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1. Introduction and Notation

In the classical insurance surplus process, the insurer’s surplus at time ¢ is
U(t)=u+ct—S(¥)

where u is the insurer’s initial surplus, ¢ is the insurer’s premium income per
unit time and S(t) is the aggregate claim amount up to time ¢. The aggregate
claims process is a compound Poisson process with Poisson parameter A and
individual claim amount distribution P(z). We shall assume that P(z) is a
continuous distribution with density function p(z), and we shall denote by p; the
k — th moment of this distribution. We will further assume that P(0) = 0. The
insurer’s premium income per unit time will be written as ¢ = (1 + §)Ap; where
6 > 0 is the insurer’s premium loading factor.

Let T denote the time to ruin for this process, starting from initial surplus u.

We define
T = inf{t: U(t) < 0}
T | coifU(t) >0forallt >0
and define the ultimate ruin probability as

P(u) = Pr(T < 00)

The complementary probability is known as the survival probability and is de-
noted é(u) so that §(u) =1 — y(u). We next define

G(u,y) =Pr(T <oo and U(T)> —y)

so that G(u,y) denotes the probability that ruin occurs from initial surplus u
and that the insurer’s deficit at the time of ruin, or severity of ruin, is less than
y. The associated (defective) density is denoted g(u,y). Finally, we define

F(u,z) =Pr(T < 0o and U(T) < z)

to be the probability that ruin occurs from initial surplus « and that the insurer’s

surplus immediately prior to ruin, denoted by U(T), is less than z. The associated
(defective) density is denoted f(u,z).

1This paper contains some results presented at the A.C. Aitken Centenary Conference in
Dunedin, August 1995.



Dickson et al (1995) show how to calculate lower and upper bounds for G(u,y)
and F(u,z). They also show that the average of these bounds can be used to
approximate these functions. In this paper we will show that their method can
also be applied to find moments of distributions. Let us define

B(Y*u)= [ y*g(u, y)dy

E(Y*u) = E(Y*|u)/v(u)
E(XFlu) = /000 z* f(u, z)dz

E(X*lu) = E(X*|u)/v(u)

where the (defective) random variables X and Y denote the insurer’s surplus
prior to ruin and the insurer’s deficit at ruin. In the following sections we will
find bounds and approximations for these quantities.

2. The Severity of Ruin

Let us first make two assumptions which will apply throughout the paper. First,
we assume that the surplus process has been rescaled such that p, is “large”.
In our examples we will set p; = 100. Second, we assume that u is an integer.
Rescaling the surplus process has no effect on the ultimate ruin probability, nor on
the related distributions, except, of course, for a change in scale. Asssuming that
u 1s an integer is not particularly restrictive. For example, if p; = 1 in the original
process and we use a rescaling factor of 100, then calculating for v = 0,1,2, ...
in the rescaled process is equivalent to calculating for v = 0,0.01,0.02, ... in the
original process.
As in Dickson et al (1995) our starting point is

o) = 5755 (3 [ o+ Dotu— 2+ 900,04 0) - w(wlol0,0)) (21

where N
9(0,y) = —(1 - P(y)) fory>0

(see, for example, Gerber et al (1987)).

We can use these formulae to derive lower and upper bounds for E(Y*|u).
Systematic derivation of these bounds is somewhat tedious, but basically straight-
forward. We will therefore illustrate the method to find bounds for E(Y|u) and
will quote the formulae for the bounds for E(Y?|u).



To find bounds for E(Y|u) we first multiply equation (2.1) by y, then integrate
with respect to y over (0,00). This gives

BVl = g2 [0 [ oty + = sy

+/0 yg(0,u +y)dy — zb(U)/O yg(O,y)dy>
Now replace the integral expressions as follows. First,
Ly [+ 2 - 2)dzdy = [*(u— 2) Blmax(0, W ~ 2))d

where W has density function p(z). This identity follows by changing the order
of integration. Next

