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Abstract

In this paper a discrete-time Sparre Andersen risk model with general inter-claim
times is considered. Assuming that the individual claim amounts follow discrete
phase-type distributions, the probability of ruin and the distribution of the deficit at
ruin are discussed. Examples are provided thereafter. Using the method proposed in
Ren Jiandong (2009), the discounted probability of ruin and discounted distribution
of the deficit at ruin are considered in the end.
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1 Introduction

In this paper we consider a discrete-time Sparre Andersen risk process

U(n) = u + n−
N(n)∑
i=1

Xi, n ∈ N+, (1.1)

where u ∈ N is the initial surplus, and {Xi}∞i=1 is a sequence of independent and
identically distributed (i.i.d.) random variables (r.v.’s), denoting the individual claim
sizes. {Xi}∞i=1 only take positive integer values and follow a common probability
function (p.f.) p(x) = P{X1 = x}, for x = 1, 2, . . .. Let P (x) = 1− P̄ (x) = P{X ≤ x}
be the distribution function (d.f.) of X1, µ be its mean and p̂(z) =

∑∞
x=1 zxp(x), z ∈

C, be the probability generating function (p.g.f.).
The counting process {N(n); n ∈ N} denotes the number of claims up to time n

and is defined as N(n) = max{k : W1 + W2 + · · · + Wk ≤ n}, where the inter-claim
times Wi’s are also assumed to be i.i.d. positive integer-valued r.v.’s with the common
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p.f. k(t) = P{W1 = t}, t = 1, 2, . . ., the d.f. K(t), the mean E[W1] < ∞, and the
p.g.f. k̂(z) =

∑∞
t=1 ztk(t), z ∈ C.

Further, we assume that {Wi; i ∈ N+} and {Xi; i ∈ N+} are mutually independent,
and E[W1] = (1+θ)E[X1] = (1+θ)µ, θ > 0, in order to have a positive safety loading.

For risk model (1.1), let the r.v. T = min{n ∈ N+ : U(n) < 0} denote the time
of ruin and T = ∞ if U(n) ≥ 0 for all n ∈ N+. As usual, ψ(u) = P{T < ∞|U(0) =
u}, u ∈ N, is the ultimate ruin probability.

The Sparre Andersen risk model is a well recognized risk model. As it was com-
mented by Gerber and Shiu (2005), “although the model was proposed almost half
a century ago, it remains an important area of research in actuarial science”. A
large number of researchers have studied this model on a variety of topics, for in-
stance, the probability of ruin and the Gerber-Shiu functions, after assuming that
the inter-claim time distribution is known. The type of distributions considered in-
cludes Erlang(2), Erlang(n), generalised Erlang(n), Kn distributions, and also some
discrete distributions for discrete-time Sparre Andersen models. Some very recent
papers on the Sparre Andersen model include Alfa and Drekic (2007), Albrecher et
al (2007), Borovkov and Dickson (2008) and Yang and Zhang (2008).

On the contrary, some researchers assumed arbitrary inter-claim time distributions
in the Sparre Andersen model. Having specified the individual claim size distribu-
tions, interesting results have been obtained for some of the problems. Relevant
references see Wang and Liu (2002), Willmot (2007), Landriault and Willmot (2008),
Wu and Li (2009), etc.

In this paper we shall assume an arbitrary inter-claim time distribution k(t) and
phase-type distributed individual claim sizes. After giving a brief review of the prop-
erties for discrete phase-type distributions in Section 2, we shall consider the ruin
probability and the distribution of the deficit at ruin within the rest of this paper.
The discounted probability of ruin and discounted distribution of the deficit at ruin
are also discussed in this paper.

2 Discrete phase-type distributions

In this section, we shall review some of the key properties of the discrete phase-type
distributions. Formalised introductions for the discrete phase-type distributions date
back to mid 1970’s, see Neuts (1975). However, more researchers have been focus-
ing on the studies of the continuous phase-type distributions. Detailed discussions
of continuous phase-type distributions can be found in Neuts (1981) and Latouche
and Ramaswami (1999). Brief overviews of either discrete or continuous phase-type
distributions and their properties can be found in Asmussen (1992, 2000), Stanford
and Stroiński (1994), Drekic et al (2004), Ng and Yang (2005), Eisele (2006), Hipp
(2006) and the references therein.

