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RUIN PROBLEMS: SIMULATION OR CALCULATION?
| by David C M Dickson and Howard R Waters

Summary

In this paper we use a case study of a non-life insurance portfolio to demonstrate
how recent research in ruin theory can be applied to solvency problems. We also
discuss some advantages and disadvantages of simulation as a means of assessing
ruin probabilities.

1. Introduction

This paper is concerned with Ruin Theory and, in particular, the calculation/
estimation of the probability of ruin. It is based on a case study of the solvency
of a non-life insurance portfolio using data from a Danish insurance company.
This paper has two purposes:

1. to demonstrate how some recent research in Ruin Theory can be applied in
a useful way, and,

2. to discuss some advantages/disadvantages of simulation as a methodology
for assessing the probability of ruin.

Ruin Theory has been an area of study for actuaries (and mathematicians) for
many decades. A glance at the Contents pages of actuarial research journals, for
example the ASTIN Bulletin, shows that interest in this area remains as strong
as ever. However, while the literature on Ruin Theory continues to grow and
while the mathematics becomes ever more elegant, Ruin Theory does attract
some negative comments. These range from the relatively lighthearted:
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. ruin theory, a topic about which it has been said that never have so
many people written so much about such a small probability.” Sundt [1993,
pl04]

to the more serious:

“While ... (ruin) theory is well developed and well known, there are a
number of respects in which it lacks realism to a point which militates

against its practical use without substantial modification.” Taylor and
Buchanan [1988, p64].



U(t)=Ut—1)x (1 +is) + P — X (2.1)

and U(0) = U. Our problem is to estimate the probability of ruin ¥(U,10),
defined by: '

¥(U,10) = P(U(t) < 0 for some t, t =1,2,...,10)

Comments on the assumptions

1.

Our model assumes aggregate claims in different years are independent of
each other. This agrees with Ramlau-Hansen’s model.

. Our model assumes a degree of stationarity - aggregate claims in different

years are identically distributed and the premium income is unchanged from
year to year. These assumptions have been made to simplify the presenta-
tion. However, our analysis in the following sections could quite easily be
extended to some situations where the claim number distribution and/or
the premium income changed either deterministically or stochastically from
year to year.

In common with most classical risk theory models, our model assumes
claims are paid without delay. However, this is not too unreasonable for
the portfolio we are considering since Ramlau-Hansen ([1988a, pp8-9] and
[1986, Table 4]) shows that the vast majority of glass and fire claims are
reported in the calendar year of occurrence.

. It can be seen from our recurrence relation for U(t) that in each year we

assume interest is earned on the capital at the start of the year but not
on the premium income for the year (or the claims outgo). There would
be no extra difficulties in the following sections if we were to assume that
premiums were paid at the start of the year (and so earned a whole year’s
interest) or that claims and/or premiums were paid in the middle of the
year, for instance.

. We have used Wilkie’s model for the rates of return i, for two reasons.

Firstly, it is commonly used in the literature. Secondly, it is difficult to
handle analytically and most applications in which it is used are based
solely on simulation. Although the i;’s are modelled as the rates of return
on equities, we do not suggest equities would necessarily be a suitable type
of investment for the portfolio we are considering! One advantage (for our
purposes) of using this particular model is that the means and standard
deviations of the i;’s are relatively large. (This point will be relevant in
section 5.) We have used Wilkie’s Reduced Standard Basis for his model
and ij is the annual rate of return ten years after starting the model from



neutral starting values. See Wilkie [1986] for details. This means that, for
example, on the basis of 1, 000 simulations:

Efi,] = 13.8%  StDev[i,] = 30.2%
E[ilo] = 141% StDev[iw] = 29.5%

Note that the i;’s are neither independent nor identically distributed.

6. An important point to note is that our model uses a translated gamma
distribution, fitted by moments, to approximate a compound Poisson dis-
tribution for the aggregate claims in one year. Recent research (Dickson
and Waters [1993] and [1994]) has shown that this type of approximation
can give values for the probability of ruin (in both finite and infinite time)
which are very close to the exact values.

