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ABSTRACT

In the classical risk model we allow the surplus process to continue if the surplus
falls below zero. We consider the distributions of the duration of a single period of
negative surplus and of the total duration of negative surplus. We derive explicit
results where possible and show how to approximate these distributions.
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1. INTRODUCTION AND NOTATION

The duration of negative surplus for the classical continuous time risk model was
studied by dos Reis (1993). In his paper he finds the distribution of the number of
occasions on which the surplus falls below zero and presents results for moments
of the duration of a single period of negative surplus and the total duration of
negative surplus.

The objective of this paper is to calculate the distribution of the duration of
negative surplus, for both single periods and total duration. We will do this in
two ways. First, we establish a formula for the density function of the duration of
a single period of negative surplus. This leads to the distribution function which
we apply in a recursion formula for the distribution function of the total duration
of negative surplus. Second, we find results for a discrete time risk model and use
these results to approximate the relevant quantities in the classical continuous
time model.

In the classical continuous time risk model the insurer’s surplus at time ¢ is

U(t)=u+ect— S(t)

1Support from FISEG is gratefully acknowledged.



where u is the insurer’s initial surplus, ¢ is the insurer’s premium income per
unit time and S(t) denotes aggregate claims up to time ¢. The aggregate claims
process is a compound Poisson process with Poisson parameter A. Individual
claim amounts have distribution function P(z), where P(0) = 0, density function
p(z) and mean p;. We assume throughout that ¢ = (1 + 6)\p;, where 6 > 0 is
the premium loading factor. We denote by F(z,t) and f(z,t) the distribution
function and density function of aggregate claims up to time ¢.
The time to ruin is denoted T and defined by

T_ inf{t : U(t) < 0}
"l oo ifU@R)>0 forallt>0

and the probability of ultimate ruin from initial surplus u is ¢(u) = Pr(T < o0).
The survival probability is denoted é(u) and defined as §(u) = 1 — (u). The
finite time ruin probability Pr(T < t) is denoted v (u,t). We define

G(u,y) =Pr(T < oo and U(T) > —y)

to be the probability that ruin occurs from initial surplus u and that the deficit
at the time of ruin is less than y. The associated (defective) density is denoted
g(u,y) (see Gerber et al (1987) for details). Let Y (u) denote the deficit at the
time of ruin, given that ruin occurs from initial surplus u. We denote by G(u, )
and §(u,y) the distribution function and density function of Y(u). Note that
3(u,y) = 9(u,y)/$(u) and G(u,y) = Glu,y)/$(w).

Next, we define T, to be the time of the first passage of the surplus process
through the fixed positive level x starting from initial surplus 0. Define H(¢, )
and h(t,z) to be the distribution function and density function respectively of
T,. From Dickson and Gray (1984, Section 4) we have

Pr(T, = z/c) = e~*/°

and
h(t,z) = (ct—-a: t) fort>z/c

We will let the surplus process continue if it falls below zero. We define N
to be the number of occasions on which the surplus process falls below zero, T;
to be the duration of the i-th period of negative surplus, and T'T to be the total
duration of negative surplus, so that

N
TT=%"T: (=0 if N=0)

i=1

Dos Reis (1993) shows that

8(u) forn=0
P = Pr(lV =n) ={ ¢(<u)[¢<o>1n-16(0> forn=1,23,..
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We introduce the following notation:

K(t) = Pr(TT <?%)
A(t) = Pr(Ty L)
D(t) = Pr(T;<t) fori=2,3,4,..

and denote by k(t), a(t) and d(t) the corresponding densities. K(t) is of course
a mixed distribution with K(0) = Pr(N = 0) = §(u). We denote by K(t)
the conditional distribution of TT given that ruin occurs. Finally, we define
a * d*=1)*(t) to be the density of "%, T; forn = 1,2,3, ... .

In calculating K(t) there appear to be three cases to consider:

(i) when u = 0, in which case N has a geometric distribution and T'T has a
compound geometric distribution;

(ii) when u > 0 and the distribution of T} is the same as that of T}, where i > 1;
and

(iii) when u > 0 and the distribution of T is different to that of T}, where ¢ > 1.