/ooo y9(0,u +y)dy = % T VO mine, )

where Y5 has density function (1 — P(z))/p1, and finally

oo A
/0 yg(0,y)dy = 22

2c
Hence
E(Y|u) = 5_(10—) (% [ = 2) Blmax(0, W ~ )iz
+32 — $(0) Bl 1)) - () 2
A [yl opin
= (0) (JX:%/J Y(u — z)E[max(0, W — 2)]d=
+gip - pBmin(o,0)])  (22)

since 1(0) = Ap;/c. Now let &'(u) and 6" (u) be lower and upper bounds for ()
and let ¥'(u) and ¥"(u) be lower and upper bounds for %(u). In our examples
we will calculate these bounds by the method described by Dufresne and Gerber
(1989). It then follows from (2.2) that a lower bound for E(Y |u) is

BV = 53 (z ¥(u= () + 1w)pe - plE[minm,u)])

where

L) = AHI E[max(0,W — z)]d=

3



and an upper bound is

BMYu) = —5?—0) (z $h(u = § ~ D) + 36 (u)pa - mE[min(YO,u)])

Using the same approach we can show that a lower bound for E(Y?|u) is

B(Y) = o (“ilb (u = )B()) + #(u) - w(u)—}f—)
where

(u) = A <%§ — p1 E[min(Y,, u)2]) —2u (%2- - plE[min(Yb,u)])

and an upper bound is

EMY!) = 55 (“le (u=3 = DEG) + #(w) - $(u >A;jf)

Example 1: Let the individual claim amount distribution be exponential with
mean 1 and let the premium loading factor be 10%. In this case we know that

E(Y|u) = ¢(u) = exp{—u/11}/1.1

and

E(Y?|u) = 2 (u)

since the distribution of the deficit, given that ruin occurs, is exponential with
mean 1 (see, for example, Bowers et al (1987)). To apply the above methods to
find bounds, let us rescale the surplus process by a factor of 100. Tables 1 and
2 below show computed values relating to E(Y*|u) for k = 1,2. The legend for
these tables is as follows:

(1) gives the value of u (before rescaling),
(2) gives the lower bound for E(Y*|u),

(3) gives an approximation to E(Y*|u), calculated as the average of the lower
and upper bounds,

(4) gives the exact value of E(Y*|u),
(5) gives the upper bound for E(Y*|u),
(6) gives the exact value of E(Y*|u),



(7) gives an approximation to E(Y*|u), where t(u) is approximated by the
average of ¥!(u) and ¥"(u).

Table 1

H @ B @ 6 (6 ()
5 05520 0.5770 0.5770 0.6021 1.0000 1.0000
10 0.3345 0.3663 0.3663 0.3980 1.0000 1.0000
15 0.2022 0.2325 0.2325 0.2627 1.0000 1.0000
20 0.1220 0.1476 0.1476 0.1732 1.0000 1.0000
25 0.0733 0.0937 0.0937 0.1140 1.0000 1.0000

Table 2

H @ @ @ 6 6 (7)
5 11040 1.1541 1.1541 1.2041 2.0000 2.0000
10 0.6690 0.7325 0.7325 0.7961 2.0000 2.0000
15 0.4044 0.4650 0.4650 0.5255 2.0000 2.0000
20 0.2439 0.2951 0.2951 0.3464 2.0000 2.0000
25 0.1467 0.1873 0.1873 0.2280 2.0000 2.0000

We can see from Tables 1 and 2 that although the computed bounds are not
particularly tight, the average of the bounds provides an excellent approximation,
both for conditional and unconditional moments.

Example 2: Let the individual claim amount distribution be Pareto with pa-
rameters 4 and 3 and let the premium loading factor be 10%. In this case there
are no explicit results for moments when u > 0. Table 3 shows approximations to
E(Y|u) and E(Y2|u) calculated as the average of lower and upper bounds, again
using a rescaling factor of 100. For comparison, the table also shows approxima-
tions to these quantities calculated by a recursive procedure described in Dickson

et al (1995). The legend for Table 3 is as follows:

(1) gives the value of u (before rescaling),

(2) gives an approximation to E(Y|u) calculated by averaging bounds for E(Y |u)
and ¥(u),



-

(3) gives the approximation to E(Y|u) given in Table 5 of Dickson et al (1995),

(4) gives an approximation to E(Y2|u) calculated by averaging bounds for

E(Y?|u) and $(u),
(5) gives the approximation to E(Y?2|u) given in Table 5 of Dickson et al (1995).

