Dickson/Zehnwitth 27 ISBN 0 73251208 5

THE UNIVERSITY OF MELBOURNE

PREDICTIVE AGGREGATE CLAIMS
DISTRIBUTIONS

by
David C M Dickson and Ben Zehnwirth
The University of Melbourne

RESEARCH PAPER NUMBER 27
February 1996

Centre for Actuarial Studies
Department of Economics
The University of Melbourne
Parkville, Victoria, 3052
Australia.




Predictive Aggregate Claims Distributions
by
David C M Dickson

and

Ben Zehnwirth,

The University of Melbourne

ABSTRACT

In the collective risk model we use the objective Bayesian approach to calculate
predictive aggregate claims distributions. We compare these with fitted distri-
butions which take no account of parameter uncertainty and show that actuarial
functions such as premiums can be substantially understated if parameter uncer-
tainty is ignored. We illustrate the situation when the moments of the predictive
individual claim amount distribution do not exist and we discuss ways of applying
such distributions to insurance problems.
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1. Introduction

The traditional inferential actuarial problem usually involves the passage from
observed past data to unobserved future outcomes. It is well known that actuarial
calculations, stop loss premiums, for example, are not robust to the distributional
assumptions. Fitted distributions, in contrast to predictive distributions, do not
incorporate parameter estimation uncertainty, or what North American actuaries
call “risk parameter uncertainty”. As a result, premium calculations, ruin prob-
ability calculations, surplus calculations etc., are understated if they are based
on the fitted distribution. In certain circumstances the understatement can be
quite substantial. Incorporation of parameter uncertainty can make a substantial
difference, even to premiums calculated by the expected value principle.

In the present paper we apply the Bayesian paradigm to compute predictive
aggregate cost distributions and make comparisons with the fitted aggregate cost
distributions. It is shown that both ruin probabilities and stop loss premiums
can under certain circumstances be substantially understated by the fitted distri-
bution. Accordingly, actuaries who in practice use fitted distributions run major
risks.

The Bayesian paradigm is often criticised because the choice of the prior
distribution is subjective and removes the aura of objectivity in any analysis. This



objection is removed as we use non-informative priors. A Bayesian uses the so-
called Bayesian predictive density to forecast future observations. The approach
is natural in that one bases one’s prediction on the conditional distribution of the
future given the past.

The Bayesian predictive distribution incorporates automatically both sources
of uncertainty, namely process uncertainty and parameter estimation error.

The use of predictive distributions, in place of fitted distributions, is not new.
Klugman (1992) describes the (objective) Bayesian paradigm and illustrates, inter
alia, the difference between a fitted Weibull and a predictive Weibull. The fitted
distribution does not display as much variation as the predictive distribution.
Indeed, the fitted distribution does not necessarily belong to the same family of
distributions as the predictive distribution. Cairns (1995) describes the Bayesian
approach as a way of incorporating parameter uncertainty in the “Modelling
Process” and applies the approach to the calculation of risk theory’s adjustment
coeflicient. Applications of predictive distributions to reinsurance have becn given
by Hesselager(1993) and Hirlimann(1993 and 1995).

The results contained in this paper are critical to risk based capital consider-
ations, especially if one is concerned with measuring risk statistically.

The outline of the paper is as follows. In Sections 2 and 3 we present back-
ground results. In Section 4 we compare fitted and predictive aggregate claims
distributions and in Section 5 we consider reinsurance. Finally, in Section 6 we
discuss the situation when the moments of the predictive aggregate claim amount
distribution do not exist.

2. Preliminaries

In this section predictive distributions for the exponential and Poisson distribu-
tions are provided. In broad outline we start with prior beliefs represented by
proper prior distributions and take limits to obtain posterior beliefs and predictive
distributions based on diffuse (or ignorant) priors. We will use these predictive
distributions in our examples in subsequent sections.

2.1. Exponential distribution with gamma prior

Let X,,...,X,|0 be independent and identically distributed random variables
with p.d.f.
f(z|0) = §exp{—0z} forz >0 (2.1)

where § > 0. Let D = (Xy,...,X,) represent the data vector. When the prior
distribution for 6 is G(«a, ), i.e. a gamma distribution with p.d.f.