A discrete phase-type distribution is defined by considering a Markov chain with
m transient states and one absorbing state, say 0. It has an associated transition
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matrix

T̃ =

[
1 ~0

~t> T

]
,

where ~0 = (0, 0, . . . , 0)1×m,~t = (t10, t20, . . . , tm0), and T = (tij)m×m. Matrix T is
a substochastic matrix, holding the transition rates among the m transient states,
and ~t contains the absorption rates into state 0 from the transient states. Given a
starting distribution ~α = (α0, α1, . . . , αm), we denote by X the minimum time for the
Markov chain to get to state 0, then X has a discrete phase-type distribution with
representation (~α, T). Although the Markov chain may start from the absorption
state 0, as in the sequel we are going to apply the discrete phase-type distributions
for the positive individual claim sizes Xi, i = 1, 2, . . ., we shall assume α0 = 0, or
equivalently

∑m
i=1 αi = 1. Let X represent an arbitrary Xi. Further, we know

~t> = ~1> −T~1>, where ~1 = (1, . . . , 1)1×m.
The probability function of X is then given by

p(k) = ~αTk−1~t>, k ∈ N+. (2.1)

The distribution function of X is P (k) = 1 − ~αTk~1> and its p.g.f. is p̂(z) =∑∞
k=1 p(k)zk = z~α(I − zT)−1~t> where I is an m × m identity matrix. The mean

of X is µ = ~α(I−T)−2~t> = ~α(I−T)−1~1>. Similar to the interpretation in Drekic
et al (2004) for a continuous phase-type distribution, the jth component of ~αTk−1

can be interpreted as the probability that absorption has not occurred by time k− 1,
and the Markov chain is in transient state j at time k − 1. It then explains why the
distribution function of X has the above expression.

It has been remarked by a number of authors that a discrete phase-type distribu-
tion has a rational p.g.f., see for example Asmussen (2000) and Eisele (2006), and it
can be expressed as follows:

p̂(z) =
A(z)

B(z)
=

a1z + a2z
2 + . . . + amzm

1 + b1z + b2z2 + . . . + bmzm
,

and p̂(1) = 1 gives A(1)/B(1) = 1.
Another property of interest for the phase-type random variables is that their

equilibrium distributions are also (defective) phase-type. In the following, we shall
consider one of the two existing definitions for the discrete equilibrium distributions,
which was employed in Fagiuoli and Pellerey (1994) and Pavlova et al (2006).

For a distribution P (x), its equilibrium distribution is defined as

P1(x) =

{
0, x = 0,

µ−1
∑x−1

k=0 P̄ (k) x = 1, 2, . . . .

We have the following result for P1(x).

3



Proposition 1 Given that distribution P (x) is phase-type with representation (~α,
T), its equilibrium distribution is also phase-type with representation (~π, T), where
~π = µ−1~α(I−T)−1 satisfying ~π~1> = 1.

Proof. Using the above definition for equilibrium distributions, we have for x ∈ N+,

P1(x) =
1

µ

x−1∑

k=0

P̄ (k) =
1

µ

x−1∑

k=0

~αTk~1>

=
1

µ
~α(I−T)−1(I−Tx)~1> = 1− 1

µ
~α(I−T)−1Tx~1>,

which is a phase-type distribution function with representation (~π, T), where ~π =
µ−1~α(I−T)−1. Further the p.f. of P1 has the form p1(x) = ~πTx−1~t>, for x ∈ N+.

3 The ruin probability

To study the probability of ruin for risk model (1.1), there are two tools of often use,
which are the ladder heights and the maximal aggregate loss. There has been much
discussion in literature on the applications of them to a variety of risk models including
the classical risk model and the continuous-time Sparre Andersen models. Useful
references include Asmussen (1992, 2000), Neuts (1981), Latouche and Ramaswami
(1999), Asmussen and Rolski (1991) and the references therein.

In the following we shall prove several results of the ladder height distributions,
the distribution of the maximal aggregate loss and the probability of ruin for model
(1.1), given phase-type individual claim amounts. One will see that all of these results
are the counterpart of those obtained in a continuous-time Sparre Andersen model
with continuous phase-type claim amounts (details see for example Asmussen (2000)).

First of all, we denote the time of ruin when u = 0 by T0, and we denote UT0(i) the
ith ladder height r.v.. It is well known that the ladder heights in a continuous-time
Sparre Andersen model are i.i.d. r.v.’s. In the discrete-time case UT0(i), i = 1, 2, . . .
are also i.i.d. with the common distribution function G.

