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Summary.  It has been known since Zehnwirth (1977) that a scalar credibility 
coefficient is closely related to the F-statistic of an analysis of variance between and 
within risk clauses.  The F-statistic may also be viewed as testing a certain regression 
structure, associated with credibility framework, against the null hypothesis of a 
simpler structure. 
 
This viewpoint is extended to multi-dimensional credibility frameworks in which the 
credibility coefficient is a matrix (Sections 3 and 4), and to hierarchical regression 
credibility frameworks (Section 6).  In each case the credibility coefficient is 
expressed in terms of the F-statistic that tests the significance of a defined regression 
structure against a simpler one. 
 
Section 5 prints out how the computation may be implemented by means of regression 
software. 
 
Keywords.  Credibility, hierarchical credibility, hypothesis testing, regression. 
 
 
 
1. Introduction  

 
A credibility estimate is a linearised Bayes estimate, consisting of a convex 
combination of a prior quantity and a data-based estimate. 
 
The credibility “coefficient” (which may be a matrix) defining the convex 
combination also requires estimation from data.  Historically, therefore, each 
new credibility application has tended to be accompanied by an additional 
analysis indicating how the credibility coefficient may be estimated (see eg 
Bühlmann and Straub, 1970; De Vylder, 1978, 1985). 
 
These analyses have usually been ad hoc.  For complex credibility models, 
such as the hierarchical regression models considered in Section 6, the 
determination of the form of credibility coefficient is correspondingly 
complex, and possibly exceedingly tedious. 
 
The purpose of the present paper is to construct a defined procedure by which 
the estimation of a credibility coefficient may be automated.  This is done for a 
general non-hierarchical credibility framework in Sections 3 and 4, and 
extended to a hierarchical (regression) framework in Section 6. 
 
Section 5 indicates how regression software may be used to carry out the 
estimation. 
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2. Basic credibility framework  
 
Consider the basic framework of regression credibility, as introduced by 
Hachemeister (1975).  Let β be a p-vector randomly drawn from a distribution 
with 
 

[ ] [ ],E b Varβ = β = Γ  (2.1) 
 
where [ ].Var  is used here to denote the variance-covariance matrix of its 
argument. 
 
Let Y be an observable n-vector satisfying  
 
Y X= β + ε  (2.2) 
 
with X an n x p (n ≥ p) design matrix, assumed to be of full rank, and  a 
centred stochastic error vector, independent of β and with  

ε

 
[ ]Var Vε =  (2.3) 

 
The generalised linear regression estimate of β for model (2.2) and (2.3) is 
 

( ) 11ˆ T T 1X V X X V Y
−−β = −

)

 (2.4) 
 
Note that 
 

( 11ˆ TVar X V X
−−⎡ ⎤β =⎣ ⎦  (2.5) 

 
 
Let Y  denote the following linear combination of Xb (prior estimate of Y ) and %

ˆXβ  (linear regression fitted value for Y ): 
 

( ) ˆ1Y Z Xb Z= − + Xβ%  (2.6) 
 
where Z is an as yet unspecified n x n (non-stochastic) matrix. 
 
Define L to be the mean square loss function 
 

( ) (1T
L E Y Y V Y Y−⎡= − −⎢⎣

% )⎤⎥⎦%  (2.7) 

 
where the expectation is taken over the joint distribution of β and Y.  Choose Z 
so as to minimise L. 
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This optimisation of Y  is in fact no less general than if Y  is defined as an 
affine function of Y (Hachemeister, 1975; Taylor 1977). 

% %

 
Substitute (2.6) into Y  and rearrange to obtain Y− %

 
( ) ( ) ( ) ( ˆ1Y Y Y X Z X b ZX− = − )β + − β − − β −β%  (2.8) 

 
Substitute this into (2.7) and make use of the fact that the three members of 
(2.8) are stochastically independent, to obtain 
 

( ) ( ) ( ) ( ) (

( ) ( ) ( )

1 1

1

1 1

ˆ ˆ

T T TT

T
T T

)L E Y X V Y X b X Z V Z

X b X Z V ZX

− −

−

⎡= − β − β + β − −⎣
⎤β − + β − β β −β ⎥⎦

−
 (2.9) 

 
Note that, for any square (non-stochastic) matrix M and dimensionally 
compatible centred stochastic vector v,  
 

[ ]{ }TE v Mv Tr Var v M⎡ ⎤ =⎣ ⎦  (2.10) 
 
Application of this result to each of the three members on the right side of 
(2.9), with substitution of (2.1), (2.3) and (2.5) for the covariance matrices 
yields 
 

( ) ( ) ( ) 11 11 1 1TT T 1T TL Tr X X Z V Z X X V X X Z V Z
−− −⎡ ⎤= + Γ − − +⎢ ⎥⎣ ⎦

−

)

 (2.11) 

 
Note that, for any n x n matrices M, N,  
 

( ) (/ ij ji
Tr MZN Z NM∂ ∂ =  (2.12) 

 
where the subscript denotes the relevant element of the named matrix. 
 