3. A Simulation Approach to the Problem

Simulation is an approach that has often been applied in the past to ruin prob-
lems. This is not surprising as the simulation approach to estimating the proba-
bility of ruin is a simple one. To estimate the probability of ruin for the process
described in the previous section we will follow the procedure described by Seal
[1969]. All we have to do is simulate a large number of realisations, say n, of the
process, and count the number which result in ruin according to our definition.
If this latter number is I, then our estimate of the probability of ruin is {/n.

Formally, let n denote the number of realisations of the surplus process that
we simulate, and let L denote the number which result in ruin. Then L ~ B(n, ),
where 3 = (U, 10) is the true (unknown) probability of ruin for this risk process.
Our estimate of ¥ is ¥ = L/n. Assuming that n is large, the distribution of
L is approximately normal, and hence the distribution of % is approximately

N(¥,¥(1 - 9)/n).

It is particularly easy to simulate realisations of our risk process. In formula
(2.1) we must input values of i; whose simulation requires values of standard
normal variables, and values of X; whose simulation requires values from a gamma
distribution. Values from each of these distributions are produced by standard
computer libraries such as IMSL or NAG. Successive values of the surplus process
can then be calculated from formula (2.1), and hence we can determine whether
or not ruin occurs for each simulated realisation of the process.

Table 1 shows estimates of (U, 10) for U = 0,10, 20,...,100 with premium
loading factors 8 = 0,0.05,0.1,...,0.25 when n = 1,000. Also shown are estimates
of the standard error of ¥ when 1/) is non-zero. The estimated standard error is
calculated as ((1 — v)/1,000)V/2,

Two obvious questions we can ask about simulation as a means of estimating
P are:



U@t)=U(t—1) x (1 +is) + P - X, (2.1)

and U(0) = U. Our problem is to estimate the probability of ruin (U, 10),
defined by:

¥(U,10) = P(U(t) < 0 for some ¢, t =1,2,...,10)

Comments on the assumptions

1.

Our model assumes aggregate claims in different years are independent of
each other. This agrees with Ramlau-Hansen’s model.

Our model assumes a degree of stationarity - aggregate claims in different
years are identically distributed and the premium income is unchanged from
year to year. These assumptions have been made to simplify the presenta-
tion. However, our analysis in the following sections could quite easily be
extended to some situations where the claim number distribution and/or
the premium income changed either deterministically or stochastically from
year to year.

. In common with most classical risk theory models, our model assumes

claims are paid without delay. However, this is not too unreasonable for
the portfolio we are considering since Ramlau-Hansen ([1988a, pp8-9] and
[1986, Table 4]) shows that the vast majority of glass and fire claims are
reported in the calendar year of occurrence.

. It can be seen from our recurrence relation for U(t) that in each year we

assume interest is earned on the capital at the start of the year but not
on the premium income for the year (or the claims outgo). There would
be no extra difficulties in the following sections if we were to assume that
premiums were paid at the start of the year (and so earned a whole year’s
interest) or that claims and/or premiums were paid in the middle of the
year, for instance.

. We have used Wilkie’s model for the rates of return i; for two reasons.

Firstly, it is commonly used in the literature. Secondly, it is difficult to
handle analytically and most applications in which it is used are based
solely on simulation. Although the i,’s are modelled as the rates of return
on equities, we do not suggest equities would necessarily be a suitable type
of investment for the portfolio we are considering! One advantage (for our
purposes) of using this particular model is that the means and standard
deviations of the i;’s are relatively large. (This point will be relevant in
section 5.) We have used Wilkie’s Reduced Standard Basis for his model
and i, is the annual rate of return ten years after starting the model from



neutral starting values. See Wilkie [1986] for details. This means that, for
example, on the basis of 1,000 simulations:

Efi)) = 13.8%  StDev[i,] = 30.2%
E[im] = 141% StDeV[ilo] = 295%

Note that the i;’s are neither independent nor identically distributed.

