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SOME COMMENTS ON THE COMPOUND BINOMIAL MODEL
by David C M Dickson
Abstract

We present some results for ruin probabilities in a discrete time risk model and show
how these can be used to find explicit results for ruin probabilities in a compound
binomial model with geometric individual claim amounts. We also show how ruin
probabilities for the classical continuous time compound Poisson model can be
approximated by ruin probabilities for a compound binomial model.

1. Introduction

Gerber [1988] presented some results for the compound binomial model which were
analogues of results for the classical continuous time compound Poisson model. These
results were further discussed by Shiu [1989]. Willmot [1992] presented some explicit
results for ultimate ruin probabilities for the compound binomial model.

In this note we derive results for the compound binomial model using some very
elementary methods. In particolar we present results for a binomial claim
numbers/geometric claim amounts model which correspond to results for the classical
continuous time Poisson/exponential model. We also consider the special case when
the initial surplus is zero, and show that under certain conditions it is easy to find ruin
probabilities. In the final section we consider the conditions under which ultimate ruin
probabilities for a compound binomial model give good approximations to ultimate
ruin probabilities in the classical continuous time compound Poisson model.

We start by considering some basic results for a general discrete time risk model.

2. A Discrete Time Risk Model

We will consider a risk model with the following characteristics:

(@) X, denotes the aggregate claim amount in the i-th time interval;

(®) {X}Z is a sequence of independent and identically distributed random variables,
each distributed on the non-negative integers; ' N

(c) the insurer's premium income per unit time is 1;

(d EX)<l.

We will assume throughout that the insurer's initial surplus , denoted u, is an' integer.
The insurer's surplus at time ¢ (¢ = 1,2,3,...) is denoted Z(z) and given by




ZO=u+t-Y X,

i=1

The ultimate ruin probability for this model is defined by

y(u)=Pr{Z(s) <0 for some ¢, t=1,2,3,... | Z(0) = u]

This definition corresponds to that given by Gerber [1988] but differs from that used
by Shin [1989] and Willmot [1992]. The survival probability is denoted O(u)
and d8(u)=1-wy(u).

We denote by b(k) and B(k) respectively the probability function and distribution
function of X,

3. General Results
Result 1: Foru = 1,2,3,...

u-1

8(u)=8(0)+ Y, 8(u—k)[1- B(k)]

k=0
Proof: By considering the possible aggregate claim amounts in the first time period we
have that
8(0) = b(0)3(1)
and for u = 2,3,4,...

w1
8(u~1)=b(0)3(w) + Y, 8(j)b(u- j) (3.1
j=1
Hence, foru = 2,3,4,...
u=1 u u k-1
Y. 3(k)=b(0)Y,5(k)+ Y, Y, 8(j)bk - j)
k=0 k=1 k=2 j=1

u-1

=b(O)ga(mg}a(k)[Bcu—k)—b(on
u-1

=b(0)3(u)+ Y, 8(k)B(u—k)
k=1

b(0)3() =d(0)+ ﬁ S(k)[1-B(u-k)}
k=1
u-1

=8(u—-1)-Y 8(k)bu—k) (by (3.1))
k=1

u~1

so that d(u—1)=38(0)+ ZS(k)[l -B(k—-1-k)] foru=2,3,4,..., orequivalently,
k=1

3.2)




()= 8(0)+i8(k)[1 -B(u-k)] for u=12,3,...

k=1
which is the same as the stated result.

Result 2: The ruin probability from initial surplus zero is given by
w(0)= 2[1 B(y)] -2‘, yb(y) (3.3)

y=1

Proof: For y=0,1,2,... define g( 0,y) to be the probability that ruin occurs from initial
surplus zero and that the deficit at the time of ruin is y. Note that when the initial
surplus is u (>0), g(0,y) can be interpreted as the probability that the surplus falls
below its initial level for the first time and by amount y. (When y =0, g(0,y) gives the
probability that the surplus returns to its initial level for the first time without
previously having been below its initial level.) Using this interpretation we can write

5u)=8(0)+ 3 2(0,u~y)8(y) (3.4)
y=1

The first term on the right hand side gives the probability that the surplus never falls
below its initial level. For a fixed value of y (<u), g(0,u—y)d(y) gives the probability
that the surplus falls below its initial level for the first time to y and that survival occurs
from surplus level y. (A similar interpretation applies when y=u.) Summing over y
gives the probability that survival occurs and that the surplus process has not always
been above its initial level.