Write / Z∂ ∂  to denote the matrix of derivatives / ijZ∂ ∂ , so that (2.12) 
becomes 
 

( ) (/ TTr MZN Z NM∂ ∂ = )

0T

 (2.13) 
 
Apply (2.13) to (2.11) and set the derivative to zero so as to minimize L, 
giving 
 

( ) ( ) 111 TT T TX X Z X X V X X Z
−−− Γ − + =  (2.14) 

 
Transposition of this, followed by post-multiplication by  yields 1V X−
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( )1 11 T TZ X X V X X X V X− −+ Γ = Γ  
 
which is solved by 
 

( )
1111 TZ X X V

−−−⎡= + Γ⎢⎣
⎤
⎥⎦

 (2.15) 

 
This is the classic result obtained by Hachemeister (1975).  The matrix Z will 
be referred to henceforth as the credibility matrix. 
 
 

3. Decomposition of credibility models 
 
Consider the model described by (2.1) – (2.3), but now with X and  written 
as 

Γ
1X  and .  Express  in the following block form: 1Γ 1Γ

 
0

1

*
* +

Γ⎡
Γ = ⎢ Γ⎣ ⎦

⎤
⎥  (3.1) 

 
where  is of dimension 0Γ 0 0xp p . 
 
Partition 1X  in a dimensionally consistent manner: 
 

[ ]1 0X X X +=  (3.2) 
 
where 0X  is of dimension . 0xn p
 
No assumption is made about V other than the standard one of positive 
definiteness. 
 
The notation here is that 0 , 1X X  are the designs representing a regression null 
hypothesis and alternative hypothesis, and X +  is the augmenting matrix 
connecting the two designs. 
 
Example 3.1 (Bühlmann-Straub).   
 
Let 
 

[ ] 2

0

0 0
0

0
r

n
n

n

u
X u X

u

+

⎡ ⎤
⎢ ⎥
⎢= = ⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

K

M O M

K

⎥
⎥  (3.3) 

 
where un denotes the n-dimensional column vector with all entries unity and 
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1

r

i
i

n n
=

=∑  (3.4) 

 
where n1 is the dimension of the top left zero vector in X + . 
 
The interpretation of this model is as follows.  If the r columns of 1X  are 
associated with r risk classes, then the model represents ni observations on risk 
class , which is assumed characterised by parameter , 1,...,i i r= 1β  for i = 1, 
and by 1 iβ + β  otherwise.  This is the data set-up of the model of Bühlmann 
and Straub (1970). 
 
The model represented by the design matrix 0X  treats all risk classes as 
subject to the same parameter. 
 
Example 3.2 (Hachemeister regression).  Consider the case in which  
 

0

0 0 0 0

0 0

m m
m m

m m
m m

u t
u t

X X
u t

u t

+

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

K

M M
M M O

K

 (3.5) 

 
where  is the time trend covariate vector [1,2,…,m], n = rm, and mt X +  is of 
dimension n x 2r. 
 
Here the 2r parameters consist of r pairs and each pair may be regarded as 
defining a time trend for one of r risk classes.  This corresponds to the model 
of Hachemeister (1975), in which the risk classes were states. 
 
The model represented by the design matrix 0X  treats all states as subject to 
the same pair of risk parameters. 
 
Example 3.3.  A further example may be constructed by merging a model of 
the Hachemeister type with the sort of econometric model found in the 
workers compensation literature.  For example, Butler (1994) found that 
statistical significant explanatory variables for real indemnity costs per 
employee included: 
 
• wage replacement ratio; 
• risky employment measure (proportion of workforce employed in 

manufacturing and construction); 
• waiting period. 
 
One might therefore define a model in which 0X  decomposes further: 
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( ) ( ) ( ) ( ) ( )1 2 3
0 0 ,H HX x x x X X X+ +

⎡ ⎤= ⎣ ⎦ =  (3.6) 

 
where ( ) ( ) ( )1 2 3, ,x x x  are the n-vectors of log (replacement ratio), log (risky 

employment measure) and waiting period respectively, and ( )
0

HX  and ( )HX +  
are the Hachemeister versions of 0X  and X +  defined by (3.5). 
 
Moreover, one might choose 
 

( )
( )

0
0

0 0
,

0
H

H + +

⎡ ⎤
Γ = Γ = Γ⎢ ⎥

Γ⎣ ⎦
 (3.7) 

 
where the top left block of  corresponds to 0Γ ( ) ( ) ( )1 2 3, ,x x x  and ( ) ( )

0 ,H H
+Γ Γ  are 

as for the Hachemeister model. 
 