901-—1 ﬂae—ﬁe

f(9) = I'(a) for 6 > 0



where a, 8 > 0, it is well known that
9|D ~ G(a +n, B+ nX)

Now let g(8|D) be the p.d.f. of 8|D and let X* be a subsequent observation
from the exponential distribution given by (2.1). Then the p.d.f. of X*|D is given
by

f@'1D) = [ s(a"10)g(61D)do

so that B
(n + a)(B + nX)r+e

(/6 + nX + .’I?*)"H'o""l

Thus X*|D has a Pareto distribution with parameters n + a and 8+ nX.

The diffuse prior is obtained by letting both @ and 8 go to zero in such a
way that /8 is constant. Hence, with a diffuse prior X*|D has a Pareto(n,nX)
distribution.

Note that when the prior is diffuse both E(X*|D) and V(X*|D) exceed the
mean and variance of an exponential distribution whose parameter is the max-
imum likelihood estimate of 8. This may not be the case when the prior is not

diffuse.

forz* >0

/(z*|D) =

2.2. Poisson distribution with gamma prior

Let N|A ~ Poisson()) and let the prior distribution for A be G(a,8). Then
the unconditional distribution of N is negative binomial NB(e, 3/(1 + 8)) and
the posterior distribution for A|N is G(a + N,1 + ). It therefore follows that if
N* is a subsequent observation from the Poisson distribution then the predictive
distribution for N*|N is NB(a + N, (1 + 8)/(2 + B)).

The diffuse prior then leads to a predictive distribution that is NB(N,1/2).
Hence the predictive distribution has the same mean as the fitted Poisson(V)
distribution, but has twice the variance of the fitted distribution.

In this particular case, the mean square error (MSE) of prediction using clas-
sical theory is

E(N*=N)? = E(N*=X+\—N)?
| = E(N*=))?+4 E(N — ))?
= A+
2

Hence, an estimate of the MSE is given by 92X = 2N which is the same as
the predictive variance of N* under the Bayesian paradigm with a diffuse prior.
Accordingly, the estimate of the MSE of prediction using the classical approach
is equivalent to the predictive variance using the objective Bayesian approach.



2.3. Normal distribution with normal prior for mean and known vari-
ance

Let Xy,...,X,|p,o? wd N(p,0?) with 0? known and let the prior distribution for
p be N(po,03). Let D = (Xj,...,X,) again represent the data vector. It is well
known (see, for example, Lee(1989)) that

ulD ~ N(i,6?)

where [ is given by

ﬂ=(1—Z)/Lo+ZX

and the posterior variance or mean square error (MSE) is given by
6% = (1 - 2)o?

where Z (the credibility factor) gives the relative precision of the two sources of

information, i.e.
n

n+ o2/ok
Let us assume for the remainder of this section that the prior is diffuse, i.e. that
02 — co. Then we find that 4 = X and 62 = 0?/n.

Now let X* be a subsequent observation from the N(u, 0?) distribution. Then
it is straightforward to show that the distribution of X*|D is N(&,52+0%). Hence
the predictive distribution contains the two sources of uncertainty or variability,
viz., 6%(= 0%/n) and o2

Now let Y* = exp(X*). Then the distribution of Y*|D is lognormal with
parameters f and (0%/n) 4 02, and so

Z =

E(Y*|D) = exp (,1 + % (%2 N 02))
and V(Y*|D) = EX(Y*|D). (exp (%2_ N 0_2) B 1)

Note that both E(Y™*|D) and V(Y*|D) exceed the mean and variance of a
lognormal distribution whose parameters are the maximum likelihood estimates
of u and ¢%. The predictive mean incorporates the component exp (¢2/2n) where
o?/n is the variance of the sample mean.

2.4. Normal distribution with gamma prior for unknown variance

Once more let Xi,..., X, |p,0? i N(u,0?). If 02 is unknown the diffuse prior is
given by



1
2
p(o’) x —
Note that the prior is an improper distribution. However, both the posterior

and predictive distributions are proper. We know (see, for example, Lee(1989))
that

1 n—1 S
i G( 2’5)
2
WD ~ N (X,i)
o n
and,
p|lD ~t (n—l,)_(,(»n;—l)?) (2.2)
where .
S = Z(X1 - X)Z,

=1
G(a, B) denotes a gamma distribution with mean af3, and #(v,r,s) denotes a
t-distribution which is defined in Appendix 1. If we let s = (S/(n — 1))'/2 then
an alternative way of writing (2.2) is

\/EX

The classical statistics (or sampling theory statistics) approach leads to a similar
conclusion. In this case

—EID ~t(n-1,0,1)

S

X —

S

£ t(n—-1,0,1)

vn

However, in the classical approach it is the data that are regarded as random and
the parameters y and o2 are fixed. By contrast, the objective Bayesian approach
regards p and o2 as random and the available data as being fixed.