However, case (ii) can be treated easily by noting that the conditional distribution
of TT given that ruin occurs is independent of the initial surplus. Thus, if we
can calculate the distribution of 7T when u = 0, we can also calculate it for
u > 0 provided we can calculate §(u). In the next two sections we consider the
calculation of K (t) for cases (i) and (iii). There is in fact just one situation for case
(ii), and that is when the individual claim amount distribution is exponential. For
this individual claim amount distribution the distribution of the severity of ruin,

given that ruin occurs, is independent of the initial surplus: see, for example,
Bowers et al (1986).

2. THE CASE WHEN u =0

When u = 0 we can find lower and upper bounds for K(¢) if we can calculate
A(t), which in this case is the same as D(t). Dufresne and Gerber (1989) describe
a method for calculating lower and upper bounds for tail probabilities for a com-
pound geometric distribution and we can easily apply this method to calculate
bounds for K(t).

It is straightforward to write down an expression for A(t) using the fact that
Ty and T | T < oo have the same distribution, as noted by dos Reis (1993). Thus

A(t) = D(t) = 1(0,1)/%/(0).

EXAMPLE 1. Let the individual claim amount distribution be exponential with
mean 1, and let A = 1. Seal (1969, formula (4.10)) gives a formula for (0,t)
from which we can easily find values for A(t). Table 1 shows values of A(t) and
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lower and upper bounds for K(t) (for t > 0) when 6 = 0.3. In calculating these
bounds we have bounded A(t) with discrete distributions with span 0.01, using
rescaled versions of Dufresne and Gerber’s (1989) formulae (8) and (9).

Table 1
Lower bound | Upper bound
t | A2) for K (t) for K(t)
0 0 0.2308 0.2308
10 | 0.9236 0.7124 0.7131
20 | 0.9654 0.8308 0.8313
30 | 0.9806 0.8908 0.8911
40 | 0.9880 0.9262 0.9263
50 | 0.9922 0.9485 0.9487

Figure 1 shows the density a(t) for three values of 6, namely 0.1, 0.3 and 0.5.
Although this figure illustrates the shape of the densities it hides the fact that
each pair of densities has exactly one point of intersection.

3. THE CASE WHEN u >0

When u > 0, we can still establish a recursion formula as follows.

THEOREM 1. K(0) = §(u),

K(®) = $(w)é(0)a(t) + $(0) [ “do)k(t—s)ds  fort>0  (3.1)

and
K(®) = 8(u) + $()6(0)A(2) + $(0) [ U)Kt -s)ds  fort>0  (3.2)

Proof. As TT = 0 if and only if N = 0, K(0) = §(u). Since p, = ¥(0)p,_, for
n = 2,3,4,... we can follow the proof of Theorem 2 of Sundt and Jewell (1981)
to find k(¢). Thus:

KD = po(®)+ Y paaxd™ ()

n=2

= pa(t) + 2 Pasr @t d™ (1)

= pa(t) + i $(Opn [ d(s)a d*D"(t — 5)ds
= P(®)+9(0) [ (o) 3 pua+ a0 (e - )
= P(E0)a(t) + $(0) [ d(s)k(z ~ s)ds
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The result for K(t) easily follows.

The special case when a(t) = d(t) is covered by Theorem 2 of Sundt and
Jewell (1981).

It is easy to show that we can still apply Dufresne and Gerber’s (1989) method
to find lower and upper bounds for K(t). (We must apply a discrete version of
(3.2) and this is given in Section 6.) In order to do so we require expressions for
a(t) and A(t). We can find these by considering the deficit at the time of ruin
and by using the density of the first passage time of the surplus process through
a fixed level greater than its initial value. Thus we have

AW = [ 5 9)H(t,9)dy
and so
a(t) = cluc)H(tet)+ [ 5w 9)h(ty)dy
= il )™+ [ 5(u9) ¥ flet —y,0)dy

EXAMPLE 2. Let the individual claim amount distribution be exponential with
mean 1/43. Then §(u,y) = Be~PY and so

)n (Ct _ y)n—lﬁne—ﬁ(ct—y)

ct Lo
a(t) = cﬂe‘(z\-{-cﬂ)t +/ ﬂe—ﬂy% Z e-/\t(’\t
0 n=1

n! I(n) Y
- 1& _ (At)" ﬂ"H‘l ct
= (A+eB)t 4 = AL —Bet / _\n-1
cfe + tn=1e — ——~F(n)e A y(ct —y)"~'dy
— i (At)" (Be)m ! 1 e—(A+Bo)t
n=0 n! (n + 1)!