The credibility model (2.6) then reduces to: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
3

1

ˆ1i i H H H H

i

Y x Z X b ZXβ β
=

= + − +∑%  (3.8) 

 
where the terms with superscript (H) all relate to the Hachemeister portion of 
the model, ie the model with the x(i) components deleted. 
 
In this example, the regression coefficients associated with the first three 
regressors, which are not state-specific (the regressors themselves may be, but 
their coefficients are not), are given full credibility in (3.8).  However, the 
state-specific trends comprising the full extension model are credibility-
weighted. 
 
The distinction between the x(i) and the ( )

0
HX  is the distinction between fixed 

and random effects in the regression model (see eg Ohlsson and Johansson, 
2006). 
 

 
4. Estimation of credibility parameter 

 
Application of the credibility formula (3.5) and (3.6) requires a knowledge, or 
estimate, of some properties of  and V.  Full estimation of these matrices is 
a substantial task.  Hachemeister (1975) shows how to estimate the former. 

eΓ

 
The present paper will be concerned with the restricted case in which the 
structure of each of the two matrices is known, ie each is known up to a 
multiplier,  
 

2 , 0,c eV W G= σ Γ = Γ = τ2
e  (4.1) 
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with W,Ge known and  unknown. 2 2,σ τ
 
Substitution of (4.1) in (3.6) yields 
 

(
1111 T

e e eZ X G X W
−−−⎡= + ν⎢⎣ ) ⎤
⎥⎦

2

 (4.2) 

 
with 
 

2 /ν = τ σ  (4.3) 
 
and all other terms in (4.2) known.  An estimate of only the ratio (4.3), rather 
than of its separate components, is required for computation of Z.  The ratio ν  
will be referred to as the credibility parameter in view of its central role.  
The following paragraphs address its estimation.  They require the following 
elementary results. 
 
Result 4.1.  For any conformable non-stochastic matrix A and centred 
stochastic vector x, 
 

[ ]{ }TE x Ax Tr AVar x⎡ ⎤ =⎣ ⎦  (4.4) 
 
Result 4.2  For any matrices A,B of dimensions m x n and n x m respectively 
 

( ) (Tr AB Tr BA= )  (4.5) 
 
It follows that the trace of a matrix product (of any number of factors) is 
invariant under cyclic permutation of the matrix factors. 
 
Consider the following two regression models: 
 
Model 0: 0 0Y X β ε= +  
Model 1: 1 1Y X β ε= +  
 
subject to (2.3) and (3.7).  Generally in the following a subscript 0 or 1 will be 
used to indicate which of the models is under discussion. 
 
The fitted value of Y, denoted Y , i = 0,1, is  î

 

î iY PY=  (4.6) 
 
with 
 

( ) 11T
i i i i iP X X W X X W

−−= 1T −  (4.7) 
 
Define the residual sum of squares for Model 1 as 
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( ) ( )1
1 1
ˆ ˆT

RSS Y Y W Y Y−= − −  

( ) ( ){ }2 1
1 11 1 TTr W P W Pσ −= − −   [using Results 4.1 and 4.2] 

 
which, after some minor manipulation, yields 
 

[ ] (2
11E RSS Tr Pσ= − )

1

 (4.8) 
 
where the matrices on the right are of dimension n x n. 
 
By Result 4.2,  reduces to the trace of the 1Tr P 1 xp p  identity matrix, and so 
(4.8) gives 
 

[ ] ( ) 2
1E RSS n p σ= −  (4.9) 

 
Now define the regression sum of squares 
 

( ) ( )
( ) ( )

1
1 0 1 0

1
1 0 1 0

ˆ ˆ ˆ ˆ
reg

TT

SS Y Y W Y Y

Y P P W P P Y

−

−

= − −

= − −
 (4.10) 

 
Consider the matrix .  It is elementary to check that ( ) (1

1 0 1 0
TP P W P P−− )−

0,1=

)−

1 1T− −

1
0

1

 
1 1 ,T

i i iP W P W P i− −=  (4.11) 
 
Now consider the cross terms in .  By (4.7), ( ) (1

1 0 1 0
TP P W P P−−

 

( ) ( )11 1 1 1 1
1 0 1 1 1 1 0 0 0 0
T T T TP W P W X X W X X W X X W X X W

−− − − − −⎡ ⎤= ⎢ ⎥⎣ ⎦
 (4.12) 

 
Expand X1 according to (3.7) within the square bracket: 
 

( )
11 1

11 1 0 0 0 0
1 1 1 0 1 1

0 0

T T T
T T

T T T

X W X X W X X W X
X W X X W X

X W X X W X X W X

−− − −
−− − +

− − −
+ + + +

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

1
0
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (4.13) 