If X* denotes a subsequent observation from the N(u,o?) distribution, the
predictive distribution for X*|D is

Xw0~t(n—LXZ%E%%%)

This result is derived in Appendix 2. From results given in Appendix 1 it follows
that E(X*|D) = X and V(X*|D) = (n + 1)S/(n(n — 3)). From the classical
statistics standpoint, the distribution of

n X*—X
n+1 S

is also t(n — 1,0,1). (Here we use S/(n — 3) as the estimator of ¢2.)
If we again define Y* by Y* = exp(X*), then the predictive distribution for
Y*|D is the distribution of exp(X*)|D.




3. Predictive Aggregate Claims Distributions

The traditional risk model for aggregate claims is as follows.

S=Y'1++YN

where S represents the aggregate claim amount in a fixed time period (typi-
cally one year), N represents the number of claims occurring in that period, and
Y1,Y,,. .., represent the amounts of successive claims. We assume that {Y;}2, is
a sequence of i.i.d. random variables and that N is independent of this sequence.

In the last fifteen years much attention has been devoted to computing the
aggregate claims distribution given the distributions of N and Y;. Examples of
recursive algorithms to calculate the distribution of S are given by Panjer (1981),
Schroter(1991) and Sundt (1992).

The approach in practice is to fit the distributions of N and Y; to data and,
if the distribution of N belongs to the appropriate class, to apply the fitted
distributions as inputs into these algorithms. There is a major drawback to this
approach as the distributions do not incorporate parameter estimation error. The
distributions are assumed to be known with certainty.

Consider the following statistical setting:

Data for one time period: D = {N;Y1,...,Yn}
“Future” observations for the next period are N*,Y*,... Y3..

We are interested in computing the predictive distribution of
ST =Y"+...+Y3.

(conditional on the data D).
We will compare this with the fitted aggregate claims distribution defined by

where N has the fitted distribution of N based on the data D and }A’, has the
fitted distribution of Y;.

We will assume throughout that the claim count N|A has a Poisson distribu-
tion with mean A. Accordingly, if ) is the fitted value of A, the mean and variance
of the fitted and predictive aggregate costs are

E(S) = AE(Y:) =
V(5) = NE(Y?)
for the fitted distribution and

E(5*|D) = E(N*|D)E(Y7|D) = NE(Y;|D)
V(5*|D) = V(N*ID)E*(Y?|D) + E(N*|D)V (Y| D)
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for the predictive distribution.
In the special case when we have a diffuse prior for the Poisson parameter
and the distribution of the individual claim amounts is assumed to be known we

have E(S) = E(S*|D) and

V(S*|D) = 2NE*(Y;)+ NV(Y)
= NE(Y?)+ NE*(Y)

Therefore,

V(8*|D) = V(8) + NE*(Y))

Thus, uncertainty in the value of the Poisson parameter results in equal means but
greater variability in the predictive distribution. We will see in our examples in
the next section that this is not true when the parameters of the individual claim
amount distribution are unknown, or when the prior for the Poisson parameter
is not diffuse.

4. Moments and Percentiles of Aggregate Claims Distri-
butions

In this section we will consider moments and percentiles of aggregate claims
distributions. We will compare values for fitted and predictive distributions under
three scenarios for the claim number distribution. Recall that our basic model is
N|X has a Poisson(}) distribution. Having observed the value of N, we will use
the following three distributions for the claim number distribution in the next
year:

1. Poisson(}), where A is the maximum likelihood estimate of A (which is just
equal to the observed value of N).

2. Negative binomial with parameters a + N and (8+ 1)/(8 +2). This is the

predictive distribution resulting from a Gamma(e, ) prior for A.

3. Negative binomial with parameters N and 1/2. This is the predictive dis-
tribution for N resulting from a diffuse prior for A.

