010{ 58,671 0.002 60 1.8
1981 65,791 1.0018] 65,911 0.003 121 1.4
1982 61,872 1.0068| 62,294| 0.006 422 0.9
1983 53,683 1.0115] 54,299 0.009 616 0.8
1984 66,093 1.0170} 67,220 0.012 1,126 0.7
1985 51,674 1.0266| 53,049| 0.016 1,375 0.6
1986 51,277 1.0465| 53,659 0.023 2,382 0.5
1987 47,416 1.0739] 50,921 0.033 3,505 0.5
1988 38,677 1.1245] 43,491} 0.048 4,814 04
1989 41,900 1.2048] 50,479 0.070 8,580 04
1990 39,133 1.3582] 53,150 0.105| 14,016 04
1991 31,999 1.6062} 51,396] 0.152 19,397 04
1992 30,123 20777 62,587 0.220| 32,464 04
1993 16,090 3.1940] 51,393| 0.308] 35,302 04
1994 8,330 5.7516] 47,909 0.449| 39,579 0.5
1995 2,827] 18.1679] 51,369| 0.706] 48,542 0.7
Total 212,313 0.53

The chain ladder loss reserve is seen to be biased upward by about ¥2%.

Other numerical results

Stanard (1985) simulated chain ladder bias. His model was one in which, for a

particular accident year:

. The ultimate number of claims was simulated as a Poisson variate; and
then
° Its distribution over reporting years was simulated according to a

multinomial distribution.

Distinct accident years were stochastically independent. It can be shown that
the resulting array of claim counts then satisfies Assumption 2. The CLF
applied to the triangle of claim counts is upward biased, as predicted by Taylor

(2001).
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Now associate a claim size with each claim, with all claim sizes stochastically
independent.

In this framework, let

A= expected claim count for the accident year

p;= expected proportion of claims reported in development year j
(=0,1,....])

o, = n-th uncentralised moment of individual claim size

X (i, j)= total cost of claims reported in cell (i,j).

It may be shown that X (i, j) is compound Poisson distributed with Poisson

parameter Ap;. Hence

1(i,j) =Ap, for claim counts
=Ap,a, for claim amounts

6 (i, j) =Ap, for claim counts
=Ap 0, for claim amounts.

Then Theorem 2 shows that the relative bias in the CLF forecast of loss
reserve (claim amounts) exceeds that in the forecast of IBNR count by a factor
of a,/a, (to second order at least).

In Stanard’s example,

o, / o, =(34,800° +10,400% ) /10,400
=126,846.

This is in fact close to the factor of increase found empirically by Stanard
(compare his Exhibits I and II).
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Appendix A
Proofs of theorems

Proof of Theorem 5. Write (6.2) in the alternative form:

il—i)=1 2 1 9f(w) ©o°(g:h)
7170 2<g%u.-E[T(I’I)]f(u)aXz(g,h)EZ[T(I,I)] (A1)

where, by (5.20), (5.21) and (5.15),

) 1 °f(n) E'b(k+1) A(I) B(I)
E [T(I’I)]f(u) axz(g’h)_2k§1iB(k+1)A(I—k—1)B(k)
A(I) B(I) & a(I-1) A1) B(I)
[A(i—l) B(I_i)+l=l—i+1A(I_l) A(I_l_l) B(l)jl (42

for (g,h)e D, and h<I-i, and

k a(I—l) A(I B(I)
A=) A(I-1-1) B() (A3
for (g,h)eD,. and h>1-i.
Note that
A(I) "‘A(g+1)
= (A4)
A(i) o= Alg)
and
A(g+1)= 1_a(g+1):|_1 A5
A(g) [ Alg+1)| - (A-3)
It follows that, if (6.4) holds, then
A(g+1) Ag+1) AG
a8 - AQ) 0
and
A1) | A1)
> ) (A7)
A (i) A)
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Similarly (6.5) implies

B,(I), B.(I)
> A8
5,(7) " B(J) A9
Substitution of (6.4), (6.5), (A.7) and (A.8) in (A.2) and (A.3) yields
2 2
BT, (1.1)] =2 £ (1) > B[, (11)] o2 A (A9)

£ (1) 0X; (g.h) £i(m) 0X; (g.h)

forall g,he D,.
Substitution of (A.9) and (6.6) in (A.1) yields (6.7).