It follows that

& (B (2n)
A= 2 T+ DI O oyt

T((A+ cB)t,2n + 1)

where 1 .
I'\ — / a~-1 —yd
(m7 a) I'\(a) o y € y
and hence

< A (Bo)r (2n)!

¢(0,t) = 1;) (n + 1)! n! (/\ + cﬂ)2n+1

(A +¢f)t,2n+1)
which is an alternative expression for (0,) to that given by Seal (1969).
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EXAMPLE 3. Let the individual claim amount distribution be Gamma(2,8), so
that the distribution has mean 2/3. Dos Reis (1993) shows that

§(u,y) = (1 = 7(w))Be™ + y(u)B?ye ™

where

R
(u) = }_j (5 ﬂ++ 1’;) e/ Z 3@1_:1;" (38 + 2Ry )™

and

Me—28£/(\/c)? +428/c
B 2
Using the same approach as in Exa,mple 2 we find that

a(t) = (1=1() 3 T e 0s g ) 35 Lo BN s s

fork=1,2

nl (20 + 1) Znl*(2n 1 2)
and hence
AW = (1=1) 3 T O r (4 )30+ 1)

o )\" (Be)*t2  (3n+1)!
+7('U:) fv__d; 2n + 2)' (/\ + ﬂ)3"+2

Table 2 shows values of A(t), and Table 3 shows values of K(t) when 8 = 2,
6 =0.3and A =1 for u=0,1,2 and 3. These latter values have been calculated
by approximating K(t) for ¢t > 0 as the average of the lower and upper bounds,
with both A(t) and D(t) being bounded exactly as in Example 1 in the calculation
of the bounds for K ().

T'((A 4+ cB)t,3n +2)

Table 2
U= u=1]u=2 | u=3
0.7679 | 0.7966 | 0.7986 | 0.7988
0.8648 | 0.8818 | 0.8830 | 0.8831
0.9059 | 0.9178 | 0.9187 | 0.9187
0.9292 | 0.9382 | 0.9389 | 0.9389
0.9444 | 0.9515 | 0.9520 | 0.9520

Table 3
t | u= u=1ju=2 | u=

10 |1 0.6909 | 0.6994 | 0.7000 | 0.7000
20 | 0.8374 | 0.8420 | 0.8423 | 0.8423
30 | 0.9048 | 0.9075 | 0.9077 | 0.9077
40 10.9412 | 0.9428 | 0.9430 | 0.9430
50 | 0.9624 | 0.9635 | 0.9635 | 0.9635

OO0 O B N+

—
(=]




We can see that for this individual claim amount distribution the initial surplus
has little effect on the conditional distribution of TT. The reason for this is
that the function v(u) approaches its limiting value quickly, see dos Reis (1993,
Section 7), and so given that ruin occurs, the initial surplus has little effect on
the duration of the first period of negative surplus, and consequently on the total
duration of negative surplus.

4. FURTHER RESULTS FOR THE CLASSICAL MODEL

In this section we will consider K(t), A(t) and a(t) as functions of u, and will
denote them as K (t;u), A(t;u) and a(t; u) respectively.
Tables 2 and 3 suggest that for the parameters chosen for Example 3 both
A(t;u) and K(t;u) are increasing functions of u. We can apply the following
theorem to show that this is true.

THEOREM 2. IfG(u,y) is an increasing (decreaszng) function of u (for a fized
value of y), both A(t;u) and K(t;u) are increasing (decreasing) functions of u.

Proof. Letpn—Pr( =n|N >0)forn=1,2,3,.... Let u > w > 0 and let
G(u, ¥) be an increasing function of u. Then

. ct B ct N o
Glu,et) = [ 5u,)dy > [ 5w, y)dy = G(w,et)

> [ own Bty > [ 5w nHE )
= A(t;u) > A(t; w)

Hence

t p t
/oa(r, u) r>/0 a(r;w)dr
t t
(n—1)xry . (n—1)x(y _ . =
=>/0 D (t —r)a(r; u)dr>/0 D (t —r)a(r;w)dr  forn=2,3,4,...

i.e., in an obvious notation, A * D*~1*(¢; u) > A * D®=D*(¢;w). Since

K(t;u) = prA(t;u)+ Y pud + DOD*(t; )
n=2
the result follows.

When G(u,y) is a decreasing function of u the results follow by reversing the
above inequalities.

