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Abstract

Properties of the distribution of the deficit at ruin in the station-
ary renewal risk model are studied. A mixture representation for the
conditional distribution of the deficit at ruin (given that ruin occurs)
is derived, as well as a stochastic decomposition involving the residual
lifetime associated with the maximal aggregate loss. When the indi-
vidual claims have a phase-type distribution, the deficit at ruin is also
of phase-type.
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1. Introduction and notation

In this paper we are interested in studying the distribution of the deficit
at ruin in the stationary renewal risk model, or equivalently the stationary
Sparre Andersen model.

We begin by describing the (ordinary) renewal risk model. The number
of claims process {IV; : t > 0} is a renewal process whereby the interclaim
times {Wj,Ws,...} are assumed to be independent and identically distrib-
uted positive random variables. Thus, W is the time until the first claim
occurs, and for ¢ = 2,3,..., W; is the time between the (i — 1)-th and i-th
claim. Let W; have distribution function (df) K (t) = 1-K(t) = Pr{W < t}
where W is an arbitrary Wi. Let E{W} = [°tdK(t) < oo, and k(s) =
E{e=*W} = [°e™stdK(t). Anticipating what follows, we introduce the in-
tegrated tail or equilibrium df K (t) = 1 ~ K;(t) = [ K(2)dz/E{W} and
(e.g. Feller, 1971, p. 435), ki(s) = [$° e *tdK:(t) = {1 — k(s)}/{sE{W}}.

The individual claim amounts {X3, X2, ...} are iid positive random vari-
ables with df P(z) = 1 — P(z) = Pr{X < z} where X is an arbitrary
X, which itself represents the amount of the i-th claim. Let E{X} =
Jo° 2dP(x) < 00, and p(s) = E{e~*X} = [° e **dP(x). Also, we introduce
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the integrated tail distribution as Pi(z) = 1 — Py(z) = [5 P(y)dy/E{X},
with 1(s) = [5° e *%dPy(s) = {1 — p(s)}/{sE{X}}.

Premiums are assumed to be payable continuously at rate £ per unit
time where { = (1 + 0)E{X}/E{W} where 0 > 0 is the relative security

N,
loading. The insurer’s surplus at time ¢t is defined as U; = u + £t — Zt X,

where u > 0 is the initial surplus. The time of ruin is T’ = inf{t : Uzt i 0}
and T' = oo if U; > 0 for all £ > 0. The deficit at ruin (if ruin occurs) is
|Ur|. The probability of ultimate ruin, as a function of the initial surplus,
is Y(u) = Pr{T < oo} =1 — é(u), and it is well known (e.g. Embrechts et
al, 1997, pp. 26-7, or Rolski et al, 1999, section 6.5) that

V) = Pr{L>u} = (1 - F (), w20, (L)

n=1

where p = 9(0) is the probability of a drop in surplus below its initial level,
L is the well-known maximal aggregate loss in the Sparre Andersen model,
and F(y) = 1 — F(y) is the so-called ladder height df, i.e. the df of the
amount of a drop in surplus, given that a drop below its initial level occurs.
Let f(s) = [$° e *¥dF(y), and F**(u) = 1 — F*"(u) is the df of the n-fold
convolution of F' with itself, i.e. [5°e “dF**(u) = {f(s)}". Then from
(1.1) and Feller (1971, p. 435),

. 0o _ e-sL
B = [~ e = 2= EEDD, (12)
e E{e~l} = /oo e db(u) = 1= (1.3)
- T~ pf(e) |

A generalization of the ruin function is the defective deficit tail G(u,y) =
Pr{T < o0, |Ur| >y}, with ¢(u) = G(u,0). By conditioning on the amount
of the first drop in surplus, one obtains the defective renewal equation

- u -_— —
Gluy) = p [ Glu—t,9)dF() + pF(u-+y), (14)
and it can be shown (e.g. Willmot, 2002) that
— P v _
Gluy) =72 /0 | Flu+ty - t)ds(t). (1.5)
In this paper we are interested in the stationary or equilibrium renewal
risk model, which is identical in all aspects to the (ordinary) renewal risk

model except that the time until the first claim occurs has df K (t) rather
than K (t). See Grandell (1991, pp. 67-9) or Willmot and Lin (2001, p.