Proposition 2 Given that individual claim amounts follow the phase-type distribu-
tion with representation (~α,T), the ladder height distribution G is of defective phase-
type with representation (~α+,T), in which ~α+ satisfies ~α+ = ϕ(~α+), where

ϕ(~α+) = ~αk̂(T +~t>~α+) = ~α

∞∑
t=1

(T +~t>~α+)tk(t). (3.1)

Proof. This result is the counterpart of the Proposition 4.1 and 4.3 (Asmussen
(2000, pp. 229-230)). Similar to the proofs given by Asmussen (2000), we shall
need to construct two terminating Markov processes, {mx} and {m∗

x}. Here {mx} is
obtained by piecing together the ascending ladder heights UT0(i), i = 1, 2, . . ., then the
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lifelength of {mx}, denoted by M , is the maximal aggregate loss of {U(n)}. {mx}
is a terminating Markov process with a defective initial vector, denoted by ~α+, and
a transition matrix T + ~t>~α+. By the same arguments as in Asmussen (2000, pp.
227), the ladder height distribution G is of phase-type with representation (~α+,T).

To evaluate ~α+, conditioning on W1 = t we define {m∗
x} from {U(n+t)−U(t−1)−

1} in the same way as {mx} from {U(n)}. We know {m∗
x} has an initial distribution

~α and m∗
t = m0. By knowing that the conditional distribution of {m∗

t} given W1 = t
is ~α(T + ~t>~α+)t, we can show by the law of total probability that the distribution
~α+ of m0 satisfies equation (3.1). 2

Based on the above discussion, the following result is obtained:

Theorem 1 For a discrete-time Sparre Andersen risk model (1.1), if the claim size
distribution is of phase-type with representation (~α,T), then

ψ(u) = ~α+(T +~t>~α+)u~1>, (3.2)

where ~α+ satisfies equation (3.1) and can be computed by iteration of (3.1), i.e., by

~α+ = lim
n→∞

~α
(n)
+ , (3.3)

where

~α
(0)
+ = 0, ~α

(n)
+ = ϕ(~α

(n−1)
+ ), n ≥ 1. (3.4)

Proof. The proof of (3.2) is straightforward. Having known that the maximal ag-
gregate loss M is phase-distributed with representation (~α+,T +~t>~α+) and ψ(u) =
P{M > u}, the expression of a phase-type distribution function in Section 2 gives the
result (3.2) directly.

The convergence of the iteration scheme (3.4) can be proved by applying similar
arguments as in Asmussen (2000, pp. 231-232). 2

Remark. A special case for p(x) is the zero-truncated geometric distribution
with parameter 0 < q < 1, where p(x) = (1 − q)qx−1, x = 1, 2, . . .. It is a discrete
phase-type distribution with only one phase, i.e., m = 1. By adopting the notation

for a phase-type distribution, we have ~α = (α1) = (1), T̃ =

(
1 0

1− q q

)
. Then from

Theorem 1 and Proposition 2 we know that the probability of ruin for the discrete-
time Sparre Andersen model (1.1), with a general inter-claim time distribution k(t),
equals ψ(u) = ~α+[q + (1− q)~α+]u, where ~α+ (a single number) satisfies the equation
~α+ = k̂(q + (1 − q)~α+). This ruin probability is the same as the result obtained in
Wu and Li (2009) when the discount factor v = 1, in which the constant ξ1 is ~α+.

4 The distribution of the deficit at ruin

At last we shall consider the conditional distribution of the deficit at ruin in the
discrete-time Sparre Andersen model. We will consider the following two functions:
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F (u, y) := P{T < ∞, |U(T )| ≤ y} and ψ(u, y) := P{T < ∞, |U(T )| > y}. Immedi-
ately we have ψ(u, y) = ψ(u)− F (u, y). The function F (u, y) is the probability that
ruin occurs with initial surplus u and a deficit at ruin that is no greater than y, which
was introduced in the classical risk model by Gerber et al. (1987). The function
ψ(u, y) is the probability that ruin occurs and the deficit at ruin exceeds y. Further
discussions of these functions in the classical risk model can be found in Dufresne
and Gerber (1988), Dickson (1989), and Willmot (2000). Drekic et al. (2004) studied
these functions in a Sparre Andersen model with phase-type individual claim amounts
and derived a simple phase-type representation for the distribution of the deficit. In
the sequel, we shall prove the existence of a similar result in the discrete-time Sparre
Andersen model.