Dos Reis (1993) shows that when the individual claim amount distribution is

Gamma(2,53) 5
G(u,y) =1~ e —y(u)Bye



and as y(u) is a decreasing function of u, G(u,y) is an increasing function of u,
as are A(t;u) and K(t;u).

A natural question to ask is under what circumstances is (u,y) an increasing
(decreasing) function of u. We cannot provide a comprehensive answer to this
question. However, we can indicate sufficient conditions for G’(u, y) to be a non-
decreasing (non-increasing) function of u.

If the distribution P(z) has a decreasing failure rate (DFR) then

1-P(z+y)
1 — P(z)
If the inequality is reversed, the distribution has an increasing failure rate (IFR).
We can find results for G(u y) when P(z) has either a DFR or an IFR.

Let f(u,z) denote the conditional density of the surplus immediately prior

to ruin given that ruin occurs. The conditioning makes f (u z) a proper density.
We can rewrite equation (30) of Gerber (1973) as

Gwy)=1- [~ f<u,x)—1_—(,i”(x%y)d

Since Dickson (1992) shows that the unconditional density of the surplus imme-
diately prior to ruin, denoted f(u,z), depends on the relationship between u and
z, the above integral should really be written as the sum of two integrals, but we
ignore this for ease of presentation. We can use Gerber’s formula to prove the
following two results.

THEOREM 3. If P(z) has a DFR, G(u,y) < P(y). If P(z) has an IFR, the

inequality is reversed.

Proof. If P(z) has a DFR then

Glw,y) S1-(1=PW) [~ flu,2)de = Py)

The inequality is reversed when P(z) has an IFR.
COROLLARY. If P(z) has a DFR, E(Y (u)) > p1. If P(z) has an IFR, the

inequality is reversed.

>1-P(y)

Let us now assume that f(u,z) is an increasing function of u.
THEOREM 4. If P(z) has a DFR, G(u,y) is a non-increasing function of u.
If P(z) has an IFR, G(u,y) is a non-decreasing function of u.

Proof. Let v > w > 0. If P(z) has a DFR then
Gw,9) =Gy = ["(Fwe) = flw, o) T s

> (1-PW) [ (Fu,2) = fw,2))de
=0

dz



Hence G(u,y) is a non-increasing function of u when P(z) has a DFR. When
P(z) has an IFR, the result is similarly proved.

COROLLARY. If P(z) has a DFR then E(Y(u)) is a non-decreasing function
of u. If P(z) has an IFR then E(Y (u)) is a non-increasing function of u.

Since f(u,z) depends on %(u) (see Dickson (1992) for formulae for f(u,z))
we can determine analytically whether f (u, ) is an increasing or decreasing func-
tion of u only in a limited number of cases. However, as numerical algorithms
exist which allow accurate calculation of 4 (u) - see, for example, Dufresne and
Gerber (1989) or Dickson and Waters (1991) - it is at least possible to determine
numerically how f(u,z) behaves as a function of u.

Note that f(u,z) cannot be a decreasing function of u, since

Flu,2) = £(0,z)((u)t =1)/6(0) for0<u<gz

5. A DISCRETE TIME RISK MODEL

In this section we will use the discrete time compound Poisson risk model dis-
cussed by Dickson and Waters (1991 and 1992) to obtain approximations to K (t).
The essential features of this model are as follows:

- individual claim amounts are distributed on the non-negative integers with
mean 3, where 8 > 1;

- the premium income per unit time is 1;

- the Poisson parameter for the expected number of claims per unit time is
1/[(1 + 6)B], so that 8 is the premium loading factor.

For notational convenience we will use a subscript or superscript d to indicate
quantities in this model that are analogues of quantities in the continuous model.
The insurer’s surplus at time ¢, ¢ = 1,2, 3, ..., given initial surplus u (which we
always assume to be a non-negative valued integer), is denoted Uy(¢) and defined
by
Ud(t) =u-+t-— Sd(t)
S4(t) denotes aggregate claims up to time ¢, and has distribution function Fy(z, )

and probability function fi(z,t). The time until ruin for this model is denoted
T; and defined as

T = min{n : Uy(n) £0,n=1,2,3,...}
1) oo if Ug(n) > 0 forn =1,2,3,...