231), where it is shown that the ruin probability ¥®(u) = 1 — §°(u) in the
stationary renewal risk model is given by

() = T?Ir_é /0 * b — )Py (t) + I%)Pl(u), wu>0.  (16)

See also Asmussen (2000, p. 142), who discusses the fact that 1°(u)
may also be interpreted as the tail of the limiting distribution of the virtual
waiting time in the G/G/1 queue.

In connection with (1.6), it is useful to define the compound geometric
convolution df C(y) = 1~ C(y) = 6 * Pi(y), ie. C(y) = Pr{L+Y <y}
where Y has df Pi(y) = Pr{Y < y} and is statistically independent of the
maximal aggregate loss L in the renewal risk model. Then

&(s) = /000 e™VdC(y) = pr(s) Efe™""}, (1.7)
with E{e~*L} given by (1.3), and (1.6) may be expressed as
v = o (9)

Let L® denote the maximal aggregate loss in the stationary renewal risk
model, so that one has 9®(u) = Pr{L¢ > u}, and from (1.6),

1
e -— e —
¥*(0) = Pr{L® > 0} = 150 (1.9
Therefore from (1.8), one has the stochastic law
Pr{L® >u|L® >0} = C(u) = Pr{L+Y > u}. (1.10)

Now that these preliminary quantities have been defined, the remainder
of the paper is arranged as follows. In the next section, a number of results
referring to the deficit at the time of ruin are established in the stationary
renewal risk model. In section 3, we focus our attention on the special case
when the claim amounts follow a distribution belonging to the phase-type
family of distributions. In section 4, illustrations are presented for both the
stationary and the ordinary renewal risk models, in the case of a particular
non-Poisson claim number process.

2. Basic properties of the deficit

The following straightforward proposition is needed in the subsequent analy-
sis.

Proposition 2.1 In the stationary renewal risk model, P;(y) is the df of
the first drop in surplus, given that the surplus ever drops below its initial
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level.

Proof: It follows from (1.9) that 4°(0) = 1/(1 + 6) may be interpreted as
the probability that the surplus ever drops below its initial level u. Now
let A(y) = 1 — A(y) be the df of the amount of the first drop in surplus
below its initial level, given that the surplus ever drops, and let a(s) =
o e *YdA(y). Conditioning on the first drop in surplus yields, by the law
of total probability,

Ve = ¥0) [ 9w - OdAE) + () Alw),

using the fact that the process reverts to the ordinary renewal risk process
upon occurrence of the first claim, and a drop can only occur when a
claim occurs. Since %¢(0) = 1/(1 + 6) from (1.9), taking Laplace-Stieltjes
transforms yields (with 9°(s) = Jo? ey (u)du) the relationship (1 +
0)¢ (s) = ¢(s)a(s) + {1 — a(s)}/s. But from (1.6), one also has (1 +

)1/1 (s) = ¥(s)p1(s) + {1 — H1(s)}/s. Equating these transforms yields
{ib(s) — 1/s}{a(s) — p1(s)} = 0. However, if ¥(s) = 1/s, then (u) = 1
for all u which is impossible since & > 0. Therefore, we must have that
a(s) = p1(s), which implies that A(y) = Pi(y). 0

We are now in a position to consider the deficit at ruin in the stationary
renewal risk model. Let the defective deficit tail be G®(u,y) = Pr{ruin
occurs and the deficit at ruin exceeds y}, where again the dependency on
the initial surplus u is explicitly noted. By conditioning on the amount of
the first drop in surplus, it follows immediately that

— 1 U 1 =
Cwy) =175 [ Cu—tdP®) + 5Pty @D

where G(u, y) as given by (1.4) is the corresponding quantity in the ordinary
renewal risk model. By probabilistic considerations or (1.6), it is clear that

¥°(w) = G°(u,0). (2.2)

The following alternative representation for G¢(u,y) is of use in what
follows.

Proposition 2.2 The defective deficit tail satisfies

Go(u,y) = — / Fluty ~)dC() + 5 ! =Pty (23)

(1+9)

Proof: It follows from (1.3) and the convolution representation (1.5) that




) _ P 00 u
/ UG y)du = —F— / eu / Flu+y — £)d(t)du
0 1-pJo 0-

= Tf—p {/Ooo e U F(u+ y)du} /Ooo e " db(u)

= P E{e‘SL}/ e F(u+ y)du,
-and thus from (1.7),

/oo e /“ G(u —t,y)dP; (t)du pa(s) /0°° e "G (u,y)du
0 0

= £ 6(8)/ e SUF(u + y)du,
1-p 0

which implies by inversion of the Laplace transform that
U _ u
| 6w—twine = 1= [* Pa+y - ticw.
0 1-pJo
Then (2.3) follows from (2.1). O