 
Substitution of (4.13) in (4.12) yields 
 

[ ] ( ) 11 1 1 1
1 0 0 0 0 0

1
0

T TP W P W X X X W X X W W P
−− − − − −

+
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

1
0

T =  (4.14) 

 
It may also be noted that 
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( ) ( ) [ ]
[ ]

1 1 1
0 1 1 0 0

1
0

by (4.14)

by (4.7)

T TT TP W P P W P W P

W P

− − −

−

= =

=
 (4.15) 

 
Substitution of (4.11), (4.14) and (4.15) in (4.10) yields 
 

(1
1 0

T
regSS Y W P P Y−= − )  (4.16) 

 
and then, by Result 4.1,  
 

( ) [ ]{ }1
1 0regE SS Tr W P P Var Y−⎡ ⎤ = −⎣ ⎦  (4.17) 

 
To evaluate this quantity, write 
 

( ) (1 1 1Y X b X b Y X )β β= + − + −  
 
and note that covariances between all three terms on the right are zero.  
Therefore, by (4.1), (2.1) and (2.3), 
 

[ ] 1 1

2
1 1

T
e

T
e

Var Y X X V
2X G X Wτ σ

= Γ +

= +
 (4.18) 

 
where (4.1) has been used again. 
 
By substitution of (4.18) into (4.17), 
 

( )( ){ }1 2 2
1 0 1 1

T
reg eE SS Tr W P P X G X Wτ σ−⎡ ⎤ = − +⎣ ⎦  (4.19) 

 
Now 
 

( )1
x1

i iiTr W PW Tr− = p p  (4.20) 
by (4.7) and Result 4.2, where Xi is of dimension n x pi.  Thus 
 

( ){ } ( )1 2
1 0 1 0Tr W P P W p pσ− − = − 2σ

e ⎤⎦

1
1

T −

 (4.21) 
 
Note that, by Result 4.2,  
 

( ) ( )1 1
1 0 1 1 1 1 0 1

T T
eTr W P P X G X Tr X W P P X G− −⎡ ⎤ ⎡− = −⎣ ⎦ ⎣  (4.22) 

 
To evaluate this, consider 
 

( )1 1
1 1 0 1 1 1 1 0
T TX W P P X X W X X W P X− −− = −  (4.23) 
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by (4.7). 
 
Now 
 

( )( ) ( )

( )

( )( ) (

11 1 1 1
1 0 1 1 0 0 0 0 1

1
11 1 10 0

0 0 0 0 01
0

1 1
0 0 0

11 1 1
0 0 0 0 0

T T T T

T
T T T

T

T T

T T T T

X W P X X W X X W X X W X

X W X
X W X X W X X W X

X W X

X W X X W X

X W X X W X X W X X W X

−− − − −

−
−− − −

+−
+

− −
+

−− − −
+ +

=

⎡ ⎤
⎡ ⎤= ⎢ ⎥ ⎣ ⎦

⎣ ⎦
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦)1−

+

1

 (4.24) 

 
Substitute (4.24) into (4.23) and expand 1

1
TX W X−  in a similar block form to 

obtain 
 

( ) ( )
1

1 1 0 1 1
0

0 0
0 1

T
TX W P P X

X W P X
−

−
+ +

⎡ ⎤
− = ⎢ −⎣ ⎦

⎥

+ + ⎤⎦

)2

 (4.25) 

Substitution of (4.25) in (4.22) gives 
 

( ) ( )1 1
1 0 1 1 01T T

eTr W P P X G X Tr X W P X G− −
+⎡ ⎤ ⎡− = −⎣ ⎦ ⎣  (4.26) 

 
Combining (4.19), (4.21) and (4.26) 
 

( ) (2
1 0regE SS p p t Dσ τ⎡ ⎤ = − +⎣ ⎦  (4.27) 

 
where D is the regression design that recognises 0 ,X X + , in addition to W and 
G+, and 
 

( ) ( )1
01Tt D tr X W P X G−

+⎡= −⎣ + + ⎤⎦  (4.28) 
 
Combine (4.27) with (4.9) to obtain 
 

( ) ( )
[ ] ( ) ( ) (11 0

1 0
1

/
1

/
regE SS p p

p p t D
E RSS n p

ν −−
= + −

−
)  (4.29) 

 
where ν  was defined in (4.3). 
 
Thus, ν  is estimated by 
 

( )( ) ( )ν ⎡= − −⎣ 1 0ˆ max 0, 1 /F ⎤⎦p p t D  (4.30) 
 
where F is the conventional regression F-statistic for testing Model 1 against 
Model 0, ie 
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( ) (⎡ ⎤ ⎡= − −⎣⎣ ⎦1 0 1/ / /regF SS )⎤⎦p p RSS n p  (4.31) 
 
The credibility matrix Z in (4.2) is thus estimated by replacing ν  with ν̂ . 
 