6. An important point to note is that our model uses a translated gamma
distribution, fitted by moments, to approximate a compound Poisson dis-
tribution for the aggregate claims in one year. Recent research (Dickson
and Waters [1993] and [1994]) has shown that this type of approximation
‘can give values for the probability of ruin (in both finite and infinite time)
which are very close to the exact values.

3. A Simulation Approach to the Problem

Simulation is an approach that has often been applied in the past to ruin prob-
lems. This is not surprising as the simulation approach to estimating the proba-
bility of ruin is a simple one. To estimate the probability of ruin for the process
described in the previous section we will follow the procedure described by Seal
[1969]. All we have to do is simulate a large number of realisations, say n, of the
process, and count the number which result in ruin according to our definition.
If this latter number is I, then our estimate of the probability of ruin is I/n.

Formally, let n denote the number of realisations of the surplus process that
we simulate, and let L denote the number which result in ruin. Then L ~ B(n, ),
where ¥ = (U, 10) is the true (unknown) probability of ruin for this risk process.
Our estimate of ¥ is ) = L/n. Assuming that n is large, the distribution of
L is approximately normal, and hence the distribution of P is approximately

It is particularly easy to simulate realisations of our risk process. In formula
(2.1) we must input values of i; whose simulation requires values of standard
normal variables, and values of X; whose simulation requires values from a gamma
distribution. Values from each of these distributions are produced by standard
computer libraries such as IMSL or NAG. Successive values of the surplus process
can then be calculated from formula (2.1), and hence we can determine whether
or not ruin occurs for each simulated realisation of the process.

Table 1 shows estimates of ¥(U,10) for U = 0,10,20,...,100 with premium
loading factors § = 0,0.05,0.1,...,0.25 when n = 1,000. Also shown are estimates
of the standard error of b when ¢ is non-zero. The estimated sta.ndard error is
calculated as ((1 — 1)/1,000)1/2,

Two obvious questions we can ask about simulation as a means of estimating
Y are:



Table 1

U 0=0% 0=5% 0=10% 0=15% 0=20% 0=25%
0 b 0.741  0.420 0.212 0.098 0.054 0.029
se.($) 0.014  0.016 0.013 0.009 0.007 0.005
N 538 2,123 5,714 14,147 26,926 51,464
10| o 0.595  0.280 0.117 0.056 0.027 0.012
se.($) 0016  0.014 0.010 0.007 0.005 0.003
N 1,047 3,953 11,600 25910 55389 126,547
2 | ¥ 0.474  0.199 0.069 0.025 0.014 0.006
se¢) 0016 0013  0.008 0.005 0.004 0.002
N 1,706 6,187 20,739 59,943 108,249 254,630
30 | o 0.360  0.124 0.036 0.016 0.007 0.002
se.($) 0.015  0.010 0.006 0.004 0.003 0.001
N 2,733 10,859 41,158 94,526 218,035 766,963
40 | ¢ 0.289  0.087 0.022 0.006 0.002 0
se.($) 0.014  0.009 0.005 0.002 0.001
N 3,782 16,130 68,327 254,630 766,963
50 | o 0.218  0.060 0.011 0.003 0 0
se.($) 0.013  0.008 0.003 0.002
N 5514 24,080 138,191 510,797
60 | 0.166  0.032 0.006 0.002 0 0
se.($) 0012  0.006 0.002 0.001
N 7,723 46,495 254,630 766,963
70 ¥ 0.119  0.022 0.006 0 0 0
se.(y)  0.010  0.005 0.002
N 11,379 68,327 254,630
80 | ¥ 0.099  0.017  0.001 0 0 0
se.(¢) 0.009  0.004 0.001
N 13989 88875 1,535,463
90 ¥ 0.071  0.007 0 0 0 0
se.(d) 0.008  0.003
N 20,111 218,035
100 ¢ 0.055  0.005 0 0 0 0
se.(d)  0.007  0.002
N 26409 305,864