By (3.2) we also have

8<u)=8(0)+i6<y)[1—3<u—y)]

Since equations (3.2) and (3.4) hold for u=1,2,3,..., it follows that g(O y)=1-B(y).
Equation (3.3) follows since

¥(0) = ¢(0,)
y=0

If we write the premiuni income (of 1) as (1+0)E(X,), then
y(0)=1/(1+6) 3.5
as in the classical continuous time model.

4. The Binomial/Geometric Model

In this section we assume that the distribution of aggregate claims per unit time is
compound binomial. Following the notation of Gerber [1988], the distribution of the
number of claims per unit time is binomial with parameters 1 and p. Let the individual




claim amount distribution be geometric with distribution function P(x) and probability
function
p(x)=(1-a)o* for x=1,2,3,...
" Then
B(k)=1-po* for k=0,1,2,...
Since we have assumed that E(X;)<1, the parameters p and o must be such that
pl(l-a)<l.

We can rewrite equation (3.2) as
W)= y(0)- ¥ -y (®T1- Bu—k)]
and inserting for y(0) we have -
Y = gw)u - Bu-0)]+ 3 [1-B®)]

k=u
The continuous time compound Poisson analogue of this equation can be found in, for
example, Gerber [1979]. '
Now insert for B(k) to find that

v =Y yper* + 3 pot
k=1 ' k=u

4.1)
and
u+l el
Y+ =Y yEkpa~*+ Y pat 4.2)
k=1 k=u+l

If we multiply (4.1) by o, subtract from (4.2) and rearrange we find that

Yu+) 72w =0

The solution to this difference equation is
a Yy,
v =c(—=)
1-p

from which it follows that ¢ =y(0). In fact, we can write y(u) = y(0)exp{—Ru},
where R is the adjustment coefficient for this process. R is the unique positive number
satisfying

Efexp{R(X, - D} =1

and it is an elementary exercise to show that for this model exp{R}=(1— p)/o.. Thus
we have a complete analogy with the form of the ruin probability for the
Poisson/exponential model which can be written in exactly the same way. (See, for
example, Gerber [1979].) We note that this solution matches that given by Willmot
[1992] for &(u), allowing for different definitions of ruin/survival.




We can extend the analogy to the severity of ruin as well. Define the (discrete) time of

ruin, T, by
T=min{r:Z(r)<0, t=12,3,...}

= if Z(t)>0 for t=1,2,3,...

and define the severity of ruin function G(w,y) for u=0,1,2,... and y=1,2,3,... by

G(u,y) =Pr[T < s and Z(T) > —y | Z(0) = u]

Thus G(u,y) represents the probability that ruin occurs and that the deficit at the time
of ruin is at most y —1. We can use the function g(0,y) to write down an equation for

G(u,y) by considering the first occasion on which the surplus falls below (or returns to
without previously having been below) its initial level. We have

u+y-1

u—1
Gw,y)= Y, g(0,k)+Y, g(0,k)Gu—k,y)
k=0

k=u
u+y-1 u

= Y, 2(0,k)+Y,2(0,u-k)G(k,y)
k=u

k=1

Now insert g(0,k) =1- B(k) = pa* to give

" uty-1

Gu,y)= Y, pa"+2"‘, po**G(k,y)
k=1

k=u
and
uty ud+l
G(u+1y)= Y, pa*+ po™*G(k,y)

k=u+l =]

Using the same technique as before we find that

G(u+1,y)-

% Gu,y)=0
1-p

and hence
G(u,y) = G(0, y)(==-)*
1-p

Finally

—ry?
107 for y=1,2,3,...
1-o

y-1 y-1
G(0,y)=).8(0,k)= Y po* =p
k=0 k=0

and so we can write

=(1-a”) =2 (- %y =
Gu,y)=( a)l—a(l-p) P(y)y(u)




Thus the form of G(u,y) is identical to that for the Poisson/exponential model. (See, for
example, Dickson [1992].) However, unlike the Poisson/exponential model, the
distribution of the deficit at the time of ruin is not identical to the individual claim
amount distribution. The deficit is geometrically distributed with parameter 1-a, but
on 0,1,2,... , since G(u,y)/ w(u) gives the probability that the deficit is less than or
equal to y -1, given that ruin occurs, and so

Pri-Z(T)<y|[T < and Z(0)=ul=1-o* for y=0,1,2,...