The dependence of Z on the F-statistic was demonstrated by Zehnwirth (1977) 
in the simple case of 1-dimensional credibility.  It may also be remarked that 
the estimator of Z derived here is different from Hachemeister’s (1975) 
estimate because he did not make the reducibility assumption (3.3) and 
assumed no prior knowledge of .  He therefore estimated Γ  in its entirety 
rather than just the scaling parameter  in (4.1). 

Γ1 1

τ 2

 
The regression whose statistics appear on the left side of (4.29) may have a 
number of equivalent designs.  Example 3.1, for example, might have been 
formulated with X+ taking any of the block diagonal forms 
 

( 1 1 1
,..., ,0, ...,

s sn n n n )r
X diag u u u u

− ++ =  (4.32) 

 
However, changing from one design D to another would not change the left 
side of (4.29), and so t(D) is invariant over , were  denotes the set of 
all regression designs equivalent to (and including) the one of interest. 

∈D D D

 
Example 3.1 (continued).  Suppose that 
 

[ ] ( )2 1
11, ,..., nVar W diag w wβ τ −= =  with . 

1

n

i
i

w w
=

=∑
 
Note that, since the parameter vector for module H1 is represented in the form 
( )1 1 2 1, ,..., T

rβ β β β β+ +  instead of just ( )1,..., rβ β , it is necessary for the 

former vector to have covariance matrix .  That is  21τ
 

[ ] 21Var M β τ=  
 
with 
 

1

1 0
1r

M
u −

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

 
It may be checked that, in this representation, 

[ ] ( )2 1 1 2 1

1 1

1
1

T
T r

T
r r r

u
Var M M

u u u
β τ τ− − −

− − 1−

⎡ ⎤−
= = ⎢ ⎥− +⎣ ⎦

 

 
and so 
 

1 11 T
r rG u u+ −= + −  (4.33) 
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Now 
 

1 1
0 0
T T

n nX W X u W u w− −= =

1−

⎥

1−

 (4.34) 
 

1
0

T
n nP w u u W−=  (4.35) 

 

( )

( )

2 2

1
2

1

1
r r

T
n n

T

T
n nr

u W u

X W X
u W u

−

−
+ +

−

⎡ ⎤
⎢ ⎥

= ⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

O  (4.36) 

 
where  is written in block diagonal form  with 

blocks corresponding to those in X

1W −
( ) ( )( )1 1
1 ,..., rW diag W W− −=

1. 
 
Thus  
 

( ) ( )( )1
2 ,...,T

rX W X diag w w−
+ =  

 
where , and so ( ) ( )

1
jw Tr W −= j

)1

 
( ) ( ) ( )( ) ( )(1

22 ... 2T
rTr X W X G w w w w−

+ + + = + + = −  (4.37) 

 
Also 
 

( )( )1 1 1 1
0

TT T T
n nX W P X G w X W u X W u G− − − −

+ + + + += +  (4.38) 
 
and 
 

( )

( )

2

1T
n

r

w

X W u
w

−
+

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

M  (4.39) 

 
Therefore, by substitution of (4.39) in (4.38) and use of (4.33) and Result 4.2,  
 

( ) ( ) ( )( )

( ) ( )

( ) ( ) ( )( )

1 1 1
0 1

2

1 2

2 2

2
1 2 2

1 1
1

1
TT T T

n r r

r r

j j
j j

r

j
j

Tr X W P X G w Tr X W u u u X W u

w w w

w w w w w

− − −
+ + + + − − +

−

= =

−

=

1
1

T
n

−⎡ ⎤= +⎢ ⎥⎣ ⎦
⎧ ⎫⎡ ⎤⎪ ⎪= +⎨ ⎬⎢ ⎥

⎣ ⎦⎪ ⎪⎩ ⎭
⎡ ⎤

= − + −⎢ ⎥
⎣ ⎦

∑ ∑

∑

 (4.40) 
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It then follows from (4.27) and (4.28) that 
 

( ) ( )( ) ( )( ) ( ) ( )
2

2 2 1 2 2
1 1 1

1

1 2
r

reg j
j

E SS r w w w w w w w wσ τ −

=

⎡ ⎤
⎡ ⎤ = − + − − − + −⎢ ⎥⎣ ⎦

⎣ ⎦
∑  

( ) ( )
2 2 1 2

1

1
r

j
j

r w wσ τ −

=

w
⎡ ⎤

= − + −⎢ ⎥
⎣ ⎦

∑  (4.41) 

 
Comparison with (4.27) indicates that 
 

( ) ( )
1 2

1

r

j
j

t D w w w−

=

= − ∑  (4.42) 

 
Note that t(D) is indeed independent of D, as predicted earlier. 
 