1. How many realisations of the surplus process should we simulate?

2. How reliable are our estimates?




We chose to simulate 1, 000 realisations of the surplus process as we considered
this number to be sufficiently large to give estimates of the correct magnitude.
However, it is clear from the standard errors that there is considerable uncertainty
about our estimates. For example, when U = 0 and 8 = 20%, our estimate of 1
is 0.054 with a standard error of 0.007, so that an approximate 95% confidence
interval for 9 is (0.040,0.068). This uncertainty over the value of 4 is the price
that must be paid for selecting 1,000 as the number of simulations. The standard
error of our estimate clearly reduces as the value of n increases.

If we wish our estimate to be more precise we could specify a criterion which
would dictate the value of n. For example, if we state that out estimate should
be within 5% of the true ruin probability with probability 0.95, then we find that
the minimum value of n is 1,537(1 — ¥)/+¢. If we replace 3 by ¥ and consider
the previous combination of U = 0 and 6 = 20%, then the minimum value of
n is 26,926. Thus an increase in confidence in our estimate is achieved at the
expense of considerably greater computer run time. As our aim is to compare
methods of calculating 1 we will not produce estimates using larger values of
n. We have however shown in Table 1 the minimum number of simulations,
denoted N, required if the estimate of 1 is to be within 5% of the true value with
probability 0.95. As a final comment on simulation we note that simulation has
produced a number of estimates which are zero. Whilst these estimates may be
close to the true values, we should be cautious in interpreting them. For example,
if the true value of 9 is 0.002, then the probability of 1,000 realisations of the
process resulting in non-ruin is 0.135. Thus, when the ruin probability is small,
and when the number of simulations is relatively small, there can be a significant
probability of no realisations resulting in ruin.

4. An Analytic(/Simulation) Approach to the Problem

In the previous section our problem was “solved” using only simulation. The
solution was relatively straightforward but somewhat imprecise and/or time con-
suming. In this section we present an alternative method of solution. This
method will still involve an element of simulation - avoiding simulation entirely
while working with Wilkie's investment model is not easy! - but it will also make
use of analytic/numerical methods which have recently been investigated in the
actuarial literature.

Let ;(= (41,5, %2,4,.-t10;)) be the j-th simulation out of a total of n simu-
lations of the sequence of interest rates iy,is,...,110 . Let %(U,10 | ;) denote
the probability of ruin as defined in section 2 above, given the (deterministic)
sequence of interest rates 2y ;,%2j, ..., 210,j , in other words, given that i; = ¢, ; for
t=1,2,...,10. Provided we can calculate ¥(U, 10 | £;), we can estimate (U, 10)
using the sample mean of the n values of ¥(U, 10 | £;), and we can estimate the
standard error of this estimate from the sample standard error. If n is large -



we will take n = 1,000 in our examples - our estimate will have approximately a
normal distribution. To summarise, an estimate of ¥(U, 10) is 9, where

n

b= (0,10 4)

J=1

and, approximately, .
’l,L' ~ N('»L'(Ua 10)1 0_2/n)

where o is the sample variance of {(U, 10| i;)}7_, . The only remaining problem
is the calculation of (U, 10 | £;).

In principle, ¥(U,10 | ;) can be calculated recursively as follows. Define
Y(U,m | ;) to be the probability of ruin at any of the time points 11 — m,
12—m, ..., 10 starting from surplus U at time 10 —m and given the set of interest
rates i; , i.e.

Y(U,m|i;) = Pr(U(t) < 0 for some t, t = 11-m,12—m,...,10 | U(10—m) = U, i;)

Then
¥(U,1|4)=1-F(U(1+t10;) + P)

and, form=1,2,...,9
Y(Um+1|i;) = 1—F(U(Q1+ ti0-m,;) + P)
U(l+ii0-m,j)+P . )
+/ f@WUA + ir0-m;) + P = 2,m | ij)de

where F(z) and f(z) are the distribution function and density function, respec-
tively, of the random variable X .