It is evident from (5.20) that 0°f (n)/0X*(g,h) for h<I—i involves the quantity
b(k+1)/B(k+1) for I-i+1<k+1<I-g. Similarly, in (5.20) 3'f (1)/3X>(g.h)
involves the quantity a(I—1)/A(I-1) for g+1<I-1<i-1.

Hence, if strict inequality holds in (6.4) for 1<g<i-1, and in (6.5) for
I-i+1<h<]I, then strict inequality holds (A.9) for that (g,h). Take this and (6.8)

into account in the reasoning that led from (A.9) to (6.7) to see that strict inequality
holds in (6.7).

To prove the final statement of the theorem, note that (5.20) and (5.21) imply that
(A.2) and (A.3) are strictly positive for each (g,h). If strict inequality holds in (6.6)
for this choice of (g,h), then (A.9) yields

1 fi(w)
A (Ml) aXlz (g,h)
19 f,) .

2 ,h). A.10
7 () 3% () 2 &) (A1)

E[5,(11)] o (.1)>

E’[T,(L.1)]

Substitute this result in (A.1) to obtain strict inequality in (6.7).

Proof of Theorem 6. It follows from the definition of exchangeability that, for
exchangeable U and V, U-V is symmetrically distributed about zero. Apply this result

to the case U =logR(i,j+1), V=log[kR(i,j):|. This gives Y (i, j)—logk as

symmetrically distributed about zero. The result follows.

O
Proof of Theorem 7. Suppose initially that (U,,U,) is symmetrically distributed

about (0,0). Let V=U,-U,. Then

Prob[V <-v]=[d Prob[U, <u,U, <u,] (A.11)
N
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where
S ={(w,u, )= = (—uy) < v} ={(, 1) : 0, —u, > v}. (A.12)
By (A.11) and the symmetry of (U,,U,),

Prob[V <—v]= Id Prob[U, 2u,,U, 2u,]|=Prob[V > v]
S

by (A.12).

Thus, V is symmetrically distributed about zero. A simple modification adapts this
proof to the case where (U,,U,) are symmetrically distributed about a point other

than (0,0). O

Proof of Theorem 8. By the exchangeability hypothesis and Theorem 6, Y(i,j) is
symmetrically distributed about k;. As this latter quantity is independent of i, Y(i,j) is

an unbiased predictor of Y (i, j).

The result of the theorem for Y (i, j) follows immediately from the symmetry of its
distribution and that of its predictand, together with Remark 4. By (7.1), Z(i, j) is

related one-one to Y (i, j), and so the result follows from Remark 5 for Z(3, j).

By (3.1),

I—j-1 I-j-1

log¥(j)-logk, =log 3 R(i,j+1)-log D k;R(i, j). (A.13)

i=0 i=0

By hypothesis, and by stochastic independence with respect to i, the two members on
the right side of (A.13) are exchangeable. Hence logV(j) is symmetrically

distributed about logk;, the proof of this parallel to that of Theorem 6. Now log
V(j) is a predictor of Y (7', j), just as was Y(i,j). Therefore, the required result for
¥(j) may be established by the same argument as for Z(i,j), Y(i,j) replaced by V( ),

log V(j).
By (3.2),

log R(i,m)=log R(i,] —i)+log¥ (I —i)+...+1og¥(m—1). (A.14)
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Since the logfl( j) have just been shown symmetrically distributed, so must be log
R(i,m), and so the prediction error of log R(i,m) with respect to log R(i,m) has zero

median. By Remark 5, the prediction error of ﬁ( i,m) with respect to R(i,m) also has
zero median. [

Proof of Theorem 9. The result for Y (i, j) follows immediately from the symmetry

of its distribution, established by Theorem 7. The result for Z (i, j) then follows just
as in Theorem 8.

