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1.

1.1

Introduction
Scope

The term case estimate, sometimes referred to as a manual estimate or
physical estimate, is used in this paper to mean an estimate of outstanding
claims liability in respect of a single claim.

Typically, these estimates are made by assessors who apply their experience of
the claims environment to the task. The assessment of the claim will make
subjective allowance for all its characteristics and circumstances. Occasionally,
attempts are made to objectify assessment by means of an expert system which
mimics the decision process of an experienced assessor.

An alternative means of rendering the assessment objective, and one that will be
discussed in this paper, is statistical case estimation. This consists of:

. Codifying as many of the claim characteristics, or attributes, as possible;
. Constructing a function that maps the collection of these attributes to a
liability value.

Because of the use of the attributes as arguments in the case estimate function,
they will also be referred to as covariates (of the liability value). Some will be
objective, eg age at claim occurrence, others may be less so, eg claim involves
an injury that is “serious”. Some covariates may be static, eg pre-injury eamings
(for workers compensation claims); others may be dynamic, eg amount of
benefit claimed to date.

The objective formulation of statistical case estimates (SCEs) makes them
comparable to some extent with loss reserves obtained in the aggregate by
statistical means. Often these can be viewed as involving very rudimentary
SCEs, with only accident year and development year as covariates. Generally,
such loss reserves will be referred to as aggregate loss reserves.

As a slightly more complex example, it is not uncommon to find workers
compensation aggregate loss reserves differentiated by gender of claimant.
Evidently, the more the differentiation of aggregate loss reserves, the greater
their similarity to SCEs.

Indeed, aggregate loss reserves may be viewed as extreme cases of SCEs, and
vice versa. In practical terms, however, techniques involved in the two are
rather different, as will be discussed in the sections following.

The present paper will attempt to keep the development of SCEs as general as
possible. However, the backdrop reflected by specific examples will reflect the
workers compensation line of business (LOB). This is due to the authors’ biases
in experience, and the fact that SCEs perhaps have their greatest value in this
LOB. This, however, is not to deny their feasibility and value in other LOBs.
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1.2

1.3

Motivation

Case estimates (statistical or not) become useful whenever loss reserves are
required for small groups of claims. Correspondingly, the smaller the group,
the less useful become aggregate loss reserves.

For example, it might be estimated with considerable confidence that the
average loss reserve per claim unsettled from the latest accident year of an entire
portfolio is $15,000. However, assignment of a value of $45,000 to a group of 3
claims may not be at all sensible if one of the claims involves serious brain
injury. In this case, even poor quality case estimates will out-perform high
quality loss reserves.

The matter of case estimation versus aggregate loss reserving, and the bearing of
claim sample size on this question, is discussed in Section 3.1 of Taylor (2000).
This discussion can be largely summarised by the following points:

. The law of large numbers usually operates effectively for whole
portfolios, but not for small groups of claims;
o Consequently, the information value of covariates is low in large

samples, eg the various injury types will be proportionally represented in
a large sample;
o Conversely, the information value of covariates is high in small samples.

There is a variety of reasons why estimates of liability may be required in
respect of small groups of claims. In the case of workers compensation: '

. there may be a need simply to provide small employers (with few claims
each) with information on their claim costs

. experience rating of individual employers would require realistic
estimates of their separate claim costs

. even within large employers, for which aggregate loss reserving methods

may be effective, there may be a need to allocate claims to smaller sub-
divisions, eg cost centres.

SCEs provide objective estimates of these liabilities. They also provide
estimates that are consistent one with another, where the quality of manually
constructed case estimates would vary with the skill of the estimators.

Structure of the paper

This paper discusses a number of the theoretical and practical considerations in
the construction and maintenance of a SCE system. The discussion is developed
in as generalised a context as possible. However, in the provision of illustrations
of the generalisations and numerical examples, coherence has been best served
by a single case.

All illustrations and examples are therefore drawn from the scheme of workers’
compensation provided by one Australian state several years ago. This scheme
1s underwritten and supervised by the state, though claims are managed by a
number of private sector insurers. The data set used in the numerical examples
is scheme-wide.
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2.

2.1

Payment types and their dependencies

General commentary

Typically, losses paid in a specific line of business may be categorised according
to payment types. In Liability LOBs these might be heads of damage, such as
economic loss, medical costs, etc. More generally, a payment type constitutes a

specific body of claim payments likely to have its own distinct characteristics.

These characteristics might include:

. frequency;
total cost;
. the distribution of the payments over the lifetime of a claim, and

particularly whether the payments occur predominantly as single or
periodical amounts;

as well as perhaps their general nature and causation.

In short, payment types are categories of claim payments that deserve, for
whatever reason, separate models. For the paper’s workers’ compensation
example, the following payment types are identified:

. Weekly Compensation

. Medical, in two sub-divisions:

- inrespect of claims with some weekly compensation paid (lost time
claims)

- inrespect of claims with no weekly compensation paid (no lost time
claims)

Rehabilitation

Death

Specific Injuries (for which tabulated amounts of benefit are paid)

Common Law (amounts paid pursuant to issue of a writ alleging

negligence of employer)

. Pain and Suffering (administratively determined, as opposed to the P&S
component of a Common Law award)
. Legal, in three sub-divisions:

- Common Law (the legal costs associated with the trial of a case and
pre-trial procedures)
- Tribunal (the costs of administrative dispute resolution bodies)
- Medico-legal (the costs associated with the assessment of medical
injuries for the purposes of legal or administrative dispute resolution)
. Investigation
. Other.

As an illustration of the differences that might arise between payment types,
Figure 2.1 displays the respective distributions of claim payments by age of
claim for Weekly and Common Law payment types.
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Expected payments per claim

2.2

Figure 2.1
Distribution of claim payments by age of claim
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Dependencies

While each payment type should be modelled separately, it will not always be
advisable that they be modelled independently. Where payments under
payment type A are in some way provoked by payment type B, it will be
preferable to recognise a dependency of the model for A on that for B.

As an example of this quite direct type of dependency, the Common Law Legal
costs payable in respect of a claim will be related (on average) to the Common
Law claim payments themselves (ie the size of award).

As a somewhat less direct dependency, Medical costs over the life of a time lost
claim will be correlated with the continuance of the incapacity generating
Weekly Compensation. In this case both Weekly Compensation and Medical
costs are driven by a common process, the continuance of incapacity.

The ultimate inputs to all payment types must of course be the attributes of the
claim under consideration.

Thus, the general structure of the model for an individual case estimate will be
as in Figure 2.2, which illustrates the following features:

. Separate modules for separate payment types

o Some cascading of these modules (output from one module serves as
input to another)

. Some modules having common inputs

o Ultimate dependency of all modules on claim attributes.
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2.3

Figure 2.2
General structure of case estimate model
Claim
attributes
Process
Payment Payment Payment
type A type B type C
Payment
type C

Example

The flowchart in Figure 2.3 illustrates the types of dependencies that may exist
between processes or events and workers’ compensation payment types. The
types of dependencies that exist will also be affected by benefit design. A link is
shown between common law payments and weekly payments, where it is
common for weekly payments to cease after a common law payment has been
made.

Table 2.1 also lists some examples of claim attributes that may affect liability.
The table is not at all intended to be exhaustive.
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Figure 2.3

Example of payment type dependencies

Claim
attributes
(Table 2.1)
Incapacity Death
o |
No time Time Death
lost lost payments
Medical- Weekly —» Common
only | payments Y law
payments 4— payments
Medical/ Common
|y rehabilitation | — law legal
payments costs
Lump_sum NN Weekly
Y specific Redemp-
injury :
payments tions
fu?flt{;ﬁz — | Tribunal/
g lump sum Medico-
payments legal costs
>
Investigation
> /Other
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Table 2.1

Example of claim attributes affecting liability

Claimant or
claim characteristics

Claim status
characteristics

Injury date
Notification date
Claimant age

Sex

Employer size

Nature of injury

Type of accident
Cause of accident
Bodily location of injury
Pre-injury earnings
Number of dependants

Incapacitated or active (back at work)
Number of days in current status
Spell number of status®

Total days of incapacity to date
Injury severity code

Note: (a)  Spells are defined and discussed in Section 5.
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3. Statistical tools

3.1 General modelling considerations
Objective

Consider a single claim on a specific valuation date. The SCE objective is to
map the claim’s attributes to a forecast of claim payments day by day into the
future. The forecasts are required separately by payment type. Thus, the
required output is as illustrated in Figure 3.1.

Figure 3.1
Required claim payment forecast
Expected etc
payments -~ Payment Type B
Payment Type A
Day Day etc Day .
1 2 n Time

-

Valuation Date

Preferably, the payments of Figure 3.1 would be expressed in money values of
the valuation date. They could then be subjected to any required manipulations,

such as:
° increase to allow for future inflation of benefit levels
. discounting to present values before collation into case estimate.

Form of model

The claim payment process in respect of a particular claim under a particular
payment type will be determined by:

. a claim frequency process
. a cost severity process.

It will usually be desirable to model these two processes separately, though they
might be merged into a single claim cost process for some of the less substantial
payment types.
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3.2

Taken at the broadest level, payment types may be categorised as generating
claim payments either:

o as long as a claim remains in a particular status; or
. where a claim attains a particular status.

As an example of the first category, the status might be “incapacitated”, and
Weekly Compensation payments would be made for the duration of this status.
Such payments are continuing, or periodical, in nature.

Payments in the second category occur as isolated payments, or small groups of
payments. They are not of a continuing nature. For example, a Common Law
payment will occur when a claim attains a “settled” status, whether settlement be
by verdict or negotiation.

The natural vehicle for modelling continuance of a defined status, as required for
payment types in the first category, is Survival Analysis (see eg Kalbfleisch and
Prentice, 1980). The probability that the claim continues in the status over the
next unit of time is modelled as a function of the covariates. This is discussed in
Section 3.3.

The second category of payments may be modelled in various ways. This paper
uses Generalised Linear Models (GLMs) (McCullagh and Nelder, 1989).
Again the relevant quantities, this time expected frequency and cost severity, are
modelled as functions of the covariates. These models are discussed in Section
3.2.

Generalised Linear Models

As GLMs are discussed in detail elsewhere, only their most basic features will
be covered here.

Consider a set of independent random variables Y, i =1,2,...,n, of the form:

Y,=h"(X]B)+e, (3.1)

where

X! = i-throw of an n x p design matrix X7, this row containing the values
of p covariates (or predictors) associated with the i-th observation

B = p-vector of parameters associated with the p covariates

e = centred stochastic error term (ie Ee, =0)

h:U — R is one-one for some subset U of R.

The linear function X/ is called the model’s linear response. The function 4
i1s called the link function.

Suppose that the e, are all stochastically independent.
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In more explicit form, (3.1) is:

Y;‘_'h_] (pz_lXiijJ'*'ei, (3.2)

where X[ =(X,,,... X, ).

P

If h were linear and e, normal, (3.1) would be a general linear model. For

more general choices of # and e¢,, (3.1) is called a generalised linear model
(GLM). Thus, GLMs extend the general linear model by allowing for:

o non-linear relation between the response variable and its covariates; and
. non-normal error terms.

Their best known implementations are made in the statistical packages
GENSTAT (the successor to GLIM), SAS and S-Plus. These are based on

specific families of # and e,. The error terms are taken from the exponential
dispersion family of distributions, according to which Y, has the pdf

p(¥)= éXp{[y,.e,. ~5(6,)]/a,(8) +c(r-0)} (3.3)
for suitable parameters 6,,¢ and functions a,(-),5(-) and ¢(-).

It may be shown that

E[Y]=b'(8;) (3.4)
V[Y]=0"(6)a,($) (3.5)
where the primes denote differentiation.

The usual form of g, (¢) is:

a,(0)=¢/w, (3.6)
where the w, are known quantities. Then (3.5) and (3.6) yield:

V¥]=7¢/w, (3.7)
where

2 =57(6,). (3.8)
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3.3

Since the variance is proportional to ¢, this quantity is referred to as the scale
parameter. Since the variance is inversely proportional to w,, this quantity is

referred to as the prior weight associated with Y.

Typically, one of the covariates included in X, (denote it by X,;) will be the
constant 1. Then, with the other covariates denoted by X;,j =1, 2, etc, (3.2)
becomes:

Y,=h" I:Bo +§X,.j;3j]+e,. (3.2)

with B, an intercept term.

A modification of (3.1) sometimes used is the following:
Y,=h" (o, + X/B)+e, (3.1b)

where o, is a known quantity (as opposed to an unknown intercept), called an
offset.

Example 1

Set ai(¢)=¢,b(9i)=%9f,c(y,.,¢)=—%[log(2n¢)+y,.2/¢] and ¢=c’. Then

(3.3) is the normal pdf with mean 0,, variance c°.

Example 2

Set a,(9)=1,6(8;)=exp6,,c(y;)=-logy,! fory =0, 1, 2, etc. Then (3.3) is
the Poisson pdf with mean exp6, .

Example 3

Set a,(9)=9,b(6,)=log(-1/6,)expc(y;,¢)=y! "y /T(y) withy=1/¢. Then

(3.3) is the gamma pdf with mean —1/6,, variance = (mean)2 /y.
Survival analysis

Let T be an observation on the length of time of survival in a particular status. It
is supposed that T is stochastic with d.f. F('). Then the complementary d.f.