5. Results when u=0

Let us now consider the special case when the initial surplus is zero. We will show that
under certain conditions it is trivial to find the joint distribution of the surplus prior to
ruin and the deficit at ruin. We define a new function f(u,x,y) for x=1,2,3,... and

y=0,1,2,... as follows:

flu,x,y)=Pt[T<e and Z(T)=-y and Z(T~1)=x|Z(0)=u]

Thus f(u,x,y) gives the probability that ruin occurs from initial surplus u, with a
deficit of y at the time of ruin and a surplus of x one time unit prior to ruin. (When
u=0, the function is defined for x=0,1,2,... , and f(0,0,y) simply gives the probability
that ruin occurs at time 1 with a deficit of y at ruin. Thus £(0,0,y) =b(y+1).)
By considering the possible aggregate claim amounts in the first time period we can
write

flu,x,y)= ib(j)f(u+1-—j,x,y) when u=0,12,...,.x-Lx+1,...

=0 :
and
o fu,x,y)= zu:b(j)f(u+l—j,x,y) + b(x+y+1) when u=x

=0

Assuming that
Y flux,y) <o (5.1)
w=0

we have that

if(u,x,y) =i2u:b(j)f(u+1—j,x,y) + b(x+y+1)
u=0

w=0 j=0
=if(",x,)’)ib(j) + b(x+y+1)
u=l j=0
Hence |
£O,x,y)=b(x+y+1) 52)




As an immediate consequence of this we have that

y1 o y-1
G(0,y)=Y.Y b(x+j+1)=Y [1-B(j)]
J=0 x=0 =0
as before, and
w(0)=Y [1-B()]
=0
Similarly
x~] oo x=1
Pr{T <o and Z(t-1)<x-11Z(0)=0] = 3. Y b(j+y+1) = 3 [1-B(j)l=G(0,x)
Jj=0 y=0 =0

Let us again consider the binomial/geometric model. We have already noted that the
deficit at the time of ruin is geometrically distributed on 0,1,2,... with parameter 1-c,
and by (5.3) the distribution of the surplus at time 7 -1 is the same. The conditional
probability function of the deficit at T and of the surplus at 71, conditioning on the
event that ruin occurs, is

g(0,x)=(1-a)o*, x=0,12,...

If we consider the conditional distribution of the surplus one time unit before ruin and
of the deficit at ruin (conditioning on the event that ruin occurs), and again use a tilde
to denote a conditional probability, then

- _bGx+y+D _p(l-o)o™ _ - -
f(o,x,)’) - \V(O) p/(l—a) g(oax)g(()’y)

so that, conditionally, the surplus one time unit before ruin and the deficit at ruin are
independent and identically distributed. This situation also exists in the
Poisson/exponential model where the surplus prior to ruin and deficit at ruin are
independent, identically distributed exponential variables, and the conditional
distribution of the claim causing ruin is gamma with shape parameter 2.

Finally, if we define the (conditional) probability function of the claim causing ruin as
h(0,z) for z=1,2,3,... then

z-1 2-1

h(0,2)= Y, f(0,x,z-x-1) =Y (1-)’a*’ =z(1-0)*a*”
x=0 x=0

The (conditional) distribution of the claim causing ruin is thus negative binomial with
parameters 2 and 1- o, shifted one unit to the right.

(5.3)




We have not discussed the conditions under which (5.1) holds. The most obvious
situation when (5.1) holds is when Lundberg's inequality applies. Formula (5.2) does
however hold when the sum in (5.1) is infinite. This can be shown by the methods in
Dickson [1992, Section 5].

6. Calculation of Ruin Probabilities

Gerber [1988] states that the compound binomial model can be used to approximate
the continuous time compound Poisson model. In this section we investigate this
statement by considering ultimate ruin probabilities.

To calculate ruin probabilities, we will adapt the framework described by Dickson and

Waters [1991, Sections 1 and 8] who use a discrete time compound Poisson model to

approximate a classical continuous time compound Poisson model under which both

the Poisson parameter and mean individual claim amount are 1. The characteristics of

this model are as follows:

(a) individual claim amounts are distributed on the non-negative integers with mean
B, where B (>1) is an integer;

(b) the Poisson parameter for the expected number of claims per unit time is
1/[(1+0)B];

(c) the premium income per unit time is 1.