Hence case (i) results in a fitted aggregate claims distribution and cases (ii) and
(iii) in predictive aggregate claims distributions. Note that all subsequent results
are conditional on the observed data D.

4.1. Known claim amount distribution

Let us first assume that the parameter of the exponential individual claim amount
distribution is known and that the distribution has mean 1. Thus, we are initially



considering the effect of uncertainty about the claim number distribution on the
aggregate claims distribution.

Example 1: Let the observed value of N be 106. (This was in fact obtained as a
simulation from the Poisson(100) distribution.). Let the parameters of the prior
distribution in (ii) & = 4 and B = 0.04 so that the prior distribution has mean 100
and standard deviation 50. Table 1 shows the mean, variance and coeflicient of
skewness of the aggregate claims distribution for each of the three cases. Formulae
for calculating these quantities can be found in Panjer and Willmot (1992).

Table 1

Case Mean Variance Skewness
(i) 106.00 212.00 0.2060
(i) 105.77 313.24 0.2598
(iii) 106.00 318.00 0.2617

The pattern of figures in Table 1 is much as expected. As the variability of the
counting distribution increases from case (i) through to case (iii) the variance
and skewness of the aggregate claims distribution both increase. The mean for
case (ii) is less than for the other two cases. Thus, parameter variability in the
counting distribution alone impacts on all insurance calculations, such as setting
premiums or surplus requirements, which hinge on the moments of the aggregate
claims distribution.

Table 2 shows percentiles of the aggregate claims distribution in each case.
These distributions were calculated according to Panjer’s (1981) recursion for-
mula and the exponential distribution was discretised on intervals of 0.05 using
the method of Goovaerts and de Vylder (1988). We will use this discretisation
interval in all our examples. Percentiles are denoted by C, and the tabulated val-
ues show the least value of z such that the probability that the aggregate claim
amount is no more than z is at least z. It is a consequence of our discretisation
method that the percentiles are integer multiples of 0.05.

Table 2

Case  Co.go Co.95 Co.99 Co.905
(i) 124.95 130.80 142.05 146.30
(i1) 128.90 136.15 150.25 155.60
(i) 129.30 136.60 150.85 156.25

The figures in Table 2 confirm the findings from Table 1. As variability in the
claim number distribution increases, percentiles of the aggregate claims distribu-
tion increase.



As a simple illustration of the effect of parameter uncertainty, consider the
following problem. Suppose that the insurer calculates the premium, P, for a
risk by the expected value principle using a premium loading factor of 10%, and
wants to find the surplus U such that

Pr(U+P>S)=nr

where S denotes aggregate claims from the risk. Table 3 shows values of U for
different values of m when the distribution of S is given by each of cases (i), (ii)

and (iii).

Table 3

Case 7#=01 =005 =001 ==0.005
(1) 8.35 14.20 25.45 29.70
(i) 12.55 19.80 33.90 39.25
(iii)  12.70 20.00 34.25 39.65

Table 3 shows that by applying a fitted distribution instead of a predictive distri-
bution, the insurer can set a surplus level that is quite inadequate - the worst case
in Table 3 shows a surplus under the fitted distribution that is about 2/3rds of
that required using the predictive distribution with a diffuse prior. This is a sub-
stantial margin, bearing in mind that the individual claim amount distribution
is assumed known in this example!

4.2. Unknown claim amount distribution

Let us now assume that the parameter of the exponential individual claim amount
distribution is unknown. In the following example we have used the same number
of claims as in Example 1, then simulated this number of observations from an
exponential distribution with mean 1.

Example 2: The maximum likelihood estimate of the parameter of the exponen-
tial distribution based on 106 simulated individual claim amountsis § = 1.0113.
We will use the same three counting distributions as before. The individual claim
amount distributions will be:

e Exponential with mean 0.9888 for case (1), i.e. the fitted exponential dis-
tribution.

o Pareto(110,108.81) for case (ii), i.e. the predictive distribution based on a
gamma prior for the exponential parameter with mean 1 and variance 0.25.

e Pareto(106,104.81) for case (iii), i.e. the predictive distribution based on
the diffuse prior.



Tables 4 and 5 show the same quantities as Tables 1 and 2 respectively.