S(t)=1-F(t)=Prob[T >1] (3.9)

is known as the survivor function.
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For S(-) differentiable, the hazard rate associated with this survivor function is

defined as

h(t) =—S’(t)/S(t)=——g;logS(t). (3.10)
By (3.10),

h(t)dt =Prob[t <T <t +dt|T 2t] (.11)
S(¢) = exp- '[:h(u)du. (3.12)

Now consider a sample of observations of survival times, denoted by T,, i =1,2,
etc. Suppose that 7, is sampled from a survivor function S, () with associated

hazard rate #, () , and suppose further that 4, () may be expressed in terms of a

number of covariates associated with observation T, ie
h(t)=h(t:X,) (3.13)
where X, is a vector containing those covariates.

It is evident that there are many possible forms of the dependency of 4, on X,.

This paper will be concerned with the proportional hazards (PH) regression
model in which (3.13) takes the form:

k(1) =hy(t)exp(X]B) (3.14)
for a suitable parameter vector . Note that X, may depend on 7.

The function A, (-) is referred to as the baseline hazard rate, and the associated

survivor function S,(-) as the baseline survivor function. Note that the
survivor function for the i-th observation is determined by the scalar quantity

XiTB = Z]Xg,‘Bj b
j=

which therefore operates as a form of risk score associated with the i-th
observation. Indeed, the quantity X B, operates as a risk score for the j-th
covariate in respect of the i-th observation.

The hazard rate is proportional in the sense that, if X ,T = (X e X, i ), then
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P
(1) =hy(t)exp) X,B;
j=l
= hy () o000, (3.15)

with

a; =expX,B; (3.16)

g

= multiplier in respect of j-th covariate acting on the hazard rate associated
with the i-th observation.

The PH model was introduced by Cox (1972). Its baseline hazard function may
take parametric or non-parametric form. In the latter case, the PH regression

model is called a Cox regression model. The function A,(-) is then to be

estimated along with the parameter vector 3.

Cox regression may be implemented through the SAS procedure PHREG. A
SAS-oriented discussion of this, and in fact survival analysis generally, may be
found in Allison (1995).

Categorical and continuous covariates

Categorical covariates

Some covariates included in model (3.1) or (3.14) are categorical, or discrete, in
nature. The simplest example is gender of claimant, which assumes just the two

values M and F.

This would appear as generating two variables in either model, which might be
denoted X, and X, respectively, and defined as follows:

X, = lifgender =M (3.17)
= 0 otherwise

X = lifgender =F (3.18)
= 0 otherwise.

Thus, in (3.1) and (3.14),

XTB=X i Bors + X By + - | (3.19)

This may be expressed in the form

XTB =By + Xor i (B —Biu )+ (3.20)
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If the covariates include a unit term so that (3.1) takes the “intercept form”
(3.1a), then B, may be absorbed into the intercept, whence (3.20) shows that

the contribution of gender to the linear response X/ is

Oforg=M
Ber —Bgy forg=F. (3.21)

In GLM parlance, gender is a factor variable (GLIM) or a class variable (SAS)
with 2 levels, M and F. When the model is expressed in the form (3.21), the
level g = M is called the base level of variable g. As the base level has a zero
coefficient, by definition, it is said to be aliased from the model.

The same concepts apply to categorical variables with more than two levels:

) One level is chosen as the base and is aliased.
) The coefficient associated with each other level measures the effect on
the linear response of the difference between that level and the base.

Grouped values of categorical variables

Some categorical variables may assume many values. For example, employers’
industry codes may consist of 4 or 5 digits, generating some hundreds of values.
To recognise all of these within the model would be likely to fragment the data
such as to render them incapable of producing statistically significant results for
other than a tiny proportion of the codes.

In this situation, greatest information will be extracted from the data by forming
groups of values of the variable concerned. The viable number of levels of a
single categorical variable is clearly dependent on the size of the data set and the
number of other variables included in the model, but the authors have
experienced difficulty in deriving meaningful results for more than about 10
levels, even using quite large data sets.

A natural grouping of variable levels may exist if the variable classifies
according to a tree structure. An example of this would be the ANZSIC system
of industry coding (Australian Bureau of Statistics, 2000) which is an alpha-
numeric system forming a 5-level tree. Codes take the form Xnnnn where X is
an alphabetic character, n numeric and the i-th character classifies the i-th level
of the tree. For example,

A = agriculture, forestry and fishing
Al farm production

All horticulture and fruit growing
AllS = apple growing
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An initial grouping of ANZSIC codes might consist of collapsing all
classifications below the top level of the tree. The groups would be just A, B, C,
etc. Suppose this lead to a model which recognised the following groupings as
statistically significant in their differences: A, D, I — K, all other. Further
modelling might then investigate the second level of the tree, eg subdividing A
into Al, A2, etc.

An example of grouping a categorical variable is given in Appendic C.4.

Various categorical variables may have this tree structure, eg nature of injury,
body site of injury, cause of accident.

Continuous covariates

Some covariates are continuous in the sense that:

. Their sets of admissible values are interval subsets of the real numbers;
and

. The linear response is expected to be a continuous function of the
covariate, ie small changes in the covariate produce small changes in the
response.

If X_ is such a covariate, then the linear response takes the form:

XiTB=inc ck (Xci)+"" (3-22)

where X, takes the value X for the i-th variable Y, and the basis functions

1

Sfu V>R, VcR, k=1,.,r arecontinuous.

An example of a continuous covariate would be age of claimant at occurrence of
claim. Ifone chose f, (x)=x*, k=1,2, then (3.22) would become:

XiTB=Bchci+B02X3i+‘" (323)
a quadratic function of age.

Any continuous covariate may be approximated by a categorical covariate,
constructed by taking intervals of its admissible values. For example, the
continuous covariate age may be represented in categorical form with levels say
15-19, 20-24, etc.

This will often be useful in exploratory work aimed at determining suitable basis
functions. However, a continuous representation like (3.23) will usually be
more parsimonious in its use of parameters.

The modelling of a continuous covariate would usually follow a procedure
consisting of the following steps:




Statistical case estimation 17

. Group ranges of values of the covariate X to form a categorical variable,
X* say. Suppose that these ranges correspond broadly to values
X =X,%,....

. Include X* in the model and so obtain estimates BI,BZ, etc of the model

coefficients associated with the different ranges.

. Plot the ﬁ; against the x; to gain some idea of how the two are
functionally related, eg linear relation, quadratic relation, etc.

o On this basis select the basis functions f, (X) k=1,2, etc to be used in
modelling the original covariate X. For example, if in the previous step

the ﬁ: appear to form a roughly quadratic function of the x;, then the

basis functions f, (x)=x*, k=1,2 would be adopted.

o Finally, the categorical variable X* is removed from the model, and
replaced by the selected set of continuous basis functions.

An example of the modelling of a continuous covariate is given in Section 6.4.3.
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4.

4.1

4.2

Financial structure of SCEs and payment type
components

Cash flows

The basic structure of an SCE was anticipated in Figure 3.1.

Let

t = t-th time period (day, week, etc) after the valuation date (z = 1, 2,
etc).

X; = vector of covanate values for the i-th claim for which an SCE is
required

¢, (X;) = cash flow in current values (ic money values of the valuation date)

predicted by model for the i-th claim in payment type p in period ¢.

Then the SCE in current values for the i-th claim is
e(X)=2 ¢, (X)) (4.1)
P

with

6 (%) =3eu ()

= forecast cost of payment type p. (4.2)
Alternatively,
e(X)=2 e (X)) (4.3)
t=1
with
(X)) =2 eu(X))
P
= forecast cash flow (from all payment types) in period ¢. (4.4)

Both forms (4.1) and (4.3) yield:

c(X,-)=Z§c,,, (X,)- (4.5)

Inflation and investment return

Let

g, (t) = inflation factor applying to payment type p over the ¢-th time period
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4.3

r(t) = rate of investment return at which liabilities are to be discounted over
the same period.

Define
w,(t)=[1+g, () J/[1+r(t)] (4.6)
v,(1)=w,(Ww,(2)..w,(1) (4.7)

7, (£)=, (), (2).., (1) w4 (1)

=[v, (t-1)v, ()]

Then, on the assumption that claim payments of a period occur on average at the

(4.8)

mid-point of that period, the case estimate that corresponds to c(X,.), but
including future inflation and discounted for investment return, is approximately

e*(X) =235, (0)en ()

(X)) (4.9)

Ms =

Nt

.‘
(]
—

with
¢, (X;)=7,(t)c, (X)) (4.10)
Frequency and severity

The claim payments c,, (X ,.) may be decomposed into frequency and severity
components as follows:

cp,(Xi)=fp,(X,.)sp,(X,.) _ (4.11)
where
f.(X;) = probability that a payment of type p occurs in the t-th period in

respect of the i-th claim
s, (X;) = -expected amount (in current values) of such a payment,

{

conditional upon its occurrence.

There are two reasons for studying frequency and severity separately.
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4.4

First, they are fundamentally separate processes. In the case of a workers’
compensation weekly benefit, the expected amount may change slowly over
time, whereas the frequency is likely to change rapidly. Generally, a greater
understanding of the claim payment process will be gained by separate
modelling of the two processes.

Second, direct modelling of the quantities ¢, (X;) is rendered difficult by the

fact that it does not have a convenient parametric distribution. Let Ep,(X,.)
denote the number of periods of exposure to payment of type p in data cell (¢, X))
(past values of ). When E, (X,) is small, Prob[cp, (X)) =O] will be

substantial. This means that the distribution of ¢, (X;) will be mixed,

continuous on the strictly positive half-line, but with a probability spike at zero.

As X; may well specify 10 to 20 covariates, the exposures E,, (X ,.) will usually
be small.

While it is true that this situation has been addressed in a GLM context by
Jorgensen and Paes de Souza (1994) and Smyth and Jorgensen (1999), their
approach requires the assumption that severity be subject to a gamma
distribution, and also requires programming additional to the software provided
by the standard packages mentioned above.

This second argument for separate modelling of frequency and severty is well
known from pricing work in short tail lines of insurance (eg Motor), where it
applies equally.

Benefit types
Section 3.1 classified benefits as either:

° status related; or
. event (attainment of a status) related.

Figure 2.2 indicates that payments of one type of benefit may depend upon the
experience of another type. Thus, for the purpose of modelling, the various
benefits may be classified as follows:

. status related benefits
J event related benefits

- that also depend on status

- that also depend on other events
. without any such dependencies.

Sections 5 to 8 discuss some of the issues in modelling payments under these
different types of benefit.
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S.

5.1

Status related benefits

Status related benefits are those types of benefits that are paid as long as a claim
remains in a particular status. For example, weekly compensation payments are
made provided that the claimant remains in the “incapacitated” status. Such
benefits are periodical in nature, adopting the characteristics of an annuity.

Frequency

In the simplest case of a status-related benefit, for example, an annuity or a
pension, the benefit is paid provided that the claimant remains alive (“alive”
status). The frequency of payment is related to the survival curve of that
claimant. Once the status ceases (claimant dies or reaches some other defined
status), benefits cease.

In more complex cases, claimants may make transitions between several
statuses. Claimant status over time thereby becomes a stochastic process in the
same manner as introduced by Taylor (1971) and used by Haberman (1983),
Waters (1984) and others. This approach has been used by the Institute of
Actuaries and Faculty of Actuaries (1991) in their morbidity investigations.

In the case of weekly compensation payments, there are four relevant statuses
(or just states in the usual stochastic process terminology):

incapacitated (i)
active (a) (ie able to work)
retired (r) (ie having attained retirement age after which there is no
eligibility for weekly compensation)
. deceased (d).

Figure 5.1 indicates the possible transitions between states. Only changes of
state are indicated. Any state may be maintained from one epoch to the next, a
fact that is recognised only implicitly in the diagram.

Figure 5.1
Transitions between statuses: weekly compensation

r l d
In the case of a transition from state m to state n, m will be referred to as the
source state and n the destination state.
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A brief discussion of discrete time finite-dimensional stochastic processes, such
as that involved here, is given in Appendix A. The graph of the process, defined
there, 1s

F(j) = 1 a r d

(=T I
SO = =
OO = -
O =
— )

 where j is used in the present section as the discrete time variable for the
stochastic process (¢ in Appendix A).

Hence, r and d may be recognised as absorbing states.

Note that p,, (j)=0, m =1, a, d except at retirement age, where probabilities

P (7) are defined in Appendix A. The probabilities p,, (j), m = i, a will

usually be low, and so the distribution of a particular claim’s future state
occupancy will usually be dominated by transitions between 1 and a.

Appendix A discusses 2-state processes, and shows how the progress of a claim
can be described by a sequence of spells in the two states.

Define a spell of incapacity as an unbroken period of incapacity that is maximal
in the sense that it is not immediately preceded or succeeded by any other
incapacity. According to this definition, the first day of incapacity experienced
by a claim commences the first spell of incapacity.

A spell of activity is similarly defined.

Frequency of payment of weekly compensation is determined by the sequence of
alternating spells of incapacity and activity set out in Table 5.1.