The ultimate ruin probability given initial surplus u is denoted %4(u) and defined
as

Ya(u) = Pr(Ty < 00)
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and the survival probability is defined as §4(u) = 1 —t4(u). When u = 0 we have
$4(0) = 1/(1 + 0) (see, for example, Dickson and Waters (1992)).

Define g4(u,y) to be the probability that ruin occurs from initial surplus u
and that the deficit at the time of ruin is y, for y = 0,1,2,... . Then

94(u,y) = Pr(Ty < 0o and — Uy(Tu) = y)
From equation (3.5) of Dickson and Waters (1992) we find that
94(0,y) =1 - Fy(y,1) fory=0,1,2,..

We can calculate gy(u,y) for y = 1,2,3, ... from a recursion formula by adapting
equation (1) of Dickson (1989). We can write

ba(u +y) = ba(u) + ggd(u,j)&;(y —j) fory=1,2,3,..
so that
ga(w,y) = - (1)(5«1(U+ y+1) —ba(u) — jZ—‘:l)gd u, j)ba(y +1 - j))
with
94(u,0) = < (1)(5a(u +1) — ba(u))

We use these formulae rather than adapt the algorithm of Dickson and Waters
(1992) as that algorithm would be recursive in u whereas we require an algorithm
that is recursive in y. We define §a(u,y) = ga(u,y)/va(u).

As in Section 1, we allow the surplus process to continue if it falls below zero.
The total duration of negative surplus is denoted TT¢ and defined as

Ny
Td=ZTid (=0ide=0)

where T¢ denotes the duration of the i-th period of negative surplus, and N
denotes the number of periods of negative surplus. Ny has probability function

. o sa(w) forn=0
Ph=Pr(Ne=n)= { BelWBAOT5,0) for n = 1,2,3,..

In our examples, values of §4(u) will be calculated from the algorithm described
by Dickson and Waters (1991).

In the continuous time model it is straightforward to define the duration of a
single period of negative surplus as the time from which the surplus falls below
zero to the time at which the surplus next attains zero. For the discrete time

10



model our definition of 14(u) causes some problems in defining the duration of a
single period of negative surplus. This is because a surplus of 0 (at ¢ > 0) implies
ruin. We resolve this problem by calculating approximate lower and upper values
for K(t).

We calculate upper values by defining the duration of a single period of nega-
tive surplus to be the time the surplus process takes to recover to 0 from the time
at which it first falls below zero. If the surplus process falls to zero, we say that
this results in a single period of negative surplus of duration 0. Thus, if the sur-
plus level at successive time periods is 4,0,1,—1,0,0,1 we would say that there
are three periods of negative surplus of durations 0,1 and 0 respectively. Corre-
sponding to definitions in Section 1 we denote the relevant distribution functions
by Kx(t), An(t) and Dy(t), with respective probability functions kx(t), ax(t) and
dy, (t)

We calculate lower values by defining the duration of a single period of nega-
tive surplus to be 1 plus the time the surplus process takes to recover to level 0
from the time at which it first fell below 0. Thus, in the example in the previous
paragraph, the three periods of negative surplus would have durations 1,2 and 1
respectively. In an obvious notation we have distribution functions K;(t), A;(t)
and Dy(t), with respective probability functions ki(t), a(t) and di(t).

Then

ah(t) = a,(t + 1) and dh(t) = d((t + 1) fort = 0, ]., 2, (51)

and Ki(t) < Ki(t). For reasons given by Dickson and Waters (1991, Section
2) both Ki((1 + 6)pt) and Kx((1 + 60)8t), where (1 + 0)Bt is an integer, are
approximations to K (t). Although they are not lower and upper bounds for K(#)
it is reasonable to expect that K (t) lies between these two values. The reason for
this is that if the surplus in the continuous time model is positive at time t—1 and
0 at time ¢, then the duration of (possibly multiple periods of) negative surplus
is greater than 0 and less than 1. Thus, our definitions understate and overstate
the true duration of negative surplus in the continuous time model. However,
we cannot say how the other approximations at work in the discrete time model
affect our calculations and so we cannot say that K;((1+60)8t) and Kx((1+6)5t)
are lower and upper bounds for K(t). We shall see, however, in our examples
that with a suitably large value of 8, Ki((1 + 0)At) and K,((1 + 0)3t) are very
close together, effectively giving us an approximation to K(t) as the bounds in
Sections 2 and 3 did.