Table 4

Case Mean Variance Skewness
(i) 104.81 207.28 0.2060
(i) 105.59 314.12 0.2616
(iii) 105.81 318.89 0.2635

Table 5

Case  Coygo Co.95 Co.90 Co.005
(i) 123.55 129.30 140.45 144.65
(ii) 128.75 136.00 150.15 155.55
(iii) 129.15 136.45 150.75 156.15

Comparing Tables 1 and 4 we see that both the variance and skewness of each
aggregate claim amount distribution are slightly increased when we introduce
parameter uncertainty to the individual claim amount distribution. However,
these increases are not of a huge magnitude. Comparing Tables 2 and 5, we
see that the same pattern is present in each table. The slightly smaller values
in Table 5 simply reflect the lower means in Table 4. Figure 1 shows the three
aggregate claims distributions.

These tables suggest that uncertainty in the claim number distribution is

of much greater significance than uncertainty in the individual claim amount
distribution. This is confirmed in Example 3 where we have considered a larger
portfolio. This is not particularly surprising. In each case the coefficient of
variation of the estimate of the parameter A of the claim number distribution is
very much greater than that of the estimate of the parameter 8 of the individual
claim amount distribution.
Example 3: The maximum likelihood estimate of the parameter of the exponen-
tial distribution based on 515 simulated individual claim amounts is § = 1.0137.
We will consider the three cases used in Example 2. For case (ii) we have adopted
the same prior distribution for the exponential parameter. The prior for the Pois-
son parameter has mean 500 and variance 2500. Table 6 shows percentiles of the
fitted and predictive aggregate claims distributions. In addition we have shown
percentiles when the individual claim amount distribution is assumed to be known
(and has mean 1). These cases are denoted by K in the table.
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Table 6

Case Co.90 Co.05 Co.09 Co.995
(1)K 556.45 568.65 591.85 600.45
(ii))K 561.80 576.40 604.35 614.75
(ii)K 565.85 580.95 609.85 620.60
(i) 548.95 560.95 583.85 592.35
(i)  555.35 569.80 597.45 607.70
(iii) 559.30 574.25 602.80 613.45

This table shows that apart from a small change in location, the use of fitted
and predictive individual claim amount distributions has little impact on the
percentiles of the aggregate claims distribution calculated with the known indi-
vidual claim amount distribution.

5. Reinsurance premiums

In this section we make a comparison between the pure premiums for excess of
loss reinsurance and for stop loss reinsurance for the three cases described in
Example 2.

5.1. Excess of loss reinsurance

Let Sr(M) denote the reinsurer’s aggregate claim amount under an excess of loss
reinsurance arrangement with retention level M. Figure 2 shows the pure excess
of loss premium, F(Sgr(M)), as a function of the retention level for each of the
three cases. These functions were calculated from the following formulae. For
case (i)

E(Sr(M)) = (A/0) exp{—-0M}

where A is the parameter of the fitted Poisson distribution and § is the parameter
of the fitted exponential distribution. For cases (ii) and (iii)

Bsaa) = 2= () o

where k and p are the parameters of the predictive negative binomial claim num-
ber distribution and « and é are the parameters of the predictive Pareto individual
claim amount distribution. We can see that for some values of M there is not
a great deal of difference between the pure premiums. However, the difference
can be significant. For example, when M = 2 the value of E(Sgr(M)) under case
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(iii) is about 5% greater than under case (i). Figure 3 shows that there are much
greater differences between the variances of the aggregate claims distributions for
the reinsurer. Again considering the case M = 2, the variance under case (iii) is
16% greater than under case (i). The formulae underlying Figure 3 are

V(Sr(M)) = (2X/6%) exp{—0M}

for case (i) and

visson) = 2P () T (e 2 (eow) )

for cases (ii) and (iii).

In both Figures 2 and 3 the values under case (ii) are very close to those under
case (iii). Our experiments with other parameter values for the prior distribution
for § in case (ii) indicate that the functions E(Sgp(M)) and V(Sgr(M)) are not
particularly sensitive to the parameters of this prior distribution. Thus, the main
reason for differences in values between the fitted and predictive aggregate claims
distributions is the difference in the claim number distributions.

5.2. Stop loss reinsurance

Figure 4 shows the pure stop loss premiums as a function of the retention level,
denoted d, for each of the three cases. These have been calculated recursively
from the discrete aggregate claim amount distribution. (See, for example Bowers
et al (1986).) This figure shows that the premium calculated from the fitted ag-
gregate claims distribution always understates that calculated from the predictive
distribution. For example, when d = 120, the premium calculated from the fitted
distribution is about 50% of that calculated from the predictive distribution of
case (iii).