Table 5.1
Status Spell number Duration
(i,a) (m)
Incapacity 1 i, days
Activity 1 a, days
Incapacity 2 i, days
Activity 2 a, days

Note that the spell of activity succeeding Spell 1 of incapacity is designated
Spell 1 of activity. Any period of activity before the commencement of
incapacity may be denoted Spell 0 of activity.
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Define S, (j;X,) as the probability that a claimant k with covariates X,

remains in spell number m of status s (i or a) for at least j days, and 4 ( X k)
as the probability that, by day j + 1, the claimant will no longer be in status s, ie

X)-S,(j+LX,)
S (7;X,)

S (J;
d,(j;X,)= nlJ (5.1)

Figure 5.2 considers a claim for which incapacity commences in day 0, and
illustrates its possible development over days 1 and 2 as a binomial branching
diagram. The binomial probabilities defined in the preceding paragraph are
attached to the relevant branches.

Figure 5.2
Binomial branching of claim status

Day 0 Day 1 Day 2 Status

S (2; X, ) Incapacitated

/ spell 1 i
S (L,X,) Incapacitated

spell 1
_ Active

Incapacitated d/ (L X,) spell 1 a
spell 1
. (1 X Incapacitated )
d/ (L X,) ot 1(/")7 spell 2 !
spell 1 \
. Active
Sy (1’Xk) spell 1 :

Let f(j;X,) denote the expected frequency of payment at day j for a claimant

k with covariates X;. This can be evaluated in terms of more elementary
probabilities, such as displayed in Figure 5.2. Note, however, that the
compounding of single-step probabilities requires a statement of the assumptions
made about stochastic independence between them.

It is implicit in the above development that transition probabilities between
states depend on the duration of the spell in the source state. Hence the
independence assumption would not be that the process is fully Markovian as
described in Appendix A, where transition probabilities depend on only the
source state and no other history.

The simplest useful case would involve the assumption that the process has no
memory beyond its current spell, ie the transition probability out of a spell
depends on the spell duration as well as the source and destination states, but on
nothing else. Then Figure 5.2 leads to the following evaluation:
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I

Z (Probabilities resulting in a status of i)
SH(2x,) + 4/ (LX,) 4" (LX,)- (5.2)

r(2x,)

Similar expressions may be written for f ( 7 X k). They become increasingly

complex with increasing ¢, as the number of possible trajectories of the claim
between days 0 and ¢ increases.

In practice, the independence assumption on which (5.2) 1s based is rather
restrictive. For example, it might be desirable that transitions from a to i depend
on the total time spent in state i in all previous spells. In this case, (5.2) would
be replaced by the following:

F(2X,)=5(2X,)+d (L X,)d} (1; X,.,1) (5.2a)

where the final 1 in 4 (1; X,,1) recognises that a total of 1 day of incapacity has
occurred prior to the a —> i transition.

The generalities of this are considered in Appendix A where it is pointed out that
a Markovian assumption can be maintained if the set of states defining the
process is enlarged. In the above example, the set of states would be the
Cartesian product:

possible possible
{i,a}xq spell $x{ spell :for(5.2)
numbers durations

possible possible possible total
{i,a}xq spell px{ spell }x{previous occupancies for (5.2a)
numbers durations of state

Survival of incapacity or activity status

The quantities S; (j;X,) are survival probabilities in the sense discussed in

Section 3.3. They are in fact particular cases of the function S(j) appearing
there, and may be estimated from the data as discussed there. As discussed just
after (3.14), these survival probabilities will be characterised by risk scores that

depend on the covariates X,. For each claim, there will be one risk score per
survivor model, ie each claim will be associated with an incapacity risk score
B, and an activity risk score f3,.
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Example 1

Figure 5.3 illustrates baseline survival probabilities S,'(;; Xy for incapacity
spellsm=1, 2, and 3.

Figure 5.3
Baseline incapacity survival probabilities for incapacity spells 1, 2, and 3
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Example 2

Figure 5.4 illustrates values of S;/(j;Xi) for spell 1 of incapacity, where the Bk
risk scores vary by nature of injury. In this example, the scores associated with
each type of injury are:

e Stress / mental illness: -0.421
¢ Diseases of the muscular-skeletal system and connective tissue: -0.277
e Fractures: +0.193
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Figure 5.4
Survival probabilities for incapacity spell 1, by nature of injury
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Covariates

Covariates affecting the shape of the survival curve may be static or dynamic.

The values of static covariates are determined permanently at the outset of the
claim. Examples are age at injury, occupation, employer industry, etc. The
values of dynamic variables may change as the claim progresses. An example,
spell number, appears in the above example.

5.2 Severity
Typically, the periodical amount of a status related benefit will be related to the

previous earnings or earning capacity of a claimant. Table 5.2 gives one
example of a legislative definition of a workers’ compensation weekly benefit.
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Table 5.2
Example of status related benefit structure

95% of pre-injury average weekly eamnings
(maximum $X), less notional earnings (where
there is some capacity to work)

<13 weeks’ incapacity:

> 13 weeks’ incapacity: 75% of pre-injury average weekly earnings if no
current capacity for work; or

if some capacity for work:

60% of [MIN ($7, pre-injury earnings)

less notional earnings].

> 104 weeks’ incapacity: Weekly benefits cease

Unless

worker is permanently incapacitated, with no
work capacity, in which case benefits continue
while this is the case until retirement.

In such a structure, it would be natural to forecast severity in the form of a
multiple of pre-injury earnings. In the notation of (4.11),

s, (X)=W.u(i) (5.3)
where
W, = pre-injury earnings associated with the i-th claim (W, would be a

component of the vector X))

I forecast amount of incapacity accumulated by future period ¢ (from
the model of Section 5.1)
n(i)

multiple applicable when accumulated incapacity is i, .

According to Table 5.2, one would expect p(i,) to be close to 95% for low

values of i, to step down suddenly as i, increases through 13 weeks, and again
at 104 weeks.

Because weekly compensation in the example is reduced on account of notional
earnings (essentially the amount the claimant is deemed capable of earning,

whether actually earning or not), one would find that the multiples p(z’,)

experienced in practice would lie below their maxima of 95% and 75% specified
in the table.

The best guidance as to future levels of benefit paid in respect of a particular
claim may well be the present level. For example, (5.3) might be refined as
follows:

S, (X;)=min[W, (i), B,r,_ (X)) /7, (X,)] (5.4)

where
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v = valuation period
T = period during which claim i was reported
B; = average weekly benefit rate paid in respect of claim i in period v

r.(X;) = the model ratio of benefit rate payable in k-th quarter after reporting
quarter to that payable in the reporting quarter (NB 7, (X,)=1) for a

claim with covariates X.

Usually, the r, (X;) would form a decreasing sequence in & for each choice of

X;. The covariates X, might include an indicator of injury severity. If so, it is
likely that the sequence would be flatter for the more severe injuries.

In (5.4), all quantities other than the 7,(+) are directly available from either

legislation (eg p) or the history of individual claims (eg B). The r, () must be
modelled.

As an example, 7 (X;) might depend on X, through some measure of injury

severity included in X;. For a particular injury severity, one might observe, as a
reasonable approximation

3 =max[rm,1—k(Ar):| - (5.5)

for constants 7, and Ar. The representation (5.5) would be obtained by some
form of regression.




Statistical case estimation 29

6.

6.1

Event related benefits
General considerations

Event related benefits are those that are paid when a claim attains a particular
status or when a defined event or events occur.

Types of event-related benefits

As illustrated in Section 2 and discussed in Section 4.4, the modelling of event
related benefits may be classified into the following types:

) those that also depend on status (see Section 7)
(i1) those that also depend on other events (see Section 8)
(1)  those without any such dependencies.

This section discusses issues in modelling type (iii). The frequency of the event
and the severity of these types of benefit depend on the covariates of the claim,
including age of the claim. The frequency of the payment at age ¢ of the claim is
not conditional on the continuance of a particular status or some other particular
event occurring.

Example 1 — Death Payments

In workers compensation, a death payment is made when an event at work (e.g.
collapse of an underground mine), or the work environment (e.g. asbestos
fibres), causes the claimant’s death.

Example 2 - Specific Injury Lump Sums

A claimant who is injured, but is not necessarily incapacitated (ie. the claimant
is active and has returned to work), may apply for a schedule lump sum which
relates to the claimant’s particular injury, e.g. loss of one eye. Payment is made
in the event that the claimant applies for such a benefit (and is subsequently
approved by the insurer). However, payment of such a benefit is not conditional

on other events (eg. payment of another benefit type) or status (eg. remaining
incapacitated).

Risk Scores

The natural vehicle for modelling event-related benefits is the GLM structure, as
described in Section 3.2.

Re-expressing (4.11) in terms of age j of claim X at time ¢,
cni(Xi)zfpj(Xi)slz/'(Xi) (6'1)

where f.(X,),s, (X;) can be modelled using the following variations of (3.2):
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6.2

fpj(Xi):h_](X;Bf)'*'eﬁv (6.2)

sy (X)) =g (X1B, )+e, (6.3)

where functions 4, g are the link functions for f,(X;) and s,(X;) respectively, and
en, eg; are the error terms for f,(X;) and s,{(X;) respectively.

Define
= XIB, y=f.s (6.4)

= risk score for claimant i for payment type p at age j for y = f (frequency)
or s (severity).

Then
[ (X)=h"(n,)+e, (6.5)
sy (X:)=g" (n,)+e, (6.6)

Thus frequency and severity risk scores can be derived for claimant i with
covariates X; at age j, in a manner similar to that discussed in Sections 3.3
(survival analysis) and 5.1 (status related benefits).

Covariates

Covariates affecting frequency or severity may be static or dynamic, just as in
Section 5.1.

An example of a dynamic covariate is the total incapacity experienced by the
claimant to date which would be derived from the incapacity incidence module
as specified in Sections 5.1 and 9.

Frequency

The quantity £,; (X;) is an amount in the range
0< f,(X;)<1. (6.7)

In some instances, f; (X;) may be set to zero or 1 if a defined event has already
occurred at the time of valuation, for example the claimant may be dead at the
valuation date which then precludes payment of type p in the future.

Joj (Xi) is modelled from the observed statistics N, (.X;) and E,; (X,)

where
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N,(X;) = observed number of claims with covariates X; that received
payment type p at age j

E i (X ,.) = number of claims with covariates X; that are exposed to receiving
payment type p at agej.

GLMs have flexibility in the choice of the distribution of error term and the link
function to ensure the condition (6.7) is met. A common choice for modelling

such a quantity is to consider f, (X ,.) as a binomial proportion with N successes

in E trials. The logit transformation is a common choice of link function,
although the probit and complementary log-log functions may be useful.

If
NPj(Xi)~Bin|:Epj(Xi)’fpj(Xi):] (6.8)
with

fi(Xi)=p+e;

- (6.9)
=k (n,)+e,
then
. for logit link function,
vl
=log| —/—— 6.10

Ny g(l_ p) | (6.10)
. for the complimentary log-log link function,

N =log[-log(1-p)] (6.11)
. for the probit link function,

up =@ (u) (6.12)

where @ is then standard normal distribution function.

Distributions for e; other than binomial can also be chosen.
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6.3

Example

/,; (X;) ~ binomial, logit link

=p+e,

nl
ef

= 6.13
B e (6.13)

p
N = Z X, B, = frequency risk score for claimant i at duration j
k=1
+B,1 (gender = female)
+B,f (age)
+B,1 (occupation = nurse)
+.. (6.14)

where /(.) is an indicator function defined as follows:

I (condition) = 1 if “condition” is true
= 0 if false. (6.15)

Appendix C documents some of the detail of fitting a claim frequency, providing
examples of some of the aspects of modelling discussed in this sub-section.

Severity
The quantity s, (X;) is typically an amount in the range
s, (X;)>0. (6.16)

In the case of recoveries, s, (X;) may be negative. In this case, the amount
s,;(X;)==s,(X;) is modelled, and (6.15) still applies to s, (X,).

Several examples of modelling severity are given below.

Example 1

s,;(X;) ~ Gamma, log link (6.17)

SP] (Xl) =M, te;

(6.18)
= g_l (nsi) + esi

e

Tlei = log usi’ usi = en“ (6 19)
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Example 2

s,; (X;) ~ Power Gamma, log link (6.20)

let

s, (X)=[s,(x)], k>0 (6.21)
.. X)=u.+e.

SR/( 1) “s_x] est (622)

=& (nsi)+ €

with n; and e; asin (6.17) — (6.19).

Then

E[s,; (X)]=(n) x5, (6.23)

where b; is the bias correction factor for the inverse of transformation (6.21). It

can be shown that, if y=p_ +e, has pdf [F(y)]_l ¢y exp(-¢,y), y>0 and
independent of i, then

b =T(y+3)/v"T (). (6.24)
Example 3

s,; (X;) ~ log normal (6.25)
sy (X;)=log| 5, (X,)] (6.26)

=n,;+e;

e; ~N(0,6%). (6.27)
Then

E[s,(X,)]=exp(p, +1c?). (6.28)

In some cases it may be more appropriate to model s,,(X;) as a proportion of

some fixed dollar maximum if legislation places dollar caps on the total benefit
receivable. In such cases,

0<s, (X,)<1 (6.16a)

For example, in the case of scheduled lump sums, benefits may be of the form
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% x SM
where

r% = disability percentage
$M = statutory maximum,

and M may be adjusted periodically in accordance with an inflation index. In
the case of such adjustment, the ratio s, (X;) would be a more stable variable to
mode] than the actual benefit paid.