6. FORMULAE FOR THE DISCRETE TIME MODEL

Using the same reasoning as in Section 3 we can easily write down formulae for
ap(t) for t = 0,1,2,... . If the deficit at the time of ruin is j, j = 1,2,3,... , the
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probability that the surplus returns to 0 at time Ty + ¢ (where t > j) is

LPr(Sut) =t -j) = Tt = 4t)
(See Gerber (1979, p.21).) Hence

ah(o) = gd(U,O)
and fort =1,2,3,...

i fd(t —],t) (61)

We find di(t),t = 0,1,2,... , by settmg u = 0. Values for a;(t) and di(t) come
from the relationships in (5 1)

In Section 2 we noted that D(t) = %(0,t)/4(0). We can find an equivalent
result for the discrete time model as follows. Let

Ya(u,t) = Pr(Ty < t)

and let 84(u,t) = 1 — +pg(u,t). For brevity, let f; = fa(j5,1) for j = 0,1,2,... .
Since Sy4(t) is the sum of ¢ i.i.d. random variables, each with probability function
{fi}320, it follows that fa(j,t) = fi*. If we set u = 0 in formula (6.1) we can
write fort =1,2,3, ...

")bd(o dh(t) = ng(()’J) t—] Z[l - Fd(]’ 1)] t-J

Dickson and Waters (1991) show that

Ot)_z [

which means that

Ya(0)dn(t) = 6a(0,) — ZFd (7, 1) i

i=1

Now

Z‘Fd(]’l) t—] = Zz.ff t—-]

j=0r=0

= ZZfJ”T t—J

j=0r=0

= EZfJ—T t—J

r=0j=r

_ EZfr+s

r=0s=0

12



The well-known convolution formula gives

n E fs t-—r—s = t(-t—tl)*

3—0

and since .
— 1 t+1)*
T e = RS
2T =
(see Panjer (1981)) it follows that

i : T t—T 1 (t+l)*
2=: J’l) i = Z(ZJ’ t t+1) t=r

r=0

_ i r+1 t(t+1)*
r=0 t + 1
t+1 (1)
= Z t+ 1ot

r=1

= 64(0,t+1)
Hence
$a(0)dn(t) = 64(0,) — 84(0,¢ + 1) = %a(0,¢ + 1) — (0, ¢)
Finally, since
$a(0)dn(0) =1 - fo = +4(0,1)
we find that

¢d(0, t)
%a(0)

A more intuitive proof of this result comes from noting that for ¢t = 1,2,3,... ,
ruin occurs at time ¢ 4 1 if

=Dp(t-1)=Di(t) fort=1,2,3,.. (6.2)

(i) the surplus at time ¢t is j, where j can be any value from 1 to ¢, and the
surplus has been greater than zero at all times prior to ¢, and

(ii) aggregate claims in the (¢ + 1) — th time period are greater than or equal
toy +1.

From Gerber (1979) we know that the probability of (i) is (j/t) fa(t —j,t). Hence,
summing over j gives

o~ %,

t
Pr(Ty=1t+1| Uy 0) =>

Jj=1

fa(t = 3,1)[1 — Fu(j,1)] = %a(0)dn ()
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since §a(0,7) = (1 — Fu(7,1))/4(0), leading to
$a(0,1 +1) — 1a(0,) = a(0)dn(t)

fort =1,2,3,..., which is equivalent to (6.2). Like its continuous analogue, this
result can also be explained by dual events.
The discrete versions of (3.1) and (3.2) are easily found giving

ar(0)1ba(u)84(0)
1 — 14(0)dx(0)

kn(0) = Kn(0) = 8a(u) +
and fort =1,2,3,...

Pa(u)84(0)an(t) + $a(0) ko dn(5)kn(t — 7) — 1a(0)6a(w)dr(t)
1 — 44(0)d5(0)

ka(t) =

and

6a(u) + a(u)84(0)An(t) + ¥a(0) iy dr(5)Kn(t — j) — a(0)8a(u)Da(2)
1 - 44(0)dx(0)

with similar formulae for ki(¢) and K;(t),¢t =0,1,2,... .

Rather than apply these formulae directly, we will modify them in order to cut
down the amount of calculation required. We will adapt the truncation procedure
proposed by De Vylder and Goovaerts (1988).