When y = 0, (2.3) becomes

Po(u) =

m)___ / Flu—0)d0(t) + 775P)- (24)

In what follows it is convenient to introduce the residual lifetime df
F.(y) = 1 — Fy(y) defined for z > 0 by F,(y) = F(z +y)/F(z). Simi-
larly, let P 4(y) = 1~ Py +(y) = Pi(z +y)/Pi(x). The proper distribution
of the deficit, conditional on ruin occurring, is G¢(y) = 1 — G¢(y) where
Ge(y) = G®(u,y)/v*(u). We have the following theorem.

Theorem 2.1 The deficit df satisfies the mixture relationship

pJo Fut(y)F(u — )dC(t) + (1 — p) P (u)Pru(y) _

) = = W Flu— a0 + (1~ ) Pr(w) (25)
Proof: Division of (2.3) by (2.4) results in
me (N _ PJo Fluty—t)dC(t) + (1 — p)Pr(u+y)
R s e e Yoo G
from which (2.5) follows. 0




It is clear from (2.5) that G%(y) is a mixture of the residual lifetime df’s
Fi(y) for 0 <t < u, and of Py 4(y). Of course, when u = 0, one has from
(2.5 that

o) = Pi(y), (2.7)

the same as in the classical model. The next result follows immediately.

Corollary 2.1 If the claim size df is the exponential df P(x) = 1—e~%/E{X},
then G¢(y) = 1 — e~¥/B{X},

Proof: One has easily that P ,(y) = P(y), and also (e.g. Rolski et al, 1999,
p. 248) F(y) = P(y) and hence Fi(y) = P(y). The result follows immedi-
ately from (2.5). 0

We note that this result also follows easily from the argument given by
Bowers et al (1997, p. 414) in the context of the classical risk model.

Other properties also follow from the mixture relationship (2.5). For
example, if P(y) is a combination of exponentials then G¢(y) is a different
combination of the same exponentials. Since this is a special case of the
phase-type situation to be discussed later, we omit the details. As a second
application, we consider the decreasing failure rate or DFR class of distrib-
utions. The df P(y) is said to be DFR if P(x +1%)/P(z) is nondecreasing in
z for all fixed y > 0 (e.g. Faguioli and Pellerey, 1994).

Corollary 2.2 If the claim size df P(y) is DFR, then G¢(y) is also DFR.

Proof: If P(y) is DFR, then P;(y) is DFR (e.g. Faguioli and Pellerey, 1994)
and F(y) is also DFR (Szekli, 1986). Thus, Pi.(y) and Fi(y) are DFR,
and since the DFR property is preserved under mixing (e.g. Barlow and
Proschan, 1975, p. 103), G%(y) is DFR since (2.5) holds. 0

We now demonstrate that a stochastic decomposition of the residual life-
time of L¢ involving the deficit holds, in much the same way as it does for
the ordinary renewal risk model (e.g. Willmot, 2002).

Theorem 2.2 Let V7 be statistically independent of L with df G¢(y). Then
the tail of the residual lifetime distribution of L¢ satisfies

Ye(u+y)
Y°(u)

Proof: We employ a probabilistic proof along the lines of Dickson (1989).
An analytic proof in the context of compound geometric convolutions may
be found in Willmot and Cai (2002). It is convenient to define the defective
deficit df G®(u,y) = ¥*(u) — G®(u,y), representing the probability that ruin

=Pr{L+V; >y}, y>0. (2.8)




occurs (from initial surplus u) and the deficit at ruin is between 0 and y.
Then G (y) = G°(u,y) /¢ (u).

Recall that L¢ is the maximal aggregate loss in the stationary renewal
risk model, or equivalently the total drop in surplus below its initial level,
and L€ has df 6°. Consider an initial surplus level of u + y. Then the event
that the total drop in surplus L¢ < u+y can happen in two ways. The first
possibility is that the total drop L® < w with probability 6°(u), in which
case the surplus always remains above y. For the second possibility, the first
drop in surplus exceeds u but does not exceed w + y. For this to happen,
the surplus must fall below y for the first time to a level y — ¢t > 0 with
probability dG¢(u,t), and then remain above 0 thereafter with probability
6(y —t), since the process behaves from that point onward like the ordinary
renewal risk process. Hence by the law of total probability, it follows that

y
85 (u+y) = 8°(u) + /0 8(y — £)dGe(u, ?). (2.9)
Therefore, rearrangement of (2.9) and division by 9°(u) yields