6. Distributions whose moments do not exist

In section 2 we noted that when the model for individual claim amounts is log-
normal with parameters p and o, with a diffuse prior, the predictive distribution
is that of exp(X*)|D where X*|D ~ t(n—1,X,n(n—1)/(n+1)S). Animmediate
problem that arises with applying this predictive distribution to insurance prob-
lems is that its moments do not exist. Klugman (1992, p.21) notes this problem in
relation to a Weibull distribution. It is possible to calculate the aggregate claims
distribution with this predictive individual claim amount distribution, but it does
not seem to be a useful model, especially as insurance claim amounts are finite
in practice. In this section we consider two pragmatic approaches to the problem
of predictive individual claim amount distributions whose moments do not exist.
Each approach approximates the predictive distribution by a distribution whose

12



moments exist. The first is specific to the lognormal model, the second is more
generally applicable.

Our first approach is to approximate the t(n — 1, X, n(n — 1)/(n +1)S) dis-
tribution by a N(X,(n + 1)S/n(n — 3)) distribution. This is a well-known ap-
proximation, and as the value of n increases, the quality of the approximation
improves. An immediate consequence of this approximation is that the predictive
individual claim amount distribution is lognormal and hence the moments of the
predictive distribution exist. If we fit a lognormal distribution to data, then the
maximum likelihood estimates of the parameters are i = X and 2 = S/n. Hence
the moments of our (approximate) predictive lognormal distribution exceed those
of the fitted lognormal distribution.

The second, and more general, approach is to assume that there is a fixed
amount, say w, which is the maximum possible claim. Thus, if Y*|D = exp(X*)|D
has distribution function F'(z) we will approximate this distribution over the in-
terval (0,w) by F(z)/F(w). There is of course an element of subjectivity in this
approach, namely in the choice of w. However, the advantage of this approach
is that once again all the moments of the individual claim amount distribution
exist. We refer to this distribution below as the truncated predictive distribution.

To illustrate these ideas, we consider a set of 100 observations which were
simulated from a lognormal distribution with mean 1 and variance 3. These
observations gave X = —0.6889 and S = 142.36. Table 7 below shows the first
three moments of the three individual claim amount distributions. Case (i) is the
fitted lognormal distribution, case (ii) is the (approximating) predictive lognormal
distribution and case (iii) is the truncated predictive distribution. For case (iii)
the moments are actually the moments of the discretised distribution used to
calculate the aggregate claims distribution. For this case only, the individual
claim amount distribution was discretised using the method of crude rounding.
(See, for example, Panjer and Willmot (1992).) We assumed that w = 300. Under
the true distribution of Y*|D the probability of observing a claim in excess of
300 is less than 1078.

Table 7
Case 1st moment 2nd moment 3rd moment
(i) 1.0232 4.3469 76.6781
(i) 1.0537 4.8884 99.8625
(ii) 1.0598 5.3427 135.6334

As expected, the moments of both the approximate and the truncated predictive
distributions exceed those of the fitted distribution. Table 8 shows moments of
the aggregate claims distributions. For case (i) we have used a fitted Poisson(100)

distribution for the claim number distribution, whereas for cases (ii) and (iii) we
used a predictive N B(100,0.5) distribution.

13



Table 8

Case Mean Variance Skewness
(i) 102.32 434.69 0.8461
(ii) 105.37  599.86 0.8008
(iii)) 105.98 646.59 0.9427

Whilst the means of the three distributions are relatively close there is a consid-
erable increase in variance and third central moment going from case (i) through
to case (iii). Strangely the coefficient of skewness is smaller in case (ii) than in
case (1).

Finally, to get an idea of how appropriate these approaches are, let us consider
percentiles of the aggregate claims distributions. Table 9 shows percentiles for
four aggregate claims distributions. Cases (i) to (iii) represent the situations
covered in Table 8. Case (iv) represents the true predictive distribution, using
the true distribution of Y*|D and a NB(100,0.5) counting distribution.