We will replace this discrete compound Poisson model by a compound binomial model.
We simply change (b), replacing the Poisson distribution by a binomial distribution
with parameters 1 and 1/[(1+0)B]. For reasons given by Dickson and Waters [1991,
Section 1] we can regard y(Bu) as an approximation to the y,(u), the ultimate ruin
probability for the continuous compound Poisson model. In effect all we are doing is
approximating a discrete compound Poisson model (which approximates a continuous
compound Poisson model) by a compound binomial model. The approximation to the
discrete compound Poisson model is reasonable for large values of B, since the Poisson
distribution with parameter 1/[(1+0)B] is then very close to the approximating
binomial distribution. For example, if =100 and 6 = 0.1, then the probability of more
than one claim per unit time under the compound Poisson model is 0.00004. Note that
there is one small difference between this formulation of the compound binomial model
and that used by previous authors. In this formulation, individual claim amounts are
distributed on the non-negative integers rather than the positive integers. The reason
for this is simply that in order to approximate ruin probabilities in the classical
continuous time compound Poisson model, we have to discretize the continuous




individual claim amount distribution in that model. In our first two examples, we will
use the discretization proposed by De Vylder and Goovaerts [1988].

We will calculate ruin probabilities recursively from the formulae
v(1) =b(0)"[w(0)~1+ B(0)]
and for u =2,3,4,...
u-1
W)= b0y [Wwu-1)-1+Bu-1)- Y, b(j)yu—j)]
j=1

These formulae are generalisations of Gerber's [1988] formulae (5) and (6). In each of
the following examples the premium loading factor, 0, is 10%.

Example 1: Let the individual claim amount distribution in the continuous time model
be exponential (with mean 1). Then it is well known (see, for example, Gerber [1979])
that

v, (u)= ]_:—e exp(-R.u) where R =60/(1+60)

Table 1 shows exact and approximate values of W, (x). The approximate values are
calculated from (3.5), (6.1) and (6.2). The legend for this table is as follows:

(1) denotes the exact value of y, (u)

(2) denotes the approximate value when B=50

(3) denotes the ratio of the value in (2) to that in (1)

(4) denotes the approximate value when B=100

(5) denotes the ratio of the value in (4) to that in (1)

(6) denotes the approximate value when B=200

(7) denotes the ratio of the value in (6) to that in (1)

Table 1 (See Example 1 for details)

(1) 2) A3 4 &) (6 )
u=0 | 09091 0.9091 1.0000 0.9091 1.0000 0.9091 1.0000

u=2 | 07580 0.7567 09983 0.7573 09992 0.7576 0.9996
u=4 | 06319 0.6299 09967 0.6309 09983 0.6314 0.9992
u=6 | 05269 0.5243 09950 0.5256 0.9975 0.5262 0.9988
u= 0.4393 04364 09934 04378 09967 04386 0.9983
u=10| 03663 03632 0.9917 03647 09959 0.3655 0.9979
u=201 0-1476 0.1451 0.9835 0.1463 0.9917 0.1470 0.9959
u=40 | 00240 0.0232 0.9673 0.0236 09836 0.0238 0.9918
=80 | 0-0006 0.0006 0.9357 0.0006 0.9674 0.0006 0.9836
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We note the following points about Table 1:

(a) When u > 0, the approximate values are less than the exact ones. This is to be
expected since the compound binomial model excludes the possibility of multiple
claims per unit time.

(b) As the value of B increases, the approximate values become closer to the exact
ones. This is as expected for reasons given by Dickson and Waters [1991, Section
2].

(c) The larger the value of u, the poorer the approximation becomes.

(d) Even with a large value of B, the approximate values do not always agree with the
exact values to four decimal places.

Example 2: Let the individual claim amount distribution in the continuous time model
be Pareto with parameters 2 and 1. Table 2 shows exact and approximate values of
v, (u). (The exact values have been calculated using Dickson and Waters' [1991]
algorithm and are "exact" at least to three decimal places.) The legend for Table 2 is
the same as for Table 1. The only additional comment that we would make about Table
2 is that, for the same magnitude of ruin probability, the approximate values are slightly
closer to the exact values than in Example 1.