YEuty) [V e
1"”¢T(u)—‘—/0 6(y — t)dGL (1),

or equivalently,

¢e(u+y) — e Y _ e
S = G + [ vl - Daci (), (210)

which is (2.8). 0

We remark that from (1.8), ¥°(u + y)/¥%(u) = C(u +y)/C(u). Thus,
(2.8) may be expressed as

Clu+y)

e e —
Pr{Ll® >u+y|L® >u} = o)

= Pr{L+ V¢ >y},

which, in view of (2.7), implies that (2.8) is a generalization of (1.10), which
itself may be recovered from (2.8) by setting u = 0.
Moreover, moments of the deficit follow from Theorem 2.2.

Corollary 2.3 For k=1,2,3,..., one has

eyky — g [ 1Y@t Y)
B{L+ VoY =k [y ey, (2.11)
and in particular, the mean deficit satisfies
ey [P ¥ (uty)
E{V;A} - /0 { ¢e(u) ¢(y)}dy (212)
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Proof: It is easily shown that
o0
B{L+V} =k [ 41 Pr{L+ Ve > yhay,
0
which yields (2.11) using (2.8). When k =1, (2.11) yields

By +BVs = [ E

which gives (2.12) since E{L} = [5° ¥ (y)dy. 0

Higher moments of the deficit V¢ may be obtained from (2.11). We
remark that in the case when the individual claim amount distribution is
of phase-type, a direct method to calculate moments of V¢ exists. This is
given by Corollary 3.2 in the next section.

Note that the role of G¢(y) and 9(y) in (2.10) may be interchanged,

yielding " )
(4 u_l_y _ Y =e _
S = v+ [ Gal e, (213)

which gives an alternative expression for the integrand in (2.12).

Let ¥5(y) = ¢¥*(u+y)/¥°(u) = Pr{L® > u+y|L® > u}. Using the right
hand side of (2.8) and equation (9.3.2) of Willmot and Lin (2001), v¢(y)
satisfies the defective renewal equation (e.g. Willmot and Lin, 2001, p. 174)

viw =r [ Yy ~ OdF(t) + pF () + (1 - p)C3(y), (2.14)

which, when solved for G¢(y), provides an alternative to the mixture rep-
resentation of (2.6). Moreover, defective renewal equations have various
analytic implications for the solution, so that (2.14) is of interest in its
own right. In particular, bounds for both ¥¢(y) and G¢(y) can be found
from equation (2.14) using the approaches of Willmot et al (2001), Willmot
(2002), and Cai and Garrido (2002). We omit the details.

Asymptotics and bounds for many of the quantities of interest involve
the Lundberg adjustment coefficient x > 0 satisfying f(—«) = 1/p, or equiv-
alently (e.g. Rolski et al, 1999, pp. 255-9)

E(ck)p(—k) = 1. (2.15)

The following theorem shows that the asymptotic (as the initial surplus
u — 00) distribution of the deficit in the stationary renewal risk model is
still of mixture form, and is the same as that under the (ordinary) renewal
risk model.




Theorem 2.3 If k > 0 satisfies (2.15) and f(—k — €) < oo for some € > 0
with F' non-arithmetic, then

_ L= 0 ertF(y 4 t)dt
Ge(y) = Jim Gofy) = o ST+

2 > 0. .
Eeirga V=0 (210

Proof: First note that p(—«) < oo since (2.15) holds. Thus
Pi(=r) = [ P/ Bt = (3(~r) — L{=E(X}} <o0, (217)

implying that lim e"P(t) = 0. Equation (2.17) implies that Jim e P (t) =
0 since [;° e Py(t)dt = {p1(—k) — 1}/k < 0o. Also, by Lundberg’s inequal-
ity (e.g. Rolski et al, 1999, Section 6.5.2) in the ordinary renewal risk model,
e™G(u,y) < e(u) < 1. Therefore, by dominated convergence and (2.1),

Jim_ e G®(u,y)

- 1 _
KU ki : Ku
1+9/ Jim e G(u,y)}e dPl(t)+-——1+0ul_1£I°1°e Pi(u+y).