By (3.1),

I-j-1 I—j-1

log¥(j)=log Y R(i,j+1)~log Y R(i,j). (A.15)

i=0 i=0

By the symmetry hypothesis, and stochastic independence with respect to i, the two
members of the right side of (A.15) form a symmetrically distributed ordered pair, and

so logV(j) is symmetrically distributed. The proof of this is parallel to that of
Theorem 7.

The remainder of the proof follows that of Theorem 8.
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Appendix B
Numerical example

B.1 Data
Accident Incremental paid losses in development year

year 0 1 2 3 4 5 6 7 8 9 10 i1 12 13 14 15 16 17
$000 $000 $000  $000  $000 $000  $000 $000 $000 $000 $000 $000 $000 $000 $000 $000 $000 $000

1978 3,323 8532 9372 10,172 7,630 3,856 3,252 4,434 2,188 332 200 692 311 0 604 94 76 14

1979 3,785 10,341 8331 7849 2,838 3,577 1,405 1,721 1,065 155 36 259 250 419 8 0 0

1980 4677 9,989 8,746 10,228 8,572 5786 3,855 1,445 1,612 626 1,172 6589 438 473 370 31

1981 5,288 8,089 12839 11,830 7,760 6,182 4,118 3,016 1,775 1,785 2,645 266 38 45 114

1982 2,294 9,869 10,242 13,808 8,785 5409 2425 1,597 2,149 3296 917 295 428 359

1983 3,600 7,514 8247 9,327 8584 4245 4,096 3,216 2,014 592 1,188 691 367

1984 3,642 7,394 9,838 9,734 6377 4,884 11,920 4,189 4,492 1,760 944 922

1985 2,463 6033 6980 7722 6702 7,834 5579 3622 1,300 3,069 1,370

1986 2,267 5959 6,175 7,051 8,102 6,339 6,978 4,396 3,107 903

1987 2,009 3,701 5297 6,886 6496 7,550 5,855 5,751 3,871

1988 1,860 5282 3650 7528 5156 5766 6,862 2,573

1989 2,331 3517 5310 6,066 10,149 9,265 5262

1990 2,314 4,486 4,113 6,999 11,163 10,058

1991 2,607 3952 8228 7905 9,307

1992 2,595 5,404 6,578 15,546

1993 3,155 4975 7,961

1994 2,626 5,703

1995 2,827

B.2 Parameter estimates

Develop- Age to age factor b(3)

ment year j V(J)

0 3.1588 0.0550
1 1.8007 0.1188
2 1.5373 0.1392
3 1.2936 0.1682
4 1.1826 0.1413
5 1.1273 0.1137
6 1.0714 0.0938
7 1.0471 0.0593
8 1.0262 0.0419
9 1.0193 0.0244
10 1.0094 0.0185
11 1.0055 0.0092
12 1.0046 0.0054
13 1.0050 0.0046
14 1.0008 0.0049
15 1.0008 0.0008
16 1.0003 0.0008
17 0.0003
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Accident a(i)

year |
1978 55,081
1979 42,050
1980 58,671
1981 65,911
1982 62,294
1983 54,299
1984 67,220
1985 53,049
1986 53,659
1987 50,921
1988 43,491
1989 ' 50,479
1990 53,150
1991 51,396
1992 62,587
1993 51,393
1994 47,909
1995 51,369

In this table, ¥(j) has been calculated according to (3.1). Then b(j) has been
calculated as

b(j)=B(j)-B(j-1) (B.1)
with
B(j)=UTT9(k). B.2)
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