The rationale behind these formulae is as follows. For ruin to occur at time
10 starting from surplus U at time 9, the aggregate claims in the 10-th year must
exceed U(1 + 410;) + P. This explains the formula for (U, 1 | ;). The formula
for (U,m +1 | i;) can be explained by considering the aggregate claim amount
in the (10 — m)-th year. If this exceeds U(1 + #10-m,;) + P, then ruin occurs at
time 10 — m - this gives the term 1 — F(U(1 4 i10-m ;) + P) - otherwise, ruin must
occur starting from surplus U(1 + t10-m ;) + P — z at time 10 — m, where z is the
aggregate claim amount in the (10 — m)-th year - giving the integral term.

The model we are using is almost identical to that used by Beard et al [1983,
p.230, formula (6.7.7)] - the only differences being that their model used deter-
ministic interest and a (deterministically) variable premium rate (which we could
easily incorporate). The recursive formulae for %(U,m +1 | ;) above correspond
(with minor modifications) to Beard et al's formula (6.7.9). However, Beard et al
are sceptical about the possibility of obtaining good numerical results from such
formulae:



“... even if feasible ... this method may be laborious. If some approximation

is to be used for- F, e.g. the N(ormal) P(ower) or T' formula, then the
accumulation of inaccuracy as well as the normal rounding-off errors under
the rather long sequence of computations may be difficult to control.” Beard
et al [1983, p.231].

It is our contention that:

(a) This method need not be laborious.

(b) There is evidence in the actuarial literature that it could produce very good
numerical answers.

The remainder of this section is devoted to presenting the evidence to support
these two points.

Let us first consider how laborious the calculations need to be using the above
formulae. The amount of numerical work involved in using these formulae can
be reduced, possibly considerably, using an intuitively appealing and simple pro-
cedure originally proposed by De Vylder and Goovaerts [1988]. In outline this
procedure is as follows: for very large values of z, F(z) will be very close to 1
and ¥(z,m | z;) will be very close to 0. If, for suitably large values of z, we set
F(z) =1, f(z) = 0 and ¥(z,m | ;) = 0, then the upper limit of the range of
integration in the above formula for ¥(U,m 4 1 | ;) may be reduced and the
lower limit may be increased. This procedure can be formalised as follows:

Let ¢, 0 < € < 1, be some suitably small number. Let v, be a number such
that:
F(z)21—¢€forz>w
Now define:
F(z) =F(z) forz <y
=1 for z > v

f(z) = f(z) forz< iy
0

forz > g

¥Y(U,1 | 1_7) =1- FC(U(I + ilo,j) + P)

vi = (vo— P)/(1 + 110,5)

Note that in all practical cases v; will be greater than 0, since Pr(X; < P)
will not be close to 1, and also that %(U, 1 | ;) will be equal to 0 whenever
U is greater than .



Now define recursively for m = 1,2,...,9

p(Uym+1]3) = 1= F(UQ +t10-m;) + P)
/U(l+im—m,j)+P

provided the right hand side of this expression is greater than e. Define
Vm+1 to be the value of U for which the right hand side of this expression
equals €. The definition of 4 (U,m +1 | £;) is completed by setting it equal
to 0 for U > vy -

Calculating ¥.(U,m +1 | ;) rather than ¥(U,m+1 | ;) and using the former
as an approximation to the latter has the important computational advantage
that the integrand in the expression for the former is zero outside the range
maz(&,U(1 + t10-m,j) + P — vm) to min(U(1 + t10-m ;) + P,v0). Not only does
this save (a possibly considerable amount of) computational time, but it does

this in a controlled way, as the following result shows.
Result: Form=1,2,...,10

0 <Y(U,m| ;) = ve(U,m | §;) < 3me

Proof: The proof of this result follows precisely the proof given by De Vylder
and Goovaerts [1988, section 5] although the setting is somewhat different in their
case.