Define, for v = 0,1,2,... and y = 0,1, 2, ...,

éd(u, y) = Gd(ua y)/¢d(u)

to be the conditional distribution function of the severity of ruin given that ruin
occurs from initial surplus u. Let € be some small number and let & be the least
integer such that

Ky(t) =

Ga(u, k) >1—¢

Now define )
e _J ga(u,y) fory=0,1,2,....k
gd(”’y)‘{o fory=k+1,k+2,..
a;,(0) = a,(0)

t . min(k,t) .
ai(t) = 15w ) T falt=50) = 3 Gulw,d) L fult=ijt)  fort=1,23,.
i=1 j=1 :
13
A5() = 2 ai()
i=0

Then, by noting that (z/t) fo(t—=,t) is the probability function of the first passage
time of the surplus process to the (integer) level z from initial surplus zero, it
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follows that Ax(t) — e < Aj5(t) < An(t). Now define di(t), D5(t) and €D (¢) in
an obvious way to correspond to di(t), Dx(t) and D*(t). The following result is
easily proved.

RESULT. Forn=1,2,3,...

Ap* Dp*(t) — (n + 1)e < A * “Dp*(t) < An * D*(t)
If we define

Ki(t) = pt + plAs(t) + 3 p¢ AL +<D V(1)

n=2

then it follows that
Ki(t) - eE(Ny) < Ki(t) < Kh(t)

(See, for example, Dickson and Waters (1991, Section 6.)) In the next section we
will calculate Kj(t) and Kf(t) rather than K, (t) and K;(t). Clearly the above
arguments hold when the subscript h is replaced by I. In our calculations we set
e = 107*/E(N,) so that the error in our computed values of Ky(t) and Ki(t) is
at most 1074,

There is one other important point we wish to make about calculations. We
will successively calculate a(0),an(1),... . To calculate ax(t) where ¢t > 1 we
require values of f;(z,t) for z = 0,1,2,...,t — 1. Since we have already calculated
fa(z,t=1),z =0,1,2,...,t—2, in the calculation of ay(t—1), it is computationally
more efficient to calculate fy(z,t) for z = 0,1,2,...,t — 2 from the convolution
formula

falw,) = 3 13, ) falw = gyt =1)

as this requires fewer calculations than repeatedly applying Panjer’s (1981) recur-
sion formula. We do, however, apply the recursion formula to calculate fy(t—1,1)
and, of course, to calculate fy(z,1) for £ =0,1,2,...,t.

If we are interested in calculating A.(¢) only, then it is possible to calculate
this by employing a recursive calculation to find ax(t). For t =1,2,3,... , let

() = a(wan (1) = 3 galw )2 fut 5,1

For a fixed value of ¢ we can calculate oy, (¢; u) recursively as follows. By condi-
tioning on the surplus level at time 1, we have

9a(1,3) = £a(0,1)7(9a(0,5) — fa(j +1,1))

15



and for u = 1,2,3, ...

ga(u+1,5) = £(0,1)7"(ga(u, j) — Zu:fd(i, Dga(v +1—1,5) = fa(u+3j +1,1))

=1

Hence

anlt) = Vault,Visut-i0)

t

= f40,1)7" [gd(O,J) - faG+ 1,12 fd( J»t)

= f4(0,1)" (ah (0,) — Z:lfd(j + 1,1);fd(t —J',t))

and for u =1,2,3,...
Oth(’u + l,t) = Egd(u + l’j)%fd(t _j’t)
=1
= 500,17 Sloatus) = 35 aly Vgl +1-i,5)
i=1 i=1

~fulw+ i+ 101 At t))

= fd(O,l)‘l(ah(ut =33 fuli, Dga(u + 1 —4,5)2 S fa(t = 4:1)

j=1¢=1

—Zt:lf (ut+j+ 1,1)lfd(t —j,t))

= 0.7 (anlt) - i 1)]2;gd(u+1—21) 1t - 5,1)
_;fd(u +j+1, 1);fd(t — Js t))

= f4(0,1)7! (a,,(u,t) — gfd(i, Dan(u+1—14,1)
-3 s L0350

Since we can calculate 94(u) recursively, it is easy to find aj(t) and hence Ax(2).
Once again it is efficient to calculate values of fy(z,t) as described above.
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7. EXAMPLES

EXAMPLE 4. In Example 1 we considered the case when the parameters in
the continuous time model were A = 1, u = 0, § = 0.3 and P(z) = 1 — e~2,
and we calculated lower and upper bounds for K'(t). Table 4 shows lower and
upper values for K(t) calculated from the formulae of the previous section for
three values of 8, namely 20, 50 and 100. The table also shows the bounds from
Table 1. In calculating fs(z,t) we require a discrete distribution and P(z) was
discretised using the method of De Vylder and Goovaerts (1988).