We further define the following function:

Fu(y) := 1− F̄u(y) =
F (u, y)

ψ(u)
,

which is a non-defective distribution of the deficit at ruin. The p.f.’s associated with
F (u, y) and Fu(y) are denoted by f(u, y) and fu(y), respectively. Let r.v. Yu denote
the deficit at ruin given that ruin occurs, which has the distribution Fu(y). Then we
have the following main result:

Theorem 2 The deficit Yu follows a phase-type distribution with representation (~αF ,T)
where the initial distribution ~αF is

~αF =
~α+(T +~t>~α+)u

~α+(T +~t>~α+)u~1>
=

~α+(T +~t>~α+)u

ψ(u)
.

Proof. The following proof is a counterpart of the proof of Proposition 1 in Ng and
Yang (2005). Drekic et al. (2004) adopted a different approach to derive the same
result as in Ng and Yang (2005).

Recall the terminating Markov process {mx} defined in Section 3, which is ob-
tained by piecing together the ascending ladder heights UT0(i), i = 1, 2, . . ., and the
lifelength of {mx}, M , is the maximal aggregate loss of {U(n)}. Further, UT0(i), i =
1, 2, . . . are i.i.d. phase-distributed with representation (~α+,T), and {mx} has an
initial vector ~α+ and a transition matrix T +~t>~α+.

To find the conditional distribution for the deficit Yu, we start with the joint
probability ψ(u, y), the probability that ruin occurs and the deficit at ruin exceeds y.
It represents the joint probability that M exceeds u and the deficit at ruin exceeds
y. We have

ψ(u, y) = P{M > u, |U(T )| > y}

=
m∑

j=1

P{M > u, mx(u) = j, |U(T )| > y}

=
m∑

j=1

P{M > u, mx(u) = j}P{|U(T )| > y|mx(u) = j}, (4.1)
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where mx(u) is the state of the terminating Markov process {mx} at time u. Knowing
the structure of {mx} and that the ladder height distribution is of phase-type, we can
determine the two probabilities in the right-hand side of (4.1) directly as follows:

P{M > u, mx(u) = j} = ~α+(T +~t>~α+)u~1>j ,

P{|U(T )| > y|mx(u) = j} = ~1jT
y~1>,

where ~1>j is a m × 1 column vector with all zeros except the jth element being 1.
Substituting these two probabilities into (4.1) gives

ψ(u, y) = ~α+(T +~t>~α+)uTy~1>, (4.2)

from which we obtain

F̄u(y) =
ψ(u, y)

ψ(u)
=

~α+(T +~t>~α+)u

ψ(u)
Ty~1>. (4.3)

This completes the proof. 2

Within the rest of this paper, we shall consider two numerical examples.
Example 4.1. In this example we shall continue our discussion for the zero-truncated
geometric distribution with parameter q. As it was mentioned in Section 3, it is phase-
type with representation (~α,T), where ~α = (1) and T = (q). From Theorem 2 and
its proof we know that the deficit Yu follows the same distribution as the individual
claim amounts, as its initial vector ~αF satisfies:

~αF =
~α+(T +~t>~α+)u

~α+(T +~t>~α+)u~1>
= 1.

Example 4.2. The second phase-type distribution we shall look at is the zero-
truncated negative binomial distribution with parameters 2 and 0 < q < 1. The p.f.
has the form

p(x) =
(1− q)2

2− q
(x + 1)qx−1, x = 1, 2, . . .

It has representation (~α,T), where

~α =

(
q

2− q
,
2− 2q

2− q

)
, and T =

(
q 1− q
0 q

)
.

Then we know ~t> = (0, 1 − q)>. The next step is to solve ~α+ using (3.1). Assume
~α+ = (η1, η2), then we have

T +~t>~α+ =

(
q 1− q

(1− q)η1 q + (1− q)η2

)
,

and it has two eigenvalues λ1 = q − (1− q)γ2 and λ2 = q − (1− q)γ1, where

γ1 =
−η2 +

√
η2

2 + 4η1

2
, γ2 =

−η2 −
√

η2
2 + 4η1

2
.
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Obviously, γ1γ2 + η1 = 0, and γ1 + γ2 + η2 = 0. The associated eigenvectors are
(γ1/η1, 1)> and (γ2/η1, 1)>, so

T +~t>~α+ =

( γ1

η1

γ2

η1

1 1

)(
λ1 0
0 λ2

)( γ1

η1

γ2

η1

1 1

)−1

.