When (6.16a) holds, s,; can be modelled along the lines of the above examples,

but the combination of data transformation, link function and error distribution
must be chosen so that (6.16a) is satisfied. It may also be necessary to allow for

a continuous distribution of S, (X ,.) for 0 < 5 < 1, but a discrete mass of
probability at s = 1. The latter can be achieved by modelling an additional
frequency, conditional on f, (X ,.) in (6.7). This is

Prob[ s, (X,)=1]s, (X,)>0]. (6.29)
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7.

Event related benefits depending on status-related
benefits

A relationship may exist between the status of a claim at a particular point in
time and the payment of an event-related benefit. This section is explained by
reference to workers compensation weekly redemption payments, although it
can be applicable to any other relevant benefit types, for example common law
benefits.

In workers compensation, redemptions of weekly payments are made in the
event that the insurer approves of the redemption and the claimant accepts the
redemption amount. The claimant must, however, be in receipt of weekly
compensation payments, i.e. the redemption is made provided that the claimant
has the status of incapacity.

Let

Crj(s,m) = expected redemption payment (“R”) at claim age j to a
claimant who is
currently in spell m of status s (s equals i or a as defined
in Section 5.1), but who may be in any statusatj  (7.1)

crj(s,m,k) = expected redemption payment at claim age j to a claimant
who is
currently in spell m of status s given that the status at j is
k (k equals i or a) (7.2)
Note that when &k = a at claim age j then

cri(s,m,a) =0 (7.3)

Frg(d) = probability that a claim in day g of spell m in current
status s, will be incapacitated at age of claim d days (7.4)

For J

v

Jv +t, where j, is the age of claim at the valuation date

(7.5)

The derivation of Fne(d) is the subject of Section 9, and is defined more
explicitly in Section 9.2.

Assuming low mortality risk, and no benefits are payable after retirement, then
cri(s,m) = 2k cri(s,m,k) . Pr{s=k at j}

cri(s,m,i) . Pug(d) . (7.6)
with (7.3) taken into account.
The term cgi(s,m,i) is derived as described in Section 6, using the subset of

claimants that are incapacitated at each claim age. s and m are a subset of the
covariates relating to claimant X. Therefore using similar notation to (6.1),
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Cri(s,m,i) = JRi(X0) sgi(X,i) (7.7)

Jfzi(X,i) 1s modelled as described in Section 6.2, except that

Ngrj(X,i) = observed number of claims in status i with covariates X that
received a redemption payment at claim age j (7.8)
Eri(X,i)) = number of claims in status i with covariates X; at claim age j
(7.9)

sgi(X,i) 1s modelled as described in Section 6.3. (7.10)
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8.

8.1

8.2

Event-related benefits depending on other event-related
benefits

General considerations

These types of benefits are those that are paid when a claim attains a particular
status or when a defined event or events occur. In the cases considered in the
present section, the occurrence of the defined event in turn depends on another
event-related benefit.

Example 1 — Pain and Suffering Lump Sum payments

Example 2 of Section 6.1 describes the Specific Injury lump sum benefit type.
Within the statutory benefit structure of workers compensation, there may also
be a lump sum Pain and Suffering (P&S) award. The P&S component is not paid
unless the specific injury lump sum payment has been approved and made.
Therefore, the incidence of payment of the lump sum P&S component is
contingent on the specific injury payment.

In the Australian workers compensation example, the severity of the P&S
payment is highly correlated with the severity of the specific injury payment.
The severity of the pain and suffering component can therefore be modelled as a
function of the specific injury payment.

Example 2 — Claimant’s Common Law Legal Costs

The claimant’s common law legal expenses may be payable by the insurer if the
claimant is successful at common law. Payment of these expenses occurs only if
a common law payment is made. Often, there is a high correlation between the
amounts of legal expenses and the common law settlement (with legal fees-
payable as a percentage of the settlement), and the severity can likewise be
modelled as a function of the size of common law settlement.

Frequency and severity

An example of how this type of benefit can be modelled is provided.

Let
cpi(Xy) = expected cash flow for payment type p at age of claim j
days to claimant .X; (6.1)
p* denote the event-related payment type on which payment
type p depends (8.1)
k = expected lag between payment of p*and p, £ > 0
(8.2)

J = j+k (8.3)
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C, ( X, | P.‘) = expected cash flow for payment type p at age of claim '

days to claimant X; given that a payment P~ of type p*
has been made at age of claim j

(8.4)
o (X P *) = expected frequency of payment type p at age of claim j'
given that p* has been (8.5)
N, (X;|p*) = observed number of claimants with covariates X; that

received a payment of

type p* that also received a payment of type p (8.6)

Epj.(X,. | p*) = observed number of claimants with covariates X; that

received a payment of

of

type p* that are exposed to receiving a payment of type p

(8.7)
S, ( X, | R‘) = expected severity of payment type p given the severity P’
r* (8.8)

The frequency f,.(X;|p*)is modelled using N,.(X;|p*)and E,.(X,| p*)as
described in Section 6.2.

To recognise the dependency on the severity P* of payment type p¥*,
s, (X;|P") may be modelled as a function of P*:

E[s, (X, |B)]=s(R.x,) ' (8.9)
for some function s(.), eg
s(P',X,)=P x function (X,) (8.10)

In the case of (8.10), (8.9) becomes
E[s,(X;|B)/ B |=fanction(X,) (8.11)

which means that the payment of type p is modelled as a covariate-dependent
proportion of the payment of type p*.

Once a dependent variable, such as the left side of (8.11), has been chosen, the
model is specified by choice of error and link functions, as in Section 3.
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s, (X; | p*) is modelled as described in Section 6.3. It may be modelled as a
proportion of p*, or as some other function of p*.

In this particular case, where payment of p is made only if p* is made, then

cpj'(Xi) = f,,.j(X,-) cpj.(X,.IE')
(8.12)

ci(Xilp*) = [ (X 1p*) s, (X |E)
(8.13)

Variations of the above model may include:

¢ A modification of (8.12) (and (8.4) —(8.11)) to allow for payments of type p
given p* is not made

That is:
e (X)) = Jp(X) cpj.(X,.IE')+[l—fp.j (X,.)] ¢y (X:1P%)
where p* indicates no payment of type p*.

o spj,(X ; |E')may not necessarily be a direct function of P’ if there is no
statistically significant relationship.
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9.

9.1

9.2

Incidence functions
Motivation

In the consideration of frequency of incapacity payments, Figure 5.2 illustrated
the binomial branching of claim status with increasing time. It is evident that, ¢
days after the commencement of incapacity, there are 2’ outcomes of the
incapacity/activity process to be considered, each with a different probability.

It would usually be necessary to model the process day by day in this manner for
some time after commencement of incapacity (eg for 5 to 10 weeks), so that
even this initial stage of the claim would involve between 2> and 2°° possible
outcomes (5 working days per week). It is not computationally feasible to
forecast frequency of incapacity payments for individual claims in this way.

One means of achieving computational feasibility is to process these many
possibilities for a judiciously selected set of hypothetical forecasts, and to
interpolate this set for actual cases.

-

Central to this process are the so-called incapacity incidence functions

i,,(/,B;»B,) = probability that a claim, commencing spell m of incapacity with

incapacity risk score P, and activity risk score f,, experiences
incapacity on the j-th subsequent day. (9.1)

The incapacity and activity risk scores are those defined in Section 5.1. It is not
required that incapacity be continuous up to the j-th day, nor that the spell of

incapacity in progress then still be the m-th. In practice, i will usually be

m

monotone decreasing in j, though this is not a logical necessity.

Parallel activity incidence functions are also defined:

a, (j,B;,B,) = probability that a claim, commencing spell m of activity with

incapacity risk score B, and activity risk score B,, experiences
incapacity on the j-th subsequent day. (9.2)

Note that both i, and a, measure probability of incapacity.

Application and derivation

Application

The probability of incapacity on each future day for any claim, not necessarily at
the start of a spell of incapacity or activity (as in i, and a,), may be calculated

relatively simply using those incidence functions.

For m>1, define
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1,,(d,B;,B,) = probability that a claim in day j of spell m in current status s,

with risk scores B, and B,, will be incapacitated at age of
claim d days, as measured from date of occurrence of claim.

Thus, for m>1,

r-j-2

L (dy +7.B0B,) = D Po(4ok) iy [r—j—(k+1)] forr> j+1 (9.3)
k=0

where

d, = age of claim at commencement of spell m in status a

P (j,k) = probability that a claim in day j of spell m of activity makes a

transition to spell m + 1 of incapacity at the end of day j + k of spell
m of activity. (9.4)

Both i, (see (9.1)) and p; depend on risk scores B, and PB,, but these
arguments are suppressed in (9.3) for the sake of brevity.

Note that p/(j,k) is a multi-step probability corresponding to the single-step
probability d (t) defined in (5.1). It may be written in the form:

Se(j)-Sa(j+k)
Sn(J)

pa(Jj.k)=

where, as in Section 5, S, (t) depends on risk scores B, and P, derived from
covariates X.

Similar to (9.3):
r-j=2

Li(d,+r)=S5,(r)/ S, (J)+ D, P (j.k)a,[r-j—(k+1)] forr=j+1 (9.5

with p}7 (j,k) defined parallel to (9.4), S’ (+) as defined in Section 5, with d,,
now defined as:

d = age of claim at commencement of spell m in status i

m

and with the convention that

Z‘: _o. (9.6)

k=0

Corresponding to (9.3), but for m = 0:
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I, (h,B.,B,) = probability that a claim, reported g days ago, currently in spell

0 of activity, with risk scores B, and B,, will be incapacitated

h days hence
h -
= 2.r (g.k)i(h=k) (9.7)
k=0
where
)24 ( g,k) = probability that a claim reported g days ago, currently in spell
0 of activity, makes a transition to spell 1 of incapacity at the
end of & further days.
Derivation

To evaluate the incidence function i , note that incapacity j days after
commencement of spell m can occur in either of two ways:

. the claim continues in status i for all j days; or
. it makes a transition to status a (spell m) on some day before the j-th, but

is in status i again (at whatever spell > m) on the j-th day.

By this reasoning,

i, (/) =S5 () + .8 (k) p= (k) a, (j-k-1) (9.8)
where
P (k)=p} (k1) fors,t=i,a (9.9)

and the convention (9.6) applies..

It may be seen that p; (k) for s y ¢ is the same as d;, (k) defined in (5.1). The
fact that these quantities are defined in terms of the ) (k), together with (9.8)

and (9.10), indicates that the survivor functions S’ () and S, () are the atoms
of the incidence functions.

It then follows from (9.3), (9.5) and (9.7) that all incidence quantities 7, () are
derivable from these atoms.

Similarly,

a,(j)=).S.(k) pa(k) i, (j—k-1). (9.10)
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The values of the incidence functions i, and a,, are thus derived by a recursive
process that uses (9.8) and (9.10). It is initialised at

i,(0) =1 (9.11)
Then
i,(1) =8,(1) (9.12)

a,(1) =5,(0) pn(0)1i,.,(0)
=p, (0) (9.13)

in(2) =5,(2)+5,(0) P (0) a, (1)
=S8, (2)+pZ(0) a,(1) (9.14)
etc.

Note that, for m = 1, (9.12) and (9.13) illustrate the first two branches in Figure
5.2. Then (9.14), which may be put in the form ,(2) =S, (2)+ p& (0) pZ (0),
illustrates the two branches ending with incapacity in Day 2.

Generally,
. calculation of i, (/) requires prior calculation of a, (k), k=01,..,j-1
. calculation  of  a,(j)  requires prior  calculation  of

i (K), k=0,1,..., j—1.

Therefore, the recursion may be carried out in the following order:

(1) () (1) a(1) - a,()
i(2) a2 &(2) - W@ (@)
i(3) «() - ay,(3) i,(3) a,(3)

where M is the maximum value of m to which the calculations are taken.

Calculations are performed row by row, and it is apparent from (9.8) and (9.10)
that each entry may be obtained from entires in previous rows either directly
above or to the left.

It may be that the incapacity process becomes independent of spell number at
sufficiently high spells, ie S (+),S (+) independent of m f some M. It then

follows from (9.8) and (9.10) that i, (+) and a, (+) are independent of m f M,

enabling the calculation of these quantities to be terminated at m = M, as
illustrated above.
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Interpolation

Recall from Section 9.1 that i, ( j)is explicitly i, ( J.B:»B,). Similarly for

a,(j). The calculation scheme set out above applies to specific values of

Bi’Ba'

As mentioned in Section 9.1, the incidence function may be pre-processed for a
sample of values of f3,,B,, and then interpolated for other values of these
parameters. Care is needed in the interpolation as the functions are far from
linear in B,,B,. This is illustrated in Figures 9.1 to 9.3.

Figure 9.1
Plot of i, (10) for various risk scores
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Figure 9.2

Plot of i, (100) for various risk scores
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Figure 9.3
Plot of i, (500) for various risk scores
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Much of the non-linearity of the incidence functions is forced by their
confinement within the interval [0,1]. This suggests that a logit transform might
be useful.