Table 4

Lower | Lower | Lower Lower Upper Upper | Upper | Upper

Value | Value { Value Bound Bound Value | Value | Value
t |8=20|8=50|F=100] (Tablel) | (Tablel) | 3=100| =508 =20
0 { 0.2308 | 0.2308 | 0.2308 0.2308 0.2308 0.2325 | 0.2343 | 0.2396
10| 0.7114 | 0.7122 | 0.7125 0.7124 0.7131 0.7131 | 0.7135 | 0.7147
20 | 0.8302 | 0.8307 | 0.8309 0.8308 0.8313 0.8313 | 0.8315 | 0.8321
30 | 0.8904 | 0.8908 | 0.8909 0.8908 0.8911 0.8911 | 0.8913 | 0.8917
40 | 0.9259 | 0.9261 | 0.9262 0.9262 0.9263 0.9263 | 0.9264 | 0.9267
50 | 0.9483 | 0.9485 | 0.9485 0.9485 0.9487 0.9487 | 0.9487 | 0.9489

We make the following comments about Table 4:

(i) The greater the value of 3, the closer together the lower and upper values
are. This is not surprising. As the value of 8 decreases, the discrete time
model is intuitively a poorer approximation to the continuous time model.

(i) When # = 100 the lower and upper values are very similar to the bounds
in Table 1. At first sight this seems reasonable since discretisation, albeit
of different distributions, is on the same span. However, it is perhaps sur-
prising given the number of approximations involved when applying the
discrete time model.

(iii) When 3 = 100, the lower and upper values effectively give an approximation
to K (t) to three decimal places, as do the lower and upper bounds.

EXAMPLE 5. Let the individual claim amount distribution be Pareto(4,3) and
let A =1 and 6 = 0.3. Table 5 shows approximate values of K(t) for u =
0,5,10,20,40. These have been calculated by approximating K(t) for ¢ > 0 by
the average of the lower and upper values calculated with 8 = 20, with P(z)
discretised as in Example 4.
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Table 5

t u=0]ju=5|u=10|u=20|u=40
10 ] 0.5572 | 0.4990 | 0.4771 | 0.4454 | 0.3768
20 { 0.7046 | 0.6578 | 0.6372 | 0.6043 | 0.5258
30 | 0.7866 | 0.7492 | 0.7312 | 0.7005 | 0.6212
40 | 0.8395 | 0.8093 | 0.7938 | 0.7659 | 0.6890
50 | 0.8761 { 0.8515 | 0.8382 | 0.8132 | 0.7397

In this example, K(t) appears to be a decreasing function of u for a fixed value
of t. Table 6 shows some approximate values of G(u,y), calculated from the
algorithms described earlier, which suggest that é(u, y) is a decreasing function
of u for a given value of y. Thus, by Theorem 2, we would expect K(t) to be a
decreasing function of u.

Table 6
y|lu=0|u=5|u=10{u=20|u=40
1 |0.5879 | 0.4422 | 0.4086 | 0.3692 | 0.2979
3 [ 0.8755 | 0.7564 | 0.7140 | 0.6569 | 0.5429
5 |0.9472 [ 0.8699 | 0.8337 | 0.7788 | 0.6581
10 | 0.9877 | 0.9581 | 0.9377 | 0.8987 | 0.7937
201 0.9978 | 0.9901 | 0.9826 | 0.9639 | 0.8968

From Theorem 4 we might expect f(u,z) to be an increasing function of u
for a fixed value of z, since this Pareto distribution has a decreasing failure rate.
Figure 2 shows approximate values of f (u,z) as a function of u when z = 2
and 3. These values have been calculated using the formulae for f(u,z) given
by Dickson (1992), and the function ¥ (u) in these formulae has been calculated
using the algorithms described earlier. These graphs indicate that in this case

f(u, ) is not an increasing function of u for a given value of z, and this pattern
can be observed for other values of z. Thus, these figures suggest that when
the individual claim amount distribution has a decreasing failure rate, it is not
necessary for f(u, ) to be an increasing function of u in order for G(u y) and
K (t) to be decreasing functions of u.
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