Table 9

Case Co.90 Co.o5 Co.99 Co.995
(i) 129.10 139.10 161.70 171.90
(i) 136.95 148.60 174.50 186.00

(iii) 138.35 150.75 179.50 193.20

(iv) 138.35 150.75 179.50 193.20

The ordering of values in Table 9 is what we would expect from Table 8. Two
features stand out. First, there is quite a difference between values in cases (ii)
and (iv). Second, case (iii) proves to be a very good approximation to case (iv),
in terms of percentiles at least.

Each of the above two approaches has its advantages and disadvantages. The
first approach has the advantage that the predictive individual claim amount
distribution is easy to deal with, particularly if we wish to calculate moments. It
also has greater variability than the fitted lognormal distribution. However, both
the moments and percentiles are smaller than in case (iii). The second approach
has the advantage that its percentiles provide a good match for those of the true
predictive distribution. (It is largely a feature of our discretisation interval that
there is exact correspondence in the figures given in Table 9.) The disadvantage is
the subjective element introduced by w. Although there are major disadvantages
to fitting parameters to distributions by matching percentiles, it does seem like
a possible way of determining a suitable value for w. However, our experience
has been that the moments of the predictive aggregate claims distribution are
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more sensitive to the value of w than the percentiles are. Nevertheless, we would
suggest that truncated predictive distribution provides a good solution to the
problem of predictive distributions whose moments do not exist.

7. Conclusions

The main conclusions to be drawn from the examples in Section 4 is that param-
eter uncertainty has a major impact on moments and percentiles of aggregate
claims distributions. In particular, parameter uncertainty in the claim number
distribution seems to be of more importance than in the individual claim amount
distribution when the moments of the predictive individual claim amount distri-
bution exist.

The objective Bayesian approach may lead to predictive distributions for
which moments do no exist. However, we have shown in Section 6 that given
a Bayesian predictive distribution we can modify this distribution in such a way
that it 1s suitable for insurance purposes.
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Appendix 1

A random variable X is said to have a t-distribution with parameters v, u
and p, denoted t(v, i, p), if the density of X is

fe) = DGO DIVE (| ple—w?)
Vrul'(%) v
for —o0 < £ < 00, where —co < 4 < o0, ¥ > 0 and p > 0.
The quantity (X —u),/p has a Student t-distribution with v degrees of freedom
denoted #(»,0,1) or ¢,. It is well known that if Y ~ ¢, then E(Y) = 0 and

V(Y) = v/(v — 2) provided that v > 2. It therefore follows that E(X) = y and
V(X) =v/(v — 2)p provided that v > 2.

Appendix 2

Suppose X1, ..., Xnlp, 02 % N(p,0?) and let 7 = 1/02 and S = 3, (X; —
X)%. We have

2

ulr,D ~ N(X,>)
v S
D~ G(2 2)

where v =n — 1 and )
ulD ~ i, X, n(n ~ 1)/5)
Suppose X* is the next observation from the N(g,o?) distribution. Then the
predictive density for X* is given by
f@Ip) = [ [ fa"lu,7 D)f(ulr, D)f(r|D)dudr
-3 )

a /oo ]oo 73 exp(—%(x* - H)Z).T% eXP(_%(j - #)2)-7'"2 exp(—;) dpdr
0 —o00

75 ™

® na o0 T, o 4
= [T en-T0) ([ en(-5(" - w? = D@ - w)?)) dudr
0 2 —00 2 2
Consider the exponent in the inner integral. We have

(2" = u)® + n(z — u)?)

*
[+

I
w|~n\:>|~n\>|~l
A ~~ ~~ —~

—2z2*p + p? + nz? — 2nFp + nu?)

8

(1 +n)p? —2u(z* + nz) + z*2 + nz?)
1

T(1+n) z*+nZ,, 2+nz> z*+ni,,
2 ((,u ( 1+n ) 1+n )

\‘
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Therefore, the inner integral becomes

(o) T . ™,
/_oo exp(—5(z" — p)* — —-(7 - p)*) dp
-3 T(L+n) (2 +nZ®  z*+nZ
a 777 exp(— ( 2 )( = G )2>)

T

2(1 +n)

(1 4 n)(z*? 4 nZ?®) — 2** — 2nzz* — nzzz))

Hence we have

f@ID) o [Triexp (_2(5+M) "

a (s+"(11=**+—r;v)2)j
- () (egm)
- (1l

and so
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