The estimator (4.30) now takes the explicit form 
 

( )( ) ( )
1 2

1

ˆ max 0, 1 1 /
r

j
j

F r w w wν −

=

⎧ ⎫⎡ ⎤⎪= − − −⎨
⎪
⎬⎢ ⎥

⎪ ⎪⎣ ⎦⎩ ⎭
∑  (4.43) 

 
with 
 

( ) ( )/ 1 / /regF SS r RSS n r⎡ ⎤= − ⎡⎣⎣ ⎦ − ⎤⎦  (4.44) 
 
Here 
 

( ) ( )( 2

1

r

reg j j
j

SS w Y Y
=

=∑ )−  (4.45) 

 
where ( )jY  is the weighted mean of Y over the j-th risk class with weight vector 

 and ( )jw Y  is the grand weighted mean. 
 
The estimator (4.43) is the same as that obtained by Bühlmann and Straub 
(1970).  It is emphasised, however, that, despite its algebraic development for 
illustrative purposes here, it could have been derived numerically (with no 
algebra) as described in Section 5 below. 
 
 

5. Numerical evaluation of credibility parameter 
 
Suppose one is faced with the credibility regression design represented by 
(3.2), (3.3) and (4.1).  One wishes to apply the credibility formulas (3.5) and 
(4.2), and needs an estimate of ν  in order to do so. 
 
One may proceed by means of the following steps. 
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5.1 Choose a regression design D and evaluate t(D) according to (4.28).  
This may be done algebraically or numerically. 

 
5.2 Evaluate the F-statistic for testing the regression Model 1 against the 

Model 0 null hypothesis.  This may be done by applying regression 
software to the data, or by direct calculation.  The latter would amount 
to a re-creation of the regression software. 

 
5.3 Assemble the result into the estimator ν̂  given by (4.30), and hence an 

estimator of Z. 
 
Step 5.2 provides a quick and systematic way of evaluating the credibility 
matrix in cases of complicated design.  An example is given in the next 
section. 
 
 

6. Hierarchical credibility 
 
6.1 Definition of hierarchical model 

 
A general hierarchical credibility model (Taylor 1979, Sundt 1979, 1980) can 
be extensive, and the procedure set out in Section 5 may be helpful in the 
evaluation of the various credibility matrices. 
 
The standard hierarchical credibility framework, as defined by Taylor, is one 
in which risk classes consist of sub-classes, and sub-sub-classes, and so on. 
 
If a risk class is labelled j1, it will be composed of sub-classes j11, j12,…, and 
generally j1 j2.  This will consist of sub-sub-classes j1 j2 j3, and ultimately  
j1 j2…jq. 
 
The nodes (j1…jk), k = 1, 2, …, q form a tree.  A regression structure may be 
placed at each node. 
 
This sort of structure is studied in full generality by Sundt (1979, 1980) who 
sets up a framework involving an observable vector , in 
which the q components represent the q levels of the hierarchy.  Latent 
parameters  are associated with the different levels of the hierarchy. 

1 ,...,
TT T

qY Y Y⎡ ⎤= ⎣ ⎦

1,..., qθ θ
 
A slightly simplified version of Sundt’s assumptions, sufficient for present 
purposes, is as follows: 
 
(i) Yj and  are conditionally independent given kθ 1,..., jθ θ  if k > j. 

(ii)  and (  are conditionally independent given ( )1 ,...,
TT T

jY Y )1,...,
TT T

j qY Y+

1,..., jθ θ , j = 1, …, q – 1. 

(iii) ( )1 1| ,..., ,..., , 1, 2,...j j j j jE Y X jθ θ β θ θ⎡ ⎤ =⎣ ⎦ q=  (6.1) 
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for non-stochastic matrix jX and vector function , ( ).jβ

(iv)  (6.2) ( ) ( )1 1 1 1 1 1,..., | ,..., ,..., , 2,...,j j j j jE jβ θ θ θ θ β θ θ− − −
⎡ ⎤ =⎣ ⎦ q=

and 
( )1 1 0E β θ β=⎡ ⎤⎣ ⎦  (6.3) 

 
Condition (i) is actually stronger than Sundt, who assumed only that Yj and  
were unconditionally independent. 

kθ

 
Let 
 

( )
( )

1 1 1

1 1

,..., | ,..., , 2,...,

 for 1

j j j jG EVar j q

Var j

β θ θ θ θ

β θ
−

⎡ ⎤= =⎣ ⎦
= =⎡ ⎤⎣ ⎦

 (6.4) 

 
where the expectation operator is tacitly assumed taken over all conditioning 
variables of its operand. 
 