But 0 < e Py (u+y) < e Pj(u), implying that ulglgo e Py (u+y) =0.
Thus,

I

: . 1 [> . wA
Jim eG4 (u,y) {m /0 e”thl(t)}JLrgo ™G (u,y)

= bi(=x) ango "G (u,y).
Since G&(y) = G®(u,y)/1°(x) and (2.2) holds, one has
lim e™G(u,y)  lim eG(u,y)

uU—00
L} Guly) = Jim eruGe(u, O) hm esvG(u,0) =, Guly),
ie. B B
Go(y) = Goo(y), y 2 0. (2.18)
Then (2.16) follows from (3.35) of Willmot (2002). 0

Equation (2.18) expresses the equivalence between the limiting distrib-
utions in the stationary and ordinary cases. Also, (2.16) may be expressed
in mixture form as

fO ntF t)E(y)dt > 0’ (219)

o) & et Ftydt Y=

which is considerably simpler than the mixture representation for finite u
given in Theorem 2.1. Properties of this limiting distribution may be found
in Willmot (2002, Section 3).




3. Phase-type claim amounts

In this section, we assume that the iid claim amounts {Xi,Xo,...} are
phase-type distributed. Specifically, we write X ~ PH,,(,S), i.e. X has a
phase-type distribution with representation (e, S) of dimension m, having
df

P(z) =1~ aexp{zS}e?, z >0,

where the matrix exponential is defined by

exp{zS} =) %S".

n=0 """

When a random variable X is phase-type distributed, it can be viewed
as the time to absorption in a continuous-time Markov Chain (CTMC) with
m transient states (denoted without loss of generality 1,2,...,m) and a
single absorbing state (likewise denoted as state 0). Here, the row vector o
contains the initial probabilities o; of starting in the various transient states
Jj=1,2,...,m, while § is an m X m matrix containing the transition rates
among the m transient states. In the foregoing, o exp{xS}eT represents the
probability that absorption has not occurred by time z. In this case, the
process must be in one of the transient states at that time. Defining J; as
the state of the underlying CTMC at time ¢ > 0, one readily recognizes

Pr{X >z,J, =j;j=1,...,m} = aexp{zS}.

Usually o satisfies ae? = 1, where €T is a column vector of ones of
length m. However, one can just as easily accommodate probability mass
at z = 0 by allowing for a positive probability ap = 1 — el of starting in
the absorbing state. We distinguish between these situations by referring in
the latter case to a defective phase-type distribution. For a more detailed
description of phase-type distributions, see Neuts (1981) and Latouche and
Ramaswami (1999).

If we assume that X ~ PHp,(a,S), then several well-known ruin-theoretic
results follow. In particular (e.g. Asmussen, 2000, pp. 229-30, Proposition
4.3), the ladder height df F(y) = 1 — o exp{zS}el where o} = a;/p
and the row vector oy is the (defective) unique solution of the fixed-point
problem oy = ¢(a) where

plocr) = aF(~€(S — SeTa)) = o [~ exp{te(S ~ SeTay)}dK ().

Asmussen also shows that both the maximal aggregate loss L and the
stationary maximal aggregate loss L follow defective phase-type distrib-
utions (see Asmussen, 2000, Theorem 4.4, pp. 230-31). In particular,
L ~ PHp,(ay,B) and L ~ PH,,(a®), B) where B = S+ D, D = —SeTa.,
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and o(®) = —aS~1/{(1+ 6)E{X}}. In other words, ¥(u) = Pr{L > u} =
oy exp{uB}el whereas 9°(u) = Pr{L¢ > u} = o(*) exp{uB}eT.

We remark that examination of the consequences of Asmussen’s result
for the distribution of L¢ leads to the observation that the distribution of
the sum Z = U + V of two independent random variables U,V where U ~
PH.,(v,S) and V ~ PHp,(ay,B) for B = S+ D is again phase-type for
any initial probability vector v. In fact, if v = 1, then Z ~ PH,,(v, B).
This is readily seen by observing that Z ~ PHs,((,0), R) for

S D
k= [ 0 S+D ] '

Working directly with these matrices one immediately obtains
Pr{Z <y} =1 yexp{yB}e,

which is the df of a PH,, (7, B) random variable.

Recently, Drekic et al (2001, p. 12) established the folfowing results
pertaining to the deficit at ruin in the ordinary renewal risk model when
claim amounts are phase-type distributed:

G(u,y) = ayexp{uB)exp{yS}e” (3.)
and
Guly) = Pr{{Ur| < yIT < oo} =1 2PRWBY 6™ (3)
* = arexp{uB}eT ' '

We are now ready to state the following theorem.