Define

u,(7,B;,B,) =logiti,(j.B,.B,)

_ i, (7,B:,B,)
—logL_iM (J',B,-,Ba)}' | (9.15)

Similarly for a,. These functions are much more suitable for interpolation, as
Figure 9.4 illustrates. A more linear surface is obtained for values of  (100)

close to its extremes, in this case i, (100) close to 0.
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Figure 9.4
Plot of u, (100) for various risk scores
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Reasonable results are obtained in the above example by means of 2-
dimensional second difference polynomial interpolation. Each such

interpolation requires 6 neighbburing (B,.,Ba) points for which the relevant
incidence function is tabulated.

Extrapolation

Tabulated values of i, () and a,, (j) will be subject to some upper limit .J or ;.
Values of the incidence functions for j > J will need to be extrapolated.

This will require the identification of a functional form that fits the incidence
functions reasonably accurately for values of j u J. Generally, the continuance

of incapacity seems often approximated by a Weibull survivor curve (see eg
Worrall and Butler (1985)):

i, (j)=exp[ -4, ]. (9.16)
This yields

log[—logim (j)]:logAm+bm log j (9.17)
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3.0

20

indicating linearity of a plot of log[—logim ( ])] against log j. Figure 9.5

presents this diagnostic plot for a range of values of B,,B,, where J=7? Separate
plots for different m are unnecessary since the effects of m are included here in

Bi and Ba *

Figure 9.5
Weibull diagnostic plots for incidence functions
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i~ (-1.0,1.2)

| ~5-(0.0,0.0)
[~%—(05,1.2)

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Ing)

The Weibull fit is seen to be satisfactory for j p J and might be used to
extrapolate forj > J.

Computation reduction

All discussion to this point has been in terms of computing i, () and a, (/) at
unit intervals up to j =J, with j measured in days.

It is evident from (9.8) and (9.10) that the number of computations involved in
i,(j) and a, (j)for m O M and for a single combination B,,B, is of the order
Mj>. This can be time-consuming for large ;.

Moreover, the incidence functions typically change only slowly at large j, and so
their tabulation at daily intervals is unnecessary. Accurate estimates can be
obtained from more widely spaced intervals (eg weekly).

Computation can therefore be reduced, but sufficient accuracy maintained, by
means of a tabulation of incidence functions as follows (for example):

—+=(-1518)

E—+—Extrap (-1.5,1.8) ]
[—H—Extrap (-1.0,1.2) |
i -+ - Extrap (0.0,0.0) |
f——Extrap (05,1.2) |
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J 1n days up to 35 days

J 1n weeks up to 210 days (30 weeks)
J in months thereafter.

While this reduces computation,

. it requires that (9.8) and (9.10) be adapted to the different units of j
. it requires that the incidence functions be interpolated for untabulated
values of .

Death and retirement

Define

stia} (x.k,B;,B,)= Probability that a claim with risk scores B,,B, and with
status in the set {i,a} at age (of claimant) x remains within
that set (ie does not transfer to d or ) up to age x + k.

It has been implicitly assumed here that such probabilities are functions of the

claimant’s age (not the age of claim), and hence independent of incapacity

experience.

Then allowance for death and retirement is made by the adjustment:

Loy (dn +7.BsB,) > SU (3,7 = 7,B,.B, ) 1 (d,, +7.B,.B, ) (9.18)
where age of claimant x corresponds with age of claim 4, + ;.

Various simplifications of st are possible. If death and retirement are
stochastically independent over infinitesimal intervals, then

S{i,a} - S{i,a}dS{i,a}r | (919)
where the arguments x,k,$,,8, have been suppressed and where S%¥ denotes
survival in status set {a,i} when status s is the only alternative.

If retirement age is fixed at R, then

SHV (x,kB,B,) =1fork<R-x
=0 fork>R-x (9-20)

The mortality factor may be expressed in the form:
$U¥ (1. BB) =exp| - [ (x 2.5, |ar (9.21)

where p(y.B;,B,) is the force of mortality at age y when the risk scores are

BB, -
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In practice, one might set p( y,B,.,Ba) to be some simple adjustment of the

population u,, even independent of f,,B,. This would ignore the fact that

claimant mortality is likely to be heavier in cases of greater incapacity. On the
other hand, mortality will usually affect most SCEs relatively little.

It should be noted that the adjustment (9.18) for death and retirement assumes
that these effects are excluded from 7; as calculated earlier in the present sub-

section. This in turn means that the estimation of the basic survival models S,

and S; on which I is based should treat death and retirement as right-
censoring events.

The alternative is not to censor such observations. In this case death and
retirement would appear simply as terminations of incapacity, equivalent (from a
financial standpoint) to a return to activity. If this treatment is adopted, then the
adjustment (9.18) becomes unnecessary, indeed incorrect.

What is essential is consistency between the right censoring recognised in
estimation of survivor functions and the statuses for which adjustment is made in
(9.18) and (9.19).

This alternative treatment may be effective as an indirect means of incorporating
the experienced mortality p(y,B;.B,) in the survival models. It will, however,

deal poorly with retirement, smearing the discrete effect (9.20) over a wide
range of ages.

A reasonable compromise might be:

. to treat retirement, but not death, as a right censoring event in the
estimation of survivor functions; and
. retain adjustment (9.18), but eliminate the mortality factor from the right

side of (9.19).
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10.

Forecasting claim costs

Section 4 describes the fundamental composition of an SCE. Sections 5 to 9
discuss its parameterisation. The present section is concerned with the
application of the parameterised model to the forecast of claim costs for a single
claim.

Order of evaluation of forecast quantities

As indicated by Figures 2.2 and 2.3, the model is likely to comprise a cascade of
payment type sub-models. It is necessary to work through this cascade from the
bottom up, as any one component may require the output of a subsidiary
component as input.

The output required of each component includes:

. a schedule of forecast cash flows by future payment period (see Section
4.1), which usually will require in turn (Section 4.3) separate schedules
of (Section 4.3):
= forecast frequencies of payment of the subject payment type; and
= forecast severities of those payments;

. any other outputs required as subsequent inputs.

Section 1.1 mentioned that covariates may be static or dynamic. Calculation of
the latter (e.g. the total incapacity experienced by the claimant to date,
mentioned in Section 6.1) for any period requires forecasts (perhaps of its own
value) from the preceding period. This carries implications for the architecture
of the system. '

Feedback loops

If the model contained only static covariates, it would be possible to process
each component sub-model in turn, generating its required forecasts for all
future periods on the basis of a fixed set of covariates. Likewise, if the only
dynamic variables contained in the model were dependent on only forecasts
from the sub-models for which they serve as covariates, of from subsidiary sub-
models.

Consider, on the other hand, the situation depicted in Figure 10.1, in which an
output quantity of sub-model A is required as a dynamic covariate input to
subsidiary sub-model B, creating a feedback loop.
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Figure 10.1
Dynamic variable feedback loop
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A specific example of this might be as in Figure 10.2, which reflects two features of
a hypothetical scheme of workers compensation, viz.:

. The likelihood of a settlement at common law increases with the total
number of weeks of compensation paid; and

. If a claim is settled at common law, then weekly compensation will be
discontinued.

Figure 10.2

Example of a feedback loop
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In the case of a feedback loop it will not be possible to process the subsidiary
sub-model(s) involved in the loop over all future periods prior to processing the
sub-model(s) that depend on them. It will be necessary to evaluate the entire
loop for time period t, then for t+1, and so on.

The architecture of the forecast system will depend on the prevalence of
feedback loops. Each will need to be evaluated fully at each future time t before
moving on to t+1. If there are a number of them, the simplest approach might be
to evaluate all forecast quantities at time t=1, then all at t=2, then t=3, etc.
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Incidence functions

The incidence functions described in Section 9 would not be evaluated in real
time, but would be pre-processed and stored as a set of hard coded tables in the
forecast system.

A set of tables of incapacity incidence functions im(j,B:,Ba) (see (9.1)) would be
evaluated, each table for a fixed triple (m,B;,.) and for j=1,2,etc. The pairs
(Bi,Ba) would need to be chosen to produce a lattice covering the majority of the
range of values of these parameters likely to arise in practice, with values of
im(J,Bi-Ba) for intermediate i, P. obtained by real-time interpolation or
extrapolation, as described in Section 9.

For each chosen pair B;, B,, a table of in(j,B;,B.) would be required for each triple
(m,B;,B.), m=1,2,....M, with M as defined in Section 9.

Output

As Section 4 .1 indicates, the minimum requirement of the forecast system will
be the production of a schedule of forecast claim payments cp(Xi), p=1,2,...;
t=1,2,... for each claim i. This schedule can be summarised in any way desired,
e.g. the quantities c(X;), c*(X;), etc. defined in Section 4.1.
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11.

11.1

11.2

Model validation

Background

It is evident from Figure 2.3 that an SCE derives from the cascading of a number
of models. The combination of these models will typically involve a number of
assumptions, eg

. stochastic independence of frequency and severity in (4.11)
. the precise Markovian assumption made in respect of status related
benefits, as discussed in Section 5.1.

These assumptions create scope for the final model to perform poorly even when
each component fits the data well. It is therefore essential to carry out a strict
validation of the model, perhaps leading to adjustment (Section 12), before
implementation.

Validation can take the form of back testing, ie comparison of past data with
“predictions” (sometimes called “retrodictions”) of the model. It is probably
advisable to validate individual payment types. These are additive, and so
validation of all of them implies validation of the entire model.

Preferably, data will have been divided into two subsets:

. a training sample, used for estimation of model parameters; and
. a validation (or hold-back) sample, used for comparison with
predictions. '

This enables cross-validation, the testing of the model against a sample of data
other than that used to develop it.

The following few subsections discuss in a little detail the form validation might
take. Appendix B provides a formal description.

Model components to be validated

As in all forms of stress testing, one needs to identify each potential point of
weakness in the model, and test it. Thus, for each payment type, there is a need
to validate frequency and severity sub-models.

Moreover, there will be a need in some cases to validate sub-sub-models, eg for
status related benefits, the models of transition between statuses. In general,
wherever a component model has been created it should be validated.
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11.3

Thus, the specific validations to be made might include:

Weekly compensation:
Recovering from incapacity
Relapse from activity
Incapacity incidence functions

Medical costs:
Frequency
Severity

etc.

The weekly compensation validations might be carried out separately for spell 1,
spell 2, etc.

Validation observations
Each validation will consist of a comparison of observations on claims
experience with model predictions. It is therefore necessary to define these

“observations”.

Natural choices for the validations set out in Sections 11.2 would be as in Table
11.1.

Table 11.1 :
Validation observations

Model Validation observation
Recovery from incapacity'® Number of days of incapacity'®
Relapse from activity® Number of days of activity®

Incapacity incidence functions® | Number of days of incapacity®

Medical frequency Number of claims generating medical costs
Medical severity Average payment under payment type
Medical per claim generating medical costs
etc.

Noté: (a)  Asnoted in Section 11.2, these validations might be separated by spell number.

Typically, the validation sample would relate to a defined experience period (eg
calendar year 2000), and so all validation observations, such as appear in Table
11.1, would relate to this period.
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11.4

11.5

Data partitions

While, in the first model of Table 11.1, one might compare just the total number
of days of incapacity (perhaps separately by spell number) with the
corresponding model prediction, there will usually be value in dissecting these
totals into relevant components.

For example, each model will have formulated predictions on the basis of claim
attributes, and so these effects may be tested by dissection of the above totals in
terms of the attributes. Thus, the observed and predicted number of days of
incapacity might be tabulated by:

Gender of claimant

Age of claimant

Nature of injury ‘
etc.

Such tabulations, according to single claim attributes, are usually referred to as
1-way comparisons. It is also possible to produce 2-way comparisons, eg by
gender x age, and in general m-way comparisons.

The general concept here is one of partitioning of validations in some defined
manner. These are therefore referred to generically as data partitions. While,
for expository purposes, they have been described above in terms of claim
attributes, they are defined more generally in the theoretical treatment of
validation given in Appendix B.

Validation output

According to Sections 11.2 to 11.4, validation will involve a collection of tables
comparing claims experience with model predictions, with each table
characterised by:

the component sub-model under test (Section 11.2)
the experience period (Section 11.3)

the data partition (Section 11.4)

the validation observations (Section 11.3).

Each such table might take the form set out in Table 11.2.
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Table 11.2
Validation table format

Partition Observation
element Actual Model Deviation Relative | Significance
prediction deviation
TOTAL
Here
. “Deviation” records the difference between actual and prediction
. “Relative deviation” expresses the deviation as a percentage of the
prediction
. “Significance” is the statistical significance of the deviation (against a

null hypothesis of zero), and will be discussed further in Section 13.1.

A hypothetical example of Table 11.2 appears as Table 11.3. It indicates a
model which over-estimates the probability of recovery from incapacity in the
low order spells and under-estimates it in the high order spells.

Table 11.3
Hypothetical example of validation output

_Recovery from incapacity:

Number of days of incapacity
number Actual Model Deviation Relative | Significance
prediction deviation
% %
1 3,018 2,745 +273 +10 <0.1
2 1,873 1,818 +55 +3 9
3 1,153 1,098 +55 +5 4
4 550 573 -23 -4 15
5 332 390 -58 -15 1
fo 295 321 -26 -8 8
TOTAL 7,221 6,945 +276 +4 0.2
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11.6

Validation output medium

It is evident from Sections 11.2 and 11.4 that many comparisons of experience
with model will be required to constitute a comprehensive validation. The
comparison process will be assisted if tables of the form of 11.3 are available on
demand.