Similarly, let 
 

1| ,..., , 1,...,j j jW EVar Y jθ θ⎡ ⎤= ⎣ ⎦ q=

q=

 (6.5) 
 
Define 
 

( ) ,..., , 1,...,
TT T

j qjY Y Y j⎡ ⎤= ⎣ ⎦  (6.6) 

( ) ,..., , 1,...,
TT T

j qjX X X j⎡ ⎤= ⎣ ⎦ q=

q=

q

−

 (6.7) 

( ) ( ) 1| ,..., , 1,...,jj jW EVar Y jθ θ⎡ ⎤= ⎣ ⎦  (6.8) 

( ) ( )

( )

1 1

1

| ,..., , 2,...,

 for 1

jj jN EVar Y j

Var Y j

θ θ −
⎡ ⎤= =⎣ ⎦

⎡ ⎤= =⎣ ⎦

 (6.9) 

 
Then  and  may be calculated recursively as follows (Sundt, 1980): ( )jW ( )jN
 

( )

( )1

 for 

0
, 1, 2,...,10

jj

j

j

W W j q

W
j q qN +

= =

⎡ ⎤
= = −⎢ ⎥
⎢ ⎥⎣ ⎦

 (6.10) 

 

( ) ( ) ( ) ( ) , , 1,...,1T
jj j j jN W X G X j q q= + = −  (6.11) 
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Finally the credibility estimator of ( )1 1,..., | ,...,j jE β θ θ θ θ −1j
⎡ ⎤⎣ ⎦  based on data Y 

(ie least squares estimator, linear in Y), denoted jβ% , is calculated recursively 
as follows (Sundt, 1980). 
 
Define 
 

( ) ( ) ( )
1T

j j j j jM G X W X−=  (6.12) 

( 1
1j j jZ M M

−
= + )

1

 (6.13) 

( ) ( ) ( ) ( ) ( ) ( )
1

1ˆ T T
j j j j j j jX N X X N Yβ

−
−⎡ ⎤= ⎣ ⎦

−

1j

 (6.14) 

 
which may be recognized as a generalised least squares regression estimator of 

. ( )1 1,..., | ,...,j jE β θ θ θ θ −
⎡ ⎤⎣ ⎦

 
Then 
 

( ) 1
ˆ1 , 1, 2,...,j j j j jZ Z jβ β β−= − + =% % q  (6.15) 

 
with 0 0β β=% . 
 
It is of interest to consider the special case in which the covariance matrices Gj 
and Wj are independent of 1,..., jθ θ  and are known up to scaling constants, and 
the relation between the different Wj also known: 
 

2 ,j j j jG G W Wτ= = 2
jσ  (6.16) 

 
where jG  and jW  are known and  and  are to be estimated from data. 2

jτ 2σ
 
Define 
 

( ) ( ) ( ) ( )
2/ , /j j j jW W N Nσ= = 2σ  (6.17) 

 
It may be checked from (6.10) and (6.11) that  
 

( )

( )1

,

0
, 1, 2,...,1

0

jj

j

j

W W j q

W
j q q

N +

= =

⎡ ⎤
= = −⎢ ⎥
⎢ ⎥⎣ ⎦

−
 (6.18) 

 

( ) ( ) ( ) ( ) , , 1,...,1T
j jj j j jN W X G X j q qν= + = −  (6.19) 

 
where 
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2 /j j
2ν τ σ=  (6.20) 

 
By (6.12), (6.17) and (6.20), 
 

( ) ( ) ( )
1T

j j j j j jM G X W Xν −=  (6.21) 
 
and (6.13) then yields Zj in a form parallel to (4.2) with the jν  now referred to 
as the credibility parameters in parallel with ν  in (4.3). 
 

6.2 Estimation of the credibility parameters 
 
The credibility parameters of the hierarchical regression model may be 
estimated by the approach established in Sections 4 and 5.  the details of the 
application will depend on the parametric details of the model.  An example 
follows. 
 
Begin with the regression 
 

( )1,...,j j j j jY X β θ θ ε= +  (6.22) 
 
where, by (6.1), (6.8) and (6.16),  
 

0jE ε⎡ ⎤ =⎣ ⎦  (6.23) 
 
Example 6.1.  Consider the model defined in Section 6.1, and note that, for j = 
fixed k, the required credibility parameter kν  arises from  and .  If the 
former is set to zero, then (6.4) and (6.16) imply that 

2
kτ 2σ

 
( )1 1,..., | ,..., 0k k KVar β θ θ θ θ =⎡⎣ ⎤⎦

)1k −

=

⎦

 (6.24) 
 
and so, by (6.2), 
 

( ) (1 1 1,..., ,...,k k kβ θ θ β θ θ−=  (6.25) 
 