In previous sections we have discussed the binomial/geometric model as the discrete
analogue of the Poisson/exponential model. In Example 3 we illustrate how ruin
probabilities for the binomial/geometric model can be used to approximate those for
the Poisson/exponential model. We have included this example purely for interest as
the approach does not generalise to other compound Poisson models.

Table 2 (See Example 2 for details)

¢)) ) (&) I C)) &) 6 @)
u=0 | 09091 0.9091 1.0000 0.9091 1.0000 0.9091 1.0000

u=a | 08102 08097 09994 08100 09997 08101 09998
u=a | 07498 07491 09991 07494 09996 07496 0.9998
u=6 | 07021 07014 09990 07018 09995 07020 0.9997
u=g | 06620 0.6613 09989 0.6617 09994 0.6619 0.9997
u=10 | 06271 0.6264 09988 06267 09994 0.6269 0.9997
u=20 | 04981 04974 09985 04978 09992 04980 0.9996
u=q0 | 03479 03473 09982 03476 09991 03477  0.9995
=80 | 02040 02036 09981 02038 09990 02039 0.9995

11




Example 3: We will use the same framework as in Examples 1 and 2, but will
discretize the exponential individual claim amount distribution as a geometric
distribution with mean B. This discretization is a reasonable one for large values of
since when B is large

P(x)=1-(1-B")* =1—-exp{-x/PB} for x=0,1,2,...

As noted in Section 4, for the geometric individual claim amount distribution,

1 (1+6)p-1
= — -R here R=log (—Fr——
V(B =15 exp(-RBu) where R=log. (7 T0)(B-1)
It is easy to show that
0
Boe | 140

so that for large values of B, w(Bu) should give a good approximation to s, (u).
Figure 1 shows the function PR (when 6 is 10%) and Table 3 shows exact and
approximate values of y_(u). The legend for Table 3 is as follows:

(1) denotes the exact value of v, (u)

(2) denotes the approximate value when f=100

(3) denotes the ratio of the value in (2) to that in (1)

(4) denotes the approximate value when B=1,000

(5) denotes the ratio of the value in (4) to that in (1)

(6) denotes the approximate value when $=10,000

(7) denotes the ratio of the value in (6) to that in (1)

Table 3 shows the same features as Tables 1 and 2. The great advantage of using the
geometric discretization is that approximate values for y, () can be calculated from a
formula. This allows us to use very large values for B, and shows that even with a large
value of B (i.e. 10,000) the approximate values do not all match the exact ones to four
decimal places. By contrast, if b(x) and B(x) in (6.1) and (6.2) are values from a
compound Poisson distribution, then a relatively small value of B produces the same
degree of accuracy. (See, for example, Dickson and Waters [1991, Table 5].)

We conclude that it is possible to successfully approximate ruin probabilities for the

classical continuous time compound Poisson model by those for a compound binomial
model. The main advantage in using the compound binomial model is that it is not

12




necessary to perform recursive calculations to find the probabﬂify function b(x) to use
formulae (6.1) and (6.2). However, this advantage is outweighed by the fact that a

large value of B is required when using the compound binomial model in order to
obtain a good approximation to y_(u).

0.6955
0.095 -
0.0945 -
0.094 -
0.0935 -
0.093 4
0.0925 4
0.092 -
0.0915 4
0.091 -
0.0905 T T T L T T T T
0 100 200 300 400 500 600 700 800 900
Figure 1
Table 3 (See Example 3 for details)

0)) 2) 3) 4@ (5) © ¢))
u=0 | 0.9091 09091 1.0000 09091 1.0000 0.9091 1.0000
u=2 | 0.7580 0.7566 0.9982 0.7578 09998 0.7579 1.0000
u=4 | 06319 06297 09965 06317 09997 0.6319 1.0000
u= 0.5269 0.5241 0.9948 0.5266 0.9995 0.5269 0.9999
u=8 | 04393 04362 09930 04390 09993 04393 0.9999
u=10] 0.3663 0.3631 0.9913 03659 09991 0.3662 0.9999
u=20 | 0.1476 0.1450 09826 0.1473 0.9983 0.1475 0.9998
u=40| 0.0240 0.0231 0.9656 0.0239 0.9965 0.0239 0.9997
u=80 ] 0.0006 0.0006 0.9323 0.0006 0.9931 0.0006 0.9993
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