The ideal medium for this is a data base for each model organised in what is
sometimes referred to as data mart form. The data base is considered an n-cube
where each of the n dimensions represents one value range for one variable, or
equivalently one row of one validation output table.

The different output tables then represent slicings of the cube along different
dimensions. The slicings can conceivably be m-dimensional for any m < n.
Table 11.3 illustrates the case m = 1. The case of general m corresponds to the
m-way comparisons mentioned in Section 11.4. A data base which pre-packages
the various m-way comparisons is a data mart.

There is clear scope for graphical presentatioh of output as an aid to decision
making. Thus, Table 11.3 might be presented in the form of Figure 11.1.

Figure 11.1

Hypothetical example of validation output
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This graph clearly exhibits the trend in relative deviation with increasing spell
number. The model predictions have been included as an indicator of volume
experience.
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12.

12.1

12.2

Model calibration
Background

Section 11.1 points out that an SCE model might prove inaccurate in its totality
even if all components were well fitted to data. For example, perfectly
reasonable models of transitions between incapacity and activity may have been
obtained. But, if the Markovian property assumed (see Section 5.1) breaks
down, the associated incidence functions may fail to be validated.

In such circumstances a simple device for adjusting one or more of the
fundamental models will be useful.

Control parameters
The atoms of the model are defined by (3.1) (GLM) and (3.14) (survival model).
In each case, it is possible to insert a small number of additional parameters

which will cause a fundamental shift in the model.

For example, (3.1) might be extended to:
)‘f,.=h"(X,.’B+e) (12.1)
where

B is an estimate of B

ﬁ is the model prediction of ¥, |
6 is the additional parameter.

Note that, if the model has an intercept term, as in (3.2a), changing 6 is
equivalent to shifting the intercept §,. This may be used to shift the level of all

predictions ff up or down by a constant factor.

The introduced quantity 6 will be called a control parameter.

Consider the other example, (3.14). Here simple adjustments might be applied
to modify the shape of the survivor functions. For example, (3.14) might be
extended to:

i (£) = O, (¢)exp( X[B) (12.2)
or even
b (1) = [08, +6,t]hy (£)exp( X7B). (12.3)

Figure 12.1 illustrates how the control parameters 6,,0, change a survivor
function.
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Survivor function S(t)

12.3

Figure 12.1

Effect of control parameters on survivor function
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The whole curve can be shifted up or down by means of 0,. It may be made

more or less convex by means of 9, .

Calibration

The term calibration is used here to refer to the adjustment of a small number of
control parameters to correct any failures observed at the model validation stage.

It should typically involve simple adjustments of modest size.

If these

requirements cannot be met, the validity of the whole model framework might

be questionable.
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13.

13.1

Stochastic properties
Theoretical

The basic structure of an SCE was given by (4.5), repeated for convenience here:

c(X,.)=Zicp,(X,.). (13.1)

p =1

The c, (X;) relate to a collection of models of form (3.1) or (3.9), (3.12) and

(3.14), each of which is stochastic. The SCEs are in fact predictions of
stochastic quantities.

Write C,,(X,) and C(X;) for the stochastic quantities relating to ¢, (X;)
andc(X;), and now let ¢, (X;) and ¢(X,) be their expected values:

Cou (X)) = (Xi) 48, (13.2)
with

E[&,.]=0. (13.3)
Define

Cc(X,) =;§cp,(x,.)

=c(X))+E, (13.4)

with ¢(X;) given by (13.1) and

&= i E i (13.5)

E[E;]=0. (13.6)

The SCEs realised by the system are predictions of the C(X;), and are also

random variables. Write C,,(X,) to denote the prediction of C,,(X;), and
assume that all predictions are unbiased, ie

Cou (X)) = ¢, (X)) + G, (13.7)

with
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E[¢,,]=0. (13.8)

Define

E(x) =X 3.6, (X))

p =1

—c(X,)+E, (13.9)

where (13.1) has been used and

L= Zii;,m- (13.10)
E[¢;]=0. (13.11)

Consider any collection of SCEs:
C=>C(x) (13.12)

with i varying over some specified subset of all claims. The prediction error
associated with C is

o=C-C (13.13)
where
C=>C(x). (13.14)

By (13.12) and (13.14)

¢ =20, (13.15)
=Z[C(Xf)-é(X,-)]
—E-C (13.16)

by (13.4) and (13.9) and where
E=2%,  §=2¢. (13.17)

This is the standard time series formulation in which prediction error is equal to
the difference between:

. the noise in the system (§ ); and
. the error in the model (£ ) due to parameter estimation error.
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Note that £ relates to future observations, whereas { relates to predictions,
which will have been generated by a model, which will depend in turn on past
observations. It will usually be valid, therefore, to assume that & and £ are
stochastically independent.

In this case

Vis]=v[c]+V[E]. (13.18)
This is the time series result that is commonly expressed as:

Mean square error of = parameter +  process (13.19)
prediction error error

Note also, however, that the correlation structures within £ and & will usually
be complex. By (13.10) and (13.17),

£=2.22" 0 (13.20)

So
VIl =X Cov LG
+2§ZCov[gM,gq,,.]
+ various other terms. | (13.21)

Although i and j relate to different claims, they will be subject to the same
parameter error, and so Cov [Q s G p,j] #0.

Because of payment type dependencies of the sort illustrated in Figure 2.3,
Cov[(; s q,,.] may be non-zero for some distinct p, g.

Similarly for other terms in (13.21), and consequently general statements about
V[Q] are difficult. One generality can be deduced, however, by considering the

special case of (13.20) in which all claimants are identical. The claims
themselves are separate and in fact stochastically independent but, as pointed out
above, their parameter errors are identical.

Then (13.20) becomes

E=ny > ¢, . (13.22)

where n is the number of values of i, and hence
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V[c]=n’cl, (13.23)
where
A
p t
= parameter error for a single claim. (13.24)

Similar arguments can be applied to ¥ [£]. Again one can reason, for example,

that some Cov[&_, piis6 q,,.] may be non-zero for distinct p, g.

Note, however, that if distinct claims are stochastically independent, then

COVI:ZZE_,M,Zzng-jl =0 (13.25)

and so

rop ot i p 1
In the case of identical claims, this becomes

vig]=no), (13.27)

with

er|3re]

process error for a single claim. (13.28)

I

Combining (13.18), (13.23) and (13.27) gives

V[¢] =n’ cfm +n0'f,,
=no’, (n+1) (13.29)

with
1=02,/05,. (13.30)

If the training sample is large, parameter error will be small, and t will be large.
Hence (13.29) demonstrates that:

° for individual claims, or small subsets of claims, prediction error is
dominated by process error (noise);
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13.2

. for large sets of claims, prediction error is dominated by parameter error;
] prediction error changes roughly linearly with sample size for small
samples, but roughly quadratically for large samples.

Reasoning like this in terms of groups of identical claims is, of course,
restrictive. However, if one views large sets of claims as the aggregation of
subsets that are approximately replicates of one another, then the above

reasoning goes through in an approximate form with %, and o7, now relating

to a single “typical” claim, ie a claim with claim attributes that are in some sense
average.

Application

As noted in Section 13.1, each sub-model of the SCE model discussed here is
stochastic, and so the distributions of predictions generated by it are in principle
derivable.

This is unlikely to be a practical course, however. For example, the
complexities of incidence functions, such as seen in (9.8) and (9.10), would
render any attempt to derive these distributions analytically from the stochastic
properties of the underlying survivor models highly laborious.

Add to this the additional complexity noted in Section 13.1 as arising from the
various stochastic dependencies within the model, and a project of parametric
calculation of distribution of predictions does not appear feasible.

Resort needs to be had to other means, of which the bootstrap (Efron and
Tibshirani, 1995) is a prime candidate. A basic knowledge of this technique will
be assumed here. There are a few points to be made in connection with it.

First, the re-sampling of data required by the bootstrap should be relatively
routine, but each observation in the re-sampling needs to comprise all data (ie in
respect of all payment types) for the claim concerned. Thus, the pseudo-
observations generated would contain, for example, a pseudo-history of weekly
compensation as well as medical payments, etc. Proceeding in this way ensures
that the correlations between the various SCE sub-models are properly
bootstrapped.

Second, it would be useful to retain the whole ensemble of values C'p, (X;) for
each bootstrap replication of the data set. This would enable one to calculate the

distribution of each of these component predictions rather than just C. Hence,
one would be able to examine the distributions of various relevant dissections of

A

C,eg

. by payment type
. by accident period

etc.
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Third, (13.29) may be used to estimate the effect of sample size on prediction
error. Indeed, it may also be used to enable bootstrapping to be performed on a
sample of the data set, so reducing computation. If m is the size of this sample,
then the prediction error for a data set of size » is:

(ﬁ)2 X parameter error + () X process error (13.31)

where the parameter and process' errors relate to the m-sample. It is necessary
here that the m- and n-samples have the same structure in terms of covariates, ie
can be regarded as samplings of the same population.

Fourth, it must be realised that the sort of bootstrapping discussed here will be
computationally intensive in the extreme. The choice of a modest value of m
can greatly reduce computation, but the derivation of incidence functions
(Section 9) is typically the most intensive part of the entire SCE procedure and it
is independent of sample size. This creates a formidable obstacle to
bootstrapping, and it is proper for the authors to confess that they have not
implemented the techniques discussed in this section.
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14.

14.1

14.2

Miscellaneous matters
Performance tracking

Section 11 discussed model validation. This was carried out by means of
comparison of: '

. claims experience from a validation data set; with
o the corresponding predictions of that experience on the basis of a training
data set.

Table 11.3 gave a numerical example of validation.

This testing is carried out prior to the implementation of the model, but exactly
the same concepts extend to post-implementation periods. In this case, the
model predictions of a period’s claims experience included in the SCEs made at
the start of that period are compared with the actual experience as it emerges.

For example, SCEs made at 31 December 2000 comprise predicted claim
payments for 2001, 2002, etc. At the end of the first quarter of 2001 it will be
possible to compare claim payments made in that quarter with those predicted at
31 December. ‘

These comparisons can be carried out in exactly the same detail as in Section 11.
They then provide a test of whether, after its initial validation, the model
continues to track well against experience.

As at the validation stage, decisions on this question will be aided by the
significance testing contemplated in Table 11.3. This requires an evaluation of
the model’s stochastic properties, discussed in Section 13.

System maintenance

The possible outcomes of performance tracking are:

. no tracking failure;
isolated failures (eg a single age group within a single sub-model);

. systematic but localised failure (eg incidence of incapacity consistently
higher or lower than predicted); or "

. widespread and substantial failure of one or more sub-models.

The appropriate responses to these outcomes would be (in order):

° no action,;
isolated adjustment (in the example cited, a single parameter relating to
the offending age group might be adjusted);

o re-calibration, ie adjustment of control parameters (Section 12.2) so as
to restore the model to alignment with experience,
. re-parameterisation, or even structural re-design, of the failed sub-

models.
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14.3

In the final option, “re-parameterisation” refers to the re-estimation of model
parameters on the basis of more recent experience, but with the algebraic
structure of the model retained.

In the most extreme circumstances, the algebraic structure of the model will be
found to have failed, in which case re-design will be required. For example,
gender might have been included as a covariate in (3.14) for incapacity

modelling (ie both genders are subject to the same baseline hazard rate 4, (r)),
whereas more recent experience indicates that separate baselines are required.

Practicalities

It may be advisable to overlay the statistical part of the SCE model with a
number of additional rules that capture aspects of the governing legislation not
directly included in the model, or simply to recognise practicalities.

Suppose, for example, that legislation limited the lump sum specific injury
payments displayed in Figure 2.3 to a single settlement in respect of any one
claim. Then this payment type’s contribution to a particular claim’s SCE should
become zero immediately such a settlement is flagged as having been made in
respect of that claim.

As an example of a simple practicality, consider a claim for which there has
been no payment activity for several years. Effectively, the claim is closed.
However, the SCE system will typically recognise a small but non-zero
probability of relapse, and assign it a small SCE.

This can lead to the system’s carrying a large number of trivial SCEs. One
might introduce a rule that:

. all SCEs for compensation payments of less than $50 will be ignored; or
alternatively

. the total SCE will be set to zero for all claims with no payment activity in
the last 2 years.

Such SCEs, while individually trivial, might contribute a material total. If S0,
some re-calibration of the system (in the sense of Section 14.2) might be
required to correct for this.
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15.

Implementation issues

A project for construction of an SCE system will need to incorporate the
following phases:

Model design;
Parameter estimation;
System construction;
Model validation;
Calibration;

Bench testing;
Documentation;
Implementation;
Performance tracking;
Maintenance.

The phase of model design will need to include consideration of which payment
types are to be separately recognised. Consideration will also need to be given
to control parameters (Section 12.2.), specifically how many are to be included
in the system, and where and in precisely what form.

There may be some subjective matters to be considered. For example, if a new
benefit type has recently been introduced, or an existing one re-structured in
some way, there will not be adequate experience from which to parameterise a
forecast model.

It may be necessary to plug some temporary and ad hoc structure into the slot
for this component. It can be unplugged, and replaced with something more
permanent at a later date. For reasons such as this, the implementation of the
system in a strictly modular form is essential.