Theorem 3.1 If the claim size random variable X ~ PH,(a, S), then
G (u,y) = ol exp{uB} exp{yS}eT, u,y > 0. (3.3)
Proof: First, we have that Pi(y) = nexp{yS}e’ where n = —aS~1/E{X}

and nel =1 (see Asmussen, 2000, p. 230, or Rolski et al, 1999, Lemma
8.3.1). Making use of this result and (3.1), we have via (2.1) that

G*(u,) = 15| [ @rexp{(u =) Blexp{yS}eTdPi(t) +nexp{(u+5)S)e”]
: /0 ua+exp{(u —t)B}dP, (t)exp{yS}eT+77exp{uS}exp{yS}eT]
: /0 ua+exp{(u —t)B}dP(t) -l-nexp{uS}] exp{yS}eT

[ / PriL > (u—1),Juoty = jij =1,...,m}dPr{Y <t}
-JO

- — — -
+‘»~+]~+‘»—~+’~
S~ 5 > S

+Pr{Y >u,Ju=7j;j=1,.. .,m}] exp{yS}el.
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The expression within brackets above is the convolution of Y and L, which
by (1.10) is the tail probability of L® conditional on L¢ > 0. Therefore, this
yields

Gé(u,y) =Pr{le > u,Jy =j;j=1,... ,m}exp{yS}eT. (3.4)

Finally, making use of L¢ ~ PH,,(a(*), B), we obtain (3.3). 0

Corollary 3.1 Under the same conditions as Theorem 3.1, the conditional
distribution of the deficit at ruin is given by

Ge(y) =1 - n*exp{yS}e’, y 20, (3.5)

where
e aSlexp{uB}

= aS~lexp{uB}eT"

(3.6)

Proof: The tail of the distribution of the deficit at ruin is given by

G°(u,y)
Ye(u)
a(®) exp{uB} exp{yS}eT
a(®) exp{uB}eT »
—{(1+0)E{X}} oS! exp{uB} exp{yS}e”
—{(1+0)E{X}}laS-lexp{uB}el
= m®exp{yS}el.

Gily) =

Taking the complement of G¢(y) yields the desired result. 0

Corollary 3.2 Under the same conditions as Theorem 3.1, the conditional
moments of the deficit at ruin are given by

E{(VE)F} = (—1)kktneS~keT, (3.7)

Proof: This is a standard result for phase-type distributed quantities; see
for instance Neuts (1981) or Asmussen (2000).

4. An application

In this section, we present some illustrations of the conditional distribution
of the deficit at ruin. We consider first the df of V¢ as a function of u,
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then make comparisons between the conditional distributions of the deficit
at ruin in the ordinary and stationary renewal risk models.
To demonstrate ideas, we use the following distributions from Wikstad
(1971):
K(t) =1-0.25e"%% —0.75¢"%, t >0,

and s
P(z) = Zai (1 - e"ﬁi"’") , >0,
i=1

where a; = 0.0039793, o = 0.1078392, a3 = 0.8881815, 3; = 0.014631,
B2 = 0.190206, and B3 = 5.514588. For this choice of K in the stationary
renewal risk model, we find that E{W1} = 1.75 and Var{W;} = 4.9375,
whereas for i > 1, E{W;} = 1 and Var{W;} = 2.5. Since the characteristics
underlying the distributions of W; and W;, ¢ > 1, are quite different, we
would expect to see some differences in the distributions of the deficit at ruin
in the ordinary and stationary renewal risk models. It is also clear that P
is a member of the phase-type family with F{X} =1 and Var{X} = 42.2,
so that we anticipate the initial surplus w will be a major factor in the
distribution of V7. For each of our illustrations below, we have set £ = 1.2.

Figure 1 displays the df of V¢ for u = 0, 5,10,25, and 100. We can see
that there is a clear difference between the df’s for these values of u, but for
u > 100 we found very little difference so that we anticipate the df of Vi,
is close to that of V¢.

Figures 2 to 4 show a comparison between the df’s G,(y) and G¢(y)
for w = 0,5, and 10. In each case, we see that G%(y) lies below G,(y)
for a given value of u, which implies that V¢ is stochastically larger than
its non-stationary counterpart, i.e. G¢(y) > Gu(y). Furthermore, we note
that the two distributions become more similar as u grows larger. This is
to be expected as a result of (2.18), which states that the distributions of
the deficit at ruin in the ordinary and stationary renewal risk models are
asymptotically identical.
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