By (6.1), (6.2), (6.6) and (6.7), 
 

( ) ( ) ( )1 1| ,..., ,..., , 1, 2,...,j j jj jE Y X j qθ θ β θ θ⎡ ⎤ =⎣ ⎦  (6.26) 
 
By (6.1) with j = k – 1 and (6.26) with j = k, 
 

( )

( )
( ) ( )

( )

( )

1 1 1 1 1 1 1

1 1

1 1 1

1

| ,..., ,...,
| ,..., ,...,

,...,
0

k k k k k

k k kk k

k k k k

k k

Y X
E Y X

X X
X

θ θ β θ θ
θ θ β θ θ

β θ θ
η

− − − − −

− −

−

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣
−⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 (6.27) 
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where 
 

( ) (1 1 1 1,..., ,...,k k k k kη β θ θ β θ θ− −= − )1−  (6.28) 
 
Let Model 1 denote (6.27), and Model 0 denote the same subject to (6.25), ie 
with 1 0kη − = .  The situation is now parallel to Example 3.2, with  
 

( )
( )

1 1
0 1 ,

0
k k

k
k

X X
X X XX

− −
+−

⎡ ⎤ −⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 (6.29) 

 
Then 2 /k k

2ν τ σ=  is estimated by (4.30).  The detail is as follows.  First note 
that, by condition (i) of the hierarchical regression model, Yk-1 and  are 
conditionally independent given , and it then follows that 

 and  are equal in distribution.  Then (6.27) 
becomes 

kθ

1,..., kθ θ −1

k1 1 1| ,...,k kY θ θ− − 1 1| ,...,kY θ θ−

 

( ) ( )

( )1 1 1 1
1

1

,...,
,..., 0

k k k k
k

k k k

Y X X
E Y X

β θ θ
θ θ

η
− − −

−

⎡ ⎤ −⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

 (6.30) 

 
In the notation associated with (4.32),  
 

[ ] ( )1 1 1 1 1 1| ,..., ,..., | ,...,k k k kG Var Varη θ θ β θ θ θ θ+ − −= = k −⎡ ⎤⎣ ⎦  (6.31) 
 

( )

1
1,...,

k
k

k

Y
W Var Y θ θ−⎡ ⎤

= ⎢
⎢ ⎥⎣ ⎦

⎥

1k− −=⎤⎦

 (6.32) 

 
Now consider the special case in which the covariance matrices in (6.31) and 
(6.32) do not depend on the conditioning parameters shown.  Then they may 
be written as 
 

( )1 1 1,..., | ,...,k k kG EVar Gβ θ θ θ θ+ = ⎡⎣  (6.33) 
 

( ) ( )

1 1
1

0
,..., 0

k k
k

k k

Y W
W EVar Y θ θ− −⎡ ⎤

W
⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 (6.34) 

 
where the entries in the matrix are justified as follows.  The bottom right entry 
follows directly from (6.8).  The top left follows from (6.5) and the fact that 

 and  are equal in distribution.  The off-diagonal 
zeros are justified by observing that  and  are 

independent, by condition (ii) of the model.  Also  and 
 are independent, from condition (i).  It follows that  

and  are independent.  This is just an application of the general 

1 1 1| ,...,k kY θ θ− − 1 1| ,...,kY θ θ− k

1k

1 1 1| ,...,k kY θ θ− − ( ) 1 1| ,..., kkY θ θ −

1 1 1| ,...,k kY θ θ− −

1| ,...,kθ θ θ − 1 1| ,...,k kY θ θ−

( ) 1| ,..., kkY θ θ
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result that independence of U|A and V|A, and of U|A and B|A, implies 
independence of U|AB and V|AB, whose proof is left to the reader. 
 
The credibility parameter kν  is now estimated by ˆkν  given by (4.30).   
 

7. Conclusion 
 
Traditionally, credibility coefficients have been estimated by manipulation of 
squared error terms of some sort.  The manipulations have been ad hoc, and 
each new credibility model has required a new exercise in estimation. 
 
This paper has developed an estimate of a credibility coefficient on the basis of 
an analysis of variance for the testing of one regression model against another.  
The credibility coefficient is expressed in terms of the F test statistic. 
 
Sections 4 and 6 give examples of the procedure’s application.  Some of these, 
especially Example 6.2, are complex, and the ad hoc algebra involved in 
manipulating squared error terms in order to arrive at estimators for the 
credibility coefficients would be laborious and possibly error-prone. 
 
The suggested procedure reduces this to an algorithm once null and alternative 
hypotheses have been formulated. 
 
Further, as pointed out in Section 5, the reduction of the estimation to 
hypothesis testing of regression models means that the required F-statistic may 
be computed by standard regression software. 
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