Temporary structures for changed benefits may be definable in terms of those
that have become obsolete, with some broad and subjective changes to
parameter, such as a reduced frequency of access to the benefit type, or a scaling
upward or downward of the entire distribution of the amount payable under that

type.

Parameter estimation may require application of both GLMs and Survival
Analysis, as in Sections 5 to 8.

Calibration (Section 12) might include adjustment of the model so that its
aggregate results are consistent with those of some other valuation of claim
liabilities, based on conventional actuarial techniques that use aggregate, as
opposed to individual, claim data. Any calibration of this type would need to
recognise that the total of SCEs in respect of all currently open claims will
include nothing for IBNR claims.
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Bench testing will be concerned with establishing system characteristics,
particularly performance in terms of timing. Hardware considerations may be
critical to the achievement of acceptable run times, if large numbers of claims
are to processed in batch mode.

The evaluation of incidence tables can be a time consuming procedure. It is
useful to establish at bench testing stage the time involved in each re-calculation
and replacement of these.

The bench testing, documentation and implementation phases may well be
contemporaneous. Together they will form a lengthy procedure. Delivery
expectations need to be managed to accommodate this.

Time needs to be allowed for adequate testing of such a complex system. As
with all software systems, documentation must be adequate to ensure that
successive users/programmers can maintain it when the model structure is
changed and/or its parameters re-estimated. If these requirements are not
observed, the user will be liable to repent at leisure.

A major issue in the maintenance of the system is the period between
successive major re-calibrations. As with all data-driven systems, the risk of
parametric obsolescence needs to be recognised. This would be monitored by a
system of performance tracking, in which all the validation procedures of
Section 11 would be applied to new data as it accumulated.

A default plan might be to subject the system to major re-calibration every 3 to 5
years. This intention might, however, be moderated by the outcome of
performance tracking in the interim. The better the model tracks experience, the
less the need for re-calibration. Conversely, the emergence of substantial
deviation of experience from model predictions might precipitate early re-
calibration.

Between major re-calibrations, one might either:

. Carry out re-calibration of one or more modules of the system; or
. Effect minor adjustments by means of the system control parameters.

Choice between these alternatives would be determined by reference to the
extent of departure of experience from predictions. Likewise, the tracking
system would identify those modules of the SCE system which were predicting
poorly.
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Appendix A
Discrete time finite-dimensional stochastic processes

Consider a discrete time process {X,, ¢=0,1,etc} such that X, €S = {1,2,...,S).

The interpretation for present purposes is that X, = m indicates the process to be in state
m at epoch ¢ (see eg [reference?]).

Let
P (1) =Prob[ X, =n| X, =m,1] (A.1)

where 1, denotes full information about epochs prior to ¢. If p,, (¢) is independent of

I, (the process has no memory beyond the immediately preceding state), the process is
called Markovian.

The probabilities p,,, (¢) are called transition probabilities. Let P(¢) denote the S x §

matrix with p,, (¢) as its (m, n)-element. This is called the transition matrix between
epochs fand 7 + 1.

Define the graph of the process at epoch ¢ as the matrix F(t) with (m, n)-element

&m(t) =1, ifp,, (1)>0
=0, ifp,, (¢)=0. (4.2)

The graph indicates which transitions are possible and which are not.

Since the process must go to some state at each epoch,

S
D" P (t)=1 for each m (4.3)
n=1 R

ie row sums of P(r) are each unity.

A state m for which

Pom (t)=1 for each , | (A.4)
and therefore

P () =0, for each n# m and each ¢, (4.5)
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is called an absorbing state. Once the process enters such a state, it never emerges
from it. Equivalent to (A.4) is the fact that the m-th row of each I"(¢) contains 1 on the
diagonal and zeros elsewhere.

The quantities (A.1) are single-step probabilities. One can also consider multi-step
probabilities.

Pon (5,8) =Prob[ X, =n| X =m,I]. (A.6)

Note that the Markovian property allows this to be decomposed as follows:

S
P (5:8) =2 Py (5,4) P (w:1), (4.7)

forany u=s+1,s+2,...,t-1.
This is a version of the Chapman-Kolmogorov equation (Feller, 1965, p.370).

It may be expanded to express a multi-step probability in terms of just single-step.

S
Pun(s:8)= D P (s,s+1)p, . (s+1,s+2)...p,,(t-11) (A.8)
jl ----- jr=l

where r=t-s-1.

Insurance defined on the stochastic process

One may consider an insurance that pays a benefit of B, (t) attimez(=s+1,s+2, etc)

if the process is then in state n. The expected total benefit payable under this insurance
when the system commences in state m at time s is:

t=s5+1

VA (s)=2 P (5:1)B, (). | (4.9)
2-state processes
Consider (A.8) in the case § = 2. Each of the states m, j,..., j,,n takes the value either

1 or 2. Hence each of the single-step probabilities involves either remaining in the same
state or making a transition to the other.
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It is therefore possible to re-express (A.8) in the form:

P (S,t) = Z D (S’ul)pmm‘ (u],u‘ +1)

..... u,

X Pps (ul +1’u2)pm‘m (u2’u2 +1)

XD, (uq_, +lu, )P,.*n (“w“«: + 1)
Xp, (uq+1,t) (4.10

where p,, (s,%,) denotes the probability of remaining in state m from epoch s to
inclusive, m* denotes the state other than m, and the summation runs over all Uypseensll

such that u, 25, w, >u,.u, >u,_, (>u,

Each summand in (A.10) represents:

° a period of occupancy of state m (called here a spell) from epoch s to u,
. a period of occupancy of state m* from u, +1 to u,

. another period of occupancy of state m

etc.

The process, as represented by (A.10), passes through alternating spells in status m and
m*. The spells may be assigned spell numbers, dating from the first occupancy of a
particular state, say m*. Thus, in (A.10),

o spell 1 in state m* extends for epoch u, +1 to u,
o spell 1 in state m extends for epoch u, +1 to u,
o spell 2 in state m* extends for epoch u, +1 to u,
etc.

The formulation (A.1) of transition probabilities, together with the Markovian property,
requires them to be independent of spell duration. Note, however, that the formulation
(A.10) allows this requirement to be weakened. Transition probabilities may be
allowed to depend on spell duration.

Indeed, one may generalise further, allowing probabilities to be dependent on spell
number as well. Technically this is done by expanding the available states of the
system to the Cartesian product

{original state} x {spell numbers} x {spell duration}.

Within this expanded set of states, the Markovian property is still assumed, in which
case (A.10) is replaced by the following:
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Pon(5,2) = z Pn(s.0)d" (x+v,)

x 87 (v,)d% (v,)
xS (V3 ) a’, (vs)

X S:; (V4)d::2 (V4)
X... (4.11)

where the process was at duration x of spell r in state m at epoch s, and where

S (v) = Prob|[ duration of spell £ in state s 2 v] (A.12)

d, (v): Prob [duration of spell k in state s terminates at duration v, given that
duration f v] (4.13)
v, =u, —u,_, fork=2,3etc

=u,—s fork=1.

In the summation in (A.11), the indexes v,,...,v, run over all strictly positive integers

such that v, +...+v, =t —s and q also takes all possible values.

It is possible to generalise (A.11) further, eg by declaring the probabilities there to be
dependent on the total time spent in a particular one of the original two states up to the
commencement of the present spell, but taken over all previous spells. Such
generalisations create further expansion of the set of available states but, within this
expanded set, the Markovian property is retained.
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B.1

Appendix B
General validation framework

Validating a regression model

Consider a data set {f ={¥;} subject to model (B.1) below. If p, denotes E [¥].
then

w=h"(X7B) (B.1)

where X is a design matrix applicable to observation Y, and B a vector of

1

constant coefficients.

Define the deviation
D, =Y,-p, (B.2)

Let P -{R,...,£,} be apartition of {/ and define

D(j)=>.D, (B.3)
iep;

R())= ZPD" /21 (B.4)
iep; iepj

forj=1,2,...,m.

The D(j) in (B.3) are grouped deviations. The R(j) are grouped relative
deviations, which express the D(j) relative to the associated model values.

Validation would consist of:

o calculating D(j) and/or R(j) for various [ and various £ within

. assessing whether these are statistically significant deviations of data
from model.

Example

Considering again the incapacity continuance example used in Section 11.4, let

Yy  =observed values of ¥, as defined in Section 11.4

p,

’ = j-th defined value assumed by the covariate, gender of claimant (j = M,

F).

Then D(M) and D(F) measure the total deviation for male and female claimants
respectively.
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B.2

B.2.1

There are many alternative definitions of P/, eg one defined for each covariate in
the same way as was done for gender in the above example.

Validating a survival analysis model
Background

Consider a survival analysis model whose survivor function in respect of the -
th claim is S, (t) for some suitable age measure ¢. Suppose that failure occurs

only at integral values of ¢, and that S, (-) is right continuous, ie S, (¢) records

Prob [survival to age p > 7].

Define the discretised hazard function

h (1)=1-8,(t)/ S, (t—1) = Prob[failure at exact age ], £=1,2, etc.  (B.5)
Suppose the model is of the proportional hazards type, so that

h ()= ho (t)exp(X[B) (B.6)
where

hy(¢) = Dbaseline hazard function

X! = design matrix applicable to k-th claim
B = vector of risk scores for covariates.

“Failure” might be recovery from incapacity, for example. This would be so if
(B.5) were the model of incapacity survival.

Estimate 4, () by
by (£)= hy (¢)exp( X7B) (B.7)

where ,(t), B are estimates of A, (1), B.

There is a need for separate validation of /4, (-) and f .

Consider a specific interval of time. Within that interval, consider claims
experience in the interval (t - 1,t] , ie failures at age ¢. Let

E (t- 1) = number of days exposure of the k-th claim to failure at age measure ¢

N,(t)  =number such failures.

Then the model prediction of N, (¢) is
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B.2.2

B.2.3

N, (r) =E, (t_l)};k (¢)
= E, (t-1)hy ()exp( X7B)- (B.8)

Corresponding to (B.2), define the deviation

D, (t)=N,()-N,(2). (B.9)
Validating risk scores

The deviations constructed in (B.9) are labelled by both k and ¢, rather than by
the single label i as in Appendix B1. However, as far as the partitioning of the

data set is concemed, this does not create any difference in principle from
Appendix B.1.

Let P={Pj} be a partition of the data set such that each /, includes all
possible values of z. Then, for D(j) defined in (B.3),

D(j)=;§1)k (¢) (B.10)

with summation for k in some subset of all claims.

Example

The example given in Appendix B.1 will serve again. Define /; in terms of

gender, as there. Then, for example, D(M) is obtained from (B.10) by summing
over all claims & for which claimant is male.

Validating the baseline hazard function

Let P= {P]} be a partition of the data set such that each / includes all claims.
Then, '

D(j)=>.>.D,(t) (B.11)

t allk
with summation for # in some subset of the non-negative integers.
Example

For example, D(j) might be defined:

D(j)=vZ_EZDk (1). (B.12)

t=u allk
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B.3

Then D(j) would represent the grouped deviation over the interval (u,v] of age
measure.

Validating a weekly incidence model

Consider a data set {N,:’ (t)} relating to a specific time interval, where N} (¢) is
the indicator function:

NS (t) 1, if the k-th claim experiences status “incapacity” in development

period ¢;
= (, otherwise;

where development period is measured from date of accident, and the first is
labelled zero.

A model prediction of this quantity is
Ny () =Er ()i (1) (B.13)
where

E} (t) = 1, if it is logically possible for the k-th claim to experience status
“incapacitated” in development period ¢ within the designated interval,

= 0, otherwise

and [ (¢) is a model estimate of

I} (¢) = Prob [k-th claim has status “incapacitated” in development period 7].

Validation would be as for a baseline hazard function, ie according to intervals
of age measure (development time in the present context) (see Appendix B.2.3).

Let P= { Pj} be a partition of the data set such that each /), includes all claims.
Then,

D(j)=2.2.D:(7) (B.14)

t allk

with summation for ¢ in some subset of the non-negative integers.
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C.1

Appendix C
Example of claim frequency modelling

Preliminary data manipulation
This appendix provides an example of how the final structure of the frequency of
medico-legal expense payment might be determined within a workers

compensation framework.

Let

Ju (X ,.) = probability that a medico-legal payment occurs in week ¢ (C.)
in respect of the i-th claim, _ )

where X; is based on the following covariates.

Table C.1
Covariates of medico-legal claim frequency
Attribute Abbreviated | Categorical # categorical
name or continuous | levels (initial)
Claims characteristics
Age at injury age Continuous
Sex sex Categorical 2
Nature of injury noi Categorical 9
Type of accident toa Categorical 10
Injury severity code ‘ sev Categorical 5
Industry code ind Categorical 12
Bodily location of injury loi Categorical 10
Claims status characteristics
Development week w Continuous
(= # weeks from injury date
to payment date) :
Total (categorical) 48

To formulate a relationship between f,(X;) and the listed continuous

covariates, one might begin by grouping the latter, as shown in the following
table.
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C.2

Table C.2
Grouping of continuous covariates

Covariate Intervals for grouping covariate values

Development week (w)
0-40 Unit intervals (41 categories)
41-52 4-week intervals (3 categories)
53-724 12-week intervals (56 categories)
(Total 100 categories)

Age at injury (age) <20
20-24
25-29
30-34
35-39
40-44
45-49
50-54
55-59
60-64

65+
Unknown
(Total 12 categories)

The total number of categories is now 48 + 100 + 12 = 160. Inclusion of all
these in a model would be quite prodigal.