Now let us turn to the accuracy of numerical results obtained using the formu-
lae above for (U, m | i;). De Vylder and Goovaerts [1988] originally proposed
a method similar to the above for calculating the probability of ruin in finite
and continuous time. Their method, as sharpened somewhat by Dickson and
Waters [1991, section 2], had the extra complication that, being a discrete time
approximation to a continuous time process, the interval between “checks” on
the surplus process, which is 1 year in our model, had to be very short to obtain
good approximations to the continuous time process. This in turn meant that for
any sensible time horizon, the number of steps in the recursive calculation of the
probability of ruin could be very large, possibly several thousands, rather than the
10 steps in our calculation of #.(U, 10 | ¢;). Despite the inevitable consequences
for the accuracy of the calculations of a large number of recursive calculations,
the results obtained using this method for calculating the probability of finite
and continuous time ruin are very good. See Dickson and Waters [1991, Table
1]. It would be expected that using the method with a smaller number of recur-
sions, i.e. 10 as in the calculation of ¥.(U, 10 | i;), would give even more accurate
results.

Table 2 shows results corresponding to those in Table 1 but calculated using
the methods described in this section. In all cases the number of simulations used
is 1,000 and the “truncation control” parameter € has been set equal to (3x105)?

10

fe(3)¢6(U(1 + ilO—m.j) +P—-z,m I ij)dz



Table 2

U 0=0% 0=5% 0=10% 0=15% 0=20% 0=25%
0 $  0.73089 0.40535 0.19981 0.09762 0.04768 0.02319
se.(d) 0.00125 0.00094 0.00042 0.00016 0.00006 0.00002

N 5 9 7 5 3 P
10| ¢ 059635 026565 0.11284 0.05021 0.02310 0.01078
se.($) 0.00210 0.00131 0.00061 0.00029 0.00014  0.00007

N 20 38 45 51 56 62
20 | ¢  0.46522 0.17090 0.06332 0.02592 0.01133 0.00511
se.(d) 0.00291 0.00150 0.00064 0.00029 0.00013  0.00006

N 61 118 157 189 215 237
30 | ¢  0.35528 0.10947 0.03575 0.01356 0.00566 0.00248
s.e.(¥) 0.00333 0.00140 0.00053 0.00022 0.00010  0.00005

N 136 253 339 409 465 509
40 | ¥ 026758 0.07029 0.02041 0.00721 0.00288 0.00123
see.(y) 0.00340 0.00119 0.00040 0.00015 0.00007  0.00003

N 249 441 584 699 791 862
50 | ¥  0.19974 0.04540 0.01181 0.00390 0.00150 0.00062
se.(d) 0.00324 0.00096 0.00029 0.00010  0.00004  0.00002

N 404 686 892 1,055 1,185 1,284
60 | +  0.14830 0.02955 0.00693 0.00214 0.00079 0.00032
see.($) 0.00294 0.00075 0.00020 0.00007 0.00003  0.00001

N 604 995 1,268 1475 1,641 1,770
70 | 4  0.10979 0.01938 0.00412 000119 0.00042 0.00017
se.(d) 0.00259 0.00058 0.00014 0.00004 0.00002 0.00001

N 854 1378 1,722 1964 2160 2318
80 | ¥  0.08120 0.01283 0.00248 0.00067 0.00023  0.00009
se.(d) 0.00223 0.00045 0.00010 0.00003 0.00001  0.00000

N 1,162 1,850 2268 2529 2738 2,859
90 | ¢  0.06006 0.00856 0.00151 0.00038 0.00013 0.00005
s.e.() 0.00190 0.00034 0.00007 0.00002 0.00001  0.00000

N 1,537 2428 2927 318 3330 3292
100 %  0.04447 0.00576 0.00093 0.00022 0.00007 0.00003
s.e.()) 0.00160 0.00026 0.00005 0.00001 0.00000 0.00000

N 1,990 3135 3723 3,891 3856 3,524

so that, using the Result above, the maximum numerical error resulting from the
truncation procedure is 107%. The integral in the expression for ¥.(U,10 | &;)
has been calculated using the repeated trapezium rule with an integer step size.

11