Table 3

@ @ (4) (5)
40 3.7589 3.7585 111.83 111.85
80 5.8100 5.8098 432.08 432.11
120 11.670 11.670 1,867.9 1,868.1
160 27.065 27.067 7,098.1 7,098.8
200 52982 52.985 18,891 18,892

We can see that the results from the two methods are very similar. The method
described by Dickson et al (1995) also employs a rescaling of the original process,
and the numbers in the above table are also based on a rescaling factor of 100
giving us a meaningful comparison of the methods.

3. The Surplus Prior to Ruin
Dickson (1992) shows that

fno) = { F0.2)(0@) = 8w - 2)/60)  for0<z<u
’ f(0,z)6(u)/6(0) forz >u
from which it follows that
6(u —z)

E(X*u) = /0°° £(0, x)Egdm—/ou:ckf(O,x) S0

- ﬁ (6 /c\lfli:ll ;/ f(0,z)6(u — :l:)da;)

assuming, as in the previous section, that u is an integer, and using the fact that
f(0,2) = ¢g(0,z) (see Gerber and Dufresne (1990) or chkson (1992)). Hence a
lower bound for E(X*|u) is

MﬂmﬂaG 3%—Zm6wﬂ>)




where

Hi(y) = /jﬂ xkf(O, z)dz

J
and an upper bound is

BMXHu) = 57 (6"@)%%31- - % He(j)e'u—j - 1>dx)

Numerical evaluation of Hi(j) poses no problem and so we can evaluate bounds

for E(X*|u).

Example 3: Let the individual claim amount distribution be exponential with
mean 1 and let the premium loading factor be 10%. In this case we can solve
explicitly for E(X*|u) . In particular,

E(X|u) = (u) (2.1 - 1.1e7*/11)

and

E(X*|u) = 1(u) (6.62 — (4.62 + 2.2u)e™*/1")

with 9(u) = exp{—u/11}/1.1. Table 4 shows values for E(X|u) and E(X|u) and
Table 5 shows the corresponding values for E(X?|u) and E(X?|u). As in previous
examples, the scaling factor is 100. The legend for each table is as follows:

(1) gives the value of u (before rescaling),
(2) gives the lower bound for E(X*|u),

(3) gives an approximation to E(X*|u), calculated as the average of the lower
and upper bounds,

4) gives the exact value of E(X*|u),

(
(5) gives the upper bound for E(X*|u),
(6) gives the exact value of E(X*|u),

(

7) gives an approximation to E(X*|u), where t(u) is approximated by the
average of ¥'(u) and ¥*(u). :



Table 4

O 2 6 @ 6 6 (7
5 1.1818 1.2050 1.2050 1.2282 2.0883 2.0883
10 0.7377 0.7691 0.7691 0.8005 2.0999 2.0999
15 0.4576 0.4882 0.4882 0.5188 2.1000 2.1000
20 0.2837 0.3099 0.3099 0.3360 2.1000 2.1000
25 0.1758 0.1967 0.1967 0.2176 2.1000 2.1000

Table 5

H @ B @ 6 (6 ()
5 3.6822 3.7243 3.7243 3.7664 6.4542 6.4542
10 2.3618 2.4235 2.4236 2.4852 6.6170 6.6170
15 14774 1.5390 1.5390 1.6006 6.6200 6.6199
20 0.9235 0.9769 0.9769 1.0301 6.6200 6.6199
25 0.5772 0.6201 0.6201 0.6629 6.6200 6.6198

This example has the same features as Example 1, namely that the bounds are
not particularly tight, but the approximations are very good.

4. Conclusions

In this paper we have shown that the technique employed by Dickson et al (1995)
to approximate the distributions of the surplus prior to ruin and the severity of
ruin can also be applied to approximate moments of these distributions. The
numerical accuracy of these methods is excellent and the methods can easily be
extended to calculate higher moments than those illustrated in the paper.
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