It is preferable to gain a rough idea of the functional dependence of f, (X ,.) on
w before proceeding. This is done by examining one-way tables of observed

claim frequency by w, ie claim frequencies observed for various values of w, but
otherwise averaged across the entire portfolio.

One-way tabulation by development week

Define the estimator
fi(w)=1(w)/n(w) | (C.2)
where

I(w) = observed number of claims receiving a medico-legal payment in week
w
n (w) = total number of claims in the data set reported by end of week w.

The quantities f,(w)are the entries in the one-way table (labelled by w)
described in Appendix C.1. Figure C.1 charts the table.
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Figure C.1

Observed Medico-Legal Frequency
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C.3  Modelling continuous covariates
C.3.1 Development week
Of the two continuous covariates identified in Table C.1, development week

appears the more influential. It'is therefore singled out as the first covariate to
be converted from categorical to continuous form.

Since f,(X,) will be modelled with a binomial distribution using a logit
transformation, a continuous functional form of w is developed using

f*(w)=logl:;_f—f§‘2137)]. | | (C.3)

Figure C.2 charts the observed values of f*(w), against w, and Figure C.3
expands the scale for the lower values of w.
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Figure C.2
Observed Medico-Legal Freq : Logit T
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Figure C.3
Observed Medico-Legal Frequency: Logit Transformation (detail)
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Local extrema are observed at weeks 4 and 9, and hence f is estimated with the
following:

f(w)=a
+B, maX(0,4—W)L5 -
+B, max(O,min(w,9)—4)0'2 (C4)

+B, max (0,w—9)"*
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with the result (a = -4.2491, B, = -1.01454, B, = 0.9813, B3 = -0.3613)
illustrated in Figures C.4 and C.5.

Figure C.4
Observed and Fitted Medico-Legal Frequency: Logit Transformation
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Figure C.5
Observed and Fitted Medico-Legal Frequency: Logit Transformation {detail)
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C.3.2 Age of claimant

The conversion of development week to a continuous variate in Appendix C.3.1
reduces the number of parameters required in a model of Medico-Legal claim
frequency to manageable proportions. An initial model based on the covariates
identified in Table C.1 and (C.4) is given by the following GLM output.




Statistical case estimation

84

Table C.2

Model with development week continuous and age categorical

Analysis Of Parameter Estimates

Parameter Value

INTERCEPT
D1
D2
D3
TOA
TOA
TOA
TOA
TOA
TOA
TOA
TOA
TOA
TOA
AGEGRP
AGEGRP
AGEGRP
AGEGRP
AGEGRP
AGEGRP
AGEGRP
AGEGRP
AGEGRP
AGEGRP

AGEGRP

AGEGRP

SEV

SEV

SEV

SEV

SEV

Lol

LOI

LOI

Lol

Lol

LOi

LOI

Lol

[Xo]]

Lol

NOI

NOI

NOI

NOI

NOI

NOI

NOI

NOI

NOI

SEX

SEX

IND

IND

IND

IND

IND

IND

IND

IND

IND

IND

IND

IND

SCALE

WO N B WD 220N WN-
(L =]

P T
N S O

13

""K‘—_IO'ﬂrnOl")U:)>N—\m\JO)U!D(.NM-*O(DQ\IO)U‘I&(NN—‘OGO&—‘O%

Estimate Std Err  ChiSquare

1 -4.208 0.1512 774.6763

1 -0.7449 0.2063 13.0423

1 1.1536  0.1056 119.3823

1 -0.3746 0.0062 3667.8394

1 -0.0855 0.0392 4.7474

1 0.0374 0.0946 0.1567

1 -0.2015 0.0482 17.4827

1 -0.3556 0.0815 19.0251

1 -0.4256 0.1728 6.0633

1 -0.6111 0.297 4.2342

1 01711 0.1172 21326

1 -0.4754 0.1737 7.4871

1 0.084  0.0362 5.404

0 0 0.

1 -0.7238 0.0874 68.5062

1 -0.338 0.0519 42.4311

1 -0.2197 0.0483 20.6537

1 0.1213 0.0459 6.9871

1 0.0384  0.0428 0.8029

1 -0.0075 0.043 0.0305

1 0.0167  0.0453 0.1364

1 0.073  0.0481 2.3016

1 0.0133  0.0576 0.0533

1 -0.1435 0.1162 1.5241
1 0.2287 0.2107 1.1784
0 0 0.
1 -0.5559 0.0389 203.7179
1 0.8463  0.0323 687.3161
1 1.7096 0.045 1441.2703
1 1.5773  0.0885 317.779
0 0 0.
1 -1.0823 0.4596 5.5452
1 <0.5841 0.0876 44.4264
1 0.0729  0.0559 1.6981
1 0.7113 0.2779 6.5515
1 -0.0884 0.0736 1.4418
1 0.1167 0.0359 10.5415
1 -0.364 0.0421 74.9217
1 <0.1849 0.1135 2.6537
1 -0.1266 0.1312 0.9308
0 0 0.
1 -0.0026 0.0653 0.0016
1 04774 0.057 70.0768
1 0.4171 0.0609 46.9469
1 -0.6377 0.119 28.7066
1 -0.6816 0.072 89.4894
1 01514 0.0641 5.5778
1 0.9004  0.0988 83.0047
1 1.0393  0.0978 112.9087
0 o] 0.
1 0.2694  0.0279 92.8888
o 0 0.
1 -0.0017 0.0869 0.0004
1 0.0036  0.1682 0.0005
1 0.1397  0.0518 7.2837
1 -0.2519 0.1037 5.9011
1 -0.0528 0.0619 0.7289
1 -0.1266 0.0578 4.8012
1 0.2091 0.064 10.6753
1 0.1244 0.5181 0.0577
1 0.0889  0.0664 1.7957
1 0.0503  0.0893 0.3171
1 -0.2108 0.0559 14.2195
o] 0 0.
0 1 0.

Pr>Chi

0.0001
0.0003
0.0001
0.0001
0.0293
0.6922
0.0001
0.0001
0.0138
0.0396
0.1442
0.0062
0.0201

0.0001

0.0001
0.0001
0.0082
0.3702
0.8614
0.7118
0.1292
0.8175
0.217
0.2777

0.0001
0.0001
0.0001
0.0001

0.0185
0.0001
0.1925
0.0105
0.2298
0.0012
0.0001
0.1033
0.3347

0.9678
0.0001
0.0001
0.0001
0.0001
0.0182
0.0001
0.0001

0.0001

0.9848
0.9828

0.007
0.0151
0.3932
0.0284
0.0011
0.8102
0.1802
0.5733
0.0002

Formatted value

MAX(0,4-w) 15
MAX(0,MIN(w,9)-49-2
MAX(O,w-8) %4
Person Failing
Object Failing
Struck by moving objects
Caught
Temperature
Electricity
Toxic substances
Explosion
Other
Exertion
Under 20
20-24
25-29
30-34
40-44
45 - 49
50-54
55-59
60-64
65 +
unknown
35-39
Not Coded
Partial Temporary
serious
Total Permanent
Total Temporary
OTHER
HEAD
NECK
UNSPECIFIED
TRUNK
UPPER LIMBS
LOWER LIMBS
MULTIPLE
GENERAL
BACK
Other
100 Fractures
1722 - 1739 M-Ske!
351 - 359 internal
401 - 409 Open Wound
550 Contusion
1290 Mental iliness
Deafness
250 Sprains
Female
Male
Agriculture, Forestry, Fishing and Hunting
Mining
Manufacturing
Electricity, Gas and Water
Construction
Wholesale and Retail Trade
Transport & Storage
communication
Finance, Property and Business Services
Public Administration
Community Services
Recreation, Personal and Other Services
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Wald Statistics For Type 3 Analysis

Source DF  ChiSquare Pr>Chi
D1 1 13.0423 0.0003
b2 1 119.3823 0.0001
D3 1 3667.8394 0.0001
TOA 9 69.0253 0.0001
AGEGRP 11 161.7338 0.0001
SEV 4 2615.8366 0.0001
LOI 9 120.9532 0.0001
NOI 8 397.0506 0.0001
SEX 1 92.8888 0.0001
IND i1 152.8959 0.0001

The age variable may now be converted to continuous form by examining the
trend of its associated parameter estimates in Table C.2. These are plotted in
Figure C.6, and indicate that the frequency increases until age 35, and flattens

thereafter.
Figure C.6
Medico-Legal Frequency: Dependence on Age at Injury
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0.0000 A ——

g

. - . ~—— i,

040 10.00 20.00 30.00 / 40.00 50.00 60.00 70.00 80
.1000 / J N
02000 ///:7f S
-0.3000 ///

04000 f/ -

Parameter

a0 / —
arme f/

Age at Injury

{—9—Parameter estimate —a—Fitied |

The frequency f, (X;) can therefore be modelled as a function of:

age: min(age, 35)
development week: max (0, 4-w)'”
max (0, min (w,9) — 4)°2
max (0, w-9)%*
other categorical covariates: 48 levels (Table C.1).

The dimension of the covariate vector has now been reduced from 160 to 52.
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C4

Grouping categorical variables

The final model selected is illustrated by the further GLM output in Table C.3,
which contains further grouping of categorical variables that are not statistically
different from one another. For example, neck and back injuries are grouped
together, and seriously injured and total-permanent injury severities have been
grouped together.
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Table C.3

Model with development week and age both continuous, and grouped
categorical variables

Parameter

INTERCEPT
D1

D2
D3

AGEVAR
TOA
TOA
TOA
TOA
SEV
SEV
SEV
SEV
LOI
LOI
LOI
LOI
LOI
NOI
NOI

NOI
NOI
NOI
NOI
NOI
NSEX
NSEX
IND

IND
IND

IND
IND

SCALE

DF Estimate

-5.5403
-0.7472

1.1551
-0.3751

0.0318
-0.1337
-0.3886
0.0864
0
-0.5501
0.839
1.6893
0
~-0.2901
0.365
-0.3679
0.2358
0
-0.4693

0.4156

10
15

i.N

1

w =
= N T e T =T e T I = Y = N W S ey Wy U Ry IR W T

N H s Ww N

-0.6723
-0.1516
0.9482
1.0953
0
0.2778
0
-0.1521

B N EFE O~ 0w
H O O b k2

4 1 ~0.3553

6 1 ~0.2649
13 1 0.1655
30 0 0

Analysis of Parameter Estimates

Std Err

.1671
.2064

.1055
.0062

.0026
.0326
.0646
.0339
0
0.0387
0.032
0.0408

O OO O O O OO

ChisSquare Pr>Chi Formatted wvalue

1099.559
13.1094
119.8171
3687.0688
144.4414
16.8596
36.2191
6.5013

202.5036
688.0601
1716.6589

0.

0.0792
0.0403
0.2711
0.0403

13.4274
82.2012

1.842
34.2084

0.

0.0541
0.0593

0.0563
0.0593
0.0881
0.085
0
0.026
0
0.031

0.029

0.0371
0.3845

75.1088
49.1498

142.5687

6.5246
115.9328
166.2232
114.4721

24.1269

150.3984

51.0193
0.1852

0.

0.0001
0.0003
0.0001
0.0001
0.0001
0.0001

0.0001
0.0108

0.0001
0.0001
0.0001

0.0002
0.0001
0.1747
0.0001

0.0001
0.0001

0.0001
0.0106
0.0001
0.0001
0.0001

0.0001

0.0001

0.0001
0.6669

INTERCEPT

MAX (0, 4-w)'"°

MAX (0, MIN(w,9)-4)°7

MAX (0,W-9)°*

MIN(age, 35)

Per Fall & Struck & Toxic

Caught & Temp & Elect & Expl

Other

Obj Fall & Exert

Not Coded

Partial Temporary

Serious & Tot Perm

Total Temporary

HEAD & OTHER

NECK & BACK

UNSPECIFIED

TRUNK & UPP LIMBS & MULTIPLE & GENERAL
LOWER LIMBS

Fractures

Diseases of musculo-skeletal and connective
tissue

Internal injuries and open wound
Contusions

Mental illness

Deafness

Sprains and other

Female

Male

Agriculture, Forestry, Fishing and Hunting &
Mining & Construction & Public Admin &
Recreatioﬁ, Personal services

Elect, Gas and Water & Trans and Storage &
Comm Serv

Wholesale and Retail Trade

Unknown

Communications, Financial services, Property
and Business Services, Manufacturing
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Wald Statistics For Type 3 Analysis

Source DF  ChiSquare Pr>Chi
D1 1 13.1094 0.0003
D2 1 119.8171 0.0001
D3 1 3687.0688 0.0001
AGEVAR 1 144.4414 0.0001
TOA 3 69.7379 0.0001
NCAC 4 153.8036 0.0001
SEV 3 2674.2753 0.0001
LOI 4 135.2693 0.0001
NOI 6 461.9198 0.0001
NSEX 1 114.4721 0.0001
IND 4 165.7021 0.0001

The dimension of the covariate vector has now been reduced from 52 (originally
160) to 31, consisting of:

Age: 1 parameter
Development week: 3 parameters
Categorical covariates: 27 parameters
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