Therefore, equation (3.1) gives

~α+ = ~α

∞∑
t=1

[( γ1

η1

γ2

η1

1 1

) (
λ1 0
0 λ2

)( γ1

η1

γ2

η1

1 1

)−1
]t

k(t)

= ~α

∞∑
t=1

( γ1

η1

γ2

η1

1 1

)(
λt

1 0
0 λt

2

)( γ1

η1

γ2

η1

1 1

)−1

k(t)

=
η1

γ1 − γ2

~α

( γ1

η1

γ2

η1

1 1

)(
k̂(λ1) 0

0 k̂(λ2)

)(
1 1

γ1

−1 − 1
γ2

)
,

from which two equations of η1 and η2 are obtained:

{
2(2− q)η1(γ1 − γ2) = [4(1− q)η1 − qη2][k̂(λ1)− k̂(λ2)] + q(γ1 − γ2)[k̂(λ1) + k̂(λ2)]

(2− q)η2(γ1 − γ2) = q[k̂(λ1)− k̂(λ2)] + 2(1− q)η1[
k̂(λ1)

γ1
− k̂(λ2)

γ2
]

.

Given q and the inter-claim time distribution k(t), η1 and η2 can be solved using
some mathematical software such as Mathematica. Having known ~α+, we obtain the
following results:

ψ(u) = ~α+(T +~t>~α+)u~1>

= (η1, η2)

( γ1

η1

γ2

η1

1 1

)(
λu

1 0
0 λu

2

)( γ1

η1

γ2

η1

1 1

)−1 (
1
1

)

=
η1

γ1 − γ2

(
γ1λ

u
2 − γ2λ

u
1 ,

γ1

γ2

λu
2 −

γ2

γ1

λu
1

)(
1
1

)

=
η1

γ1 − γ2

[
(γ1 +

γ1

γ2

)λu
2 − (γ2 +

γ2

γ1

)λu
1

]
,

~αF =
1

ψ(u)
~α+(T +~t>~α+)u

=
1

(γ1 + γ1

γ2
)λu

2 − (γ2 + γ2

γ1
)λu

1

(
γ1λ

u
2 − γ2λ

u
1 ,

γ1

γ2

λu
2 −

γ2

γ1

λu
1

)
,

F̄u(y) = ~αFTy~1> = ~αF

(
qy (1− q)yqy−1

0 qy

)(
1
1

)

= qy + (1− q)
γ1λ

u
2 − γ2λ

u
1

(γ1 + γ1

γ2
)λu

2 − (γ2 + γ2

γ1
)λu

1

yqy−1.
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5 Two discounted functions

To end this paper, we shall consider two generalizations of the probabilities studied
in Section 3 and 4, the discounted probability of ruin and the discounted distribution
of the deficit at ruin. Both of them are special cases of the well-known Gerber-Shiu
expected discounted penalty function that has been receiving much attention for a
decade. The probabilities are defined as follows:

ψv(u) = E{vT I(T < ∞)|U(0) = u},
ψv(u, y) = E{vT I(T < ∞)I(|U(T )| > y)|U(0) = u}, u ∈ N, y ∈ N+,

where 0 < v ≤ 1 is a discount factor.
In Ren (2009), the Gerber-Shiu function in a continuous-time Sparre Andersen

model with general inter-claim times was studied. An interesting point made in
Proposition 2.1 in the paper is that the discounting effect on the penalty function can
be equalized by a particularly defined new inter-claim time distribution. Parallel to
Proposition 2.1 in Ren (2009), we have the following result.

Proposition 3 The discounted functions ψv(u) and ψv(u, y) with the inter-claim
time distribution k(t), t ∈ N+, are the same as the non-discounted functions ψ(u)
and ψ(u, y), respectively, with the (defective) inter-claim time distribution kv(t) :=
vtk(t), t ∈ N+.

We remark that the proof of the continuous case in Ren (2009) applies here. Further,
we have k̂v(z) :=

∑∞
t=1 ztkv(t) = k̂(vz), z ∈ C.

From Proposition 3 we can see that the whole discussion in Section 3 and 4 can be
repeated by employing the new (defective) inter-claim time distribution kv(t) to obtain
the discounted functions ψv(u) and ψv(u, y). We just list some of the corresponding
key results in the following without giving proofs.

Theorem 3 For a discrete-time Sparre Andersen risk model as defined in (1.1), if
the claim size distribution is of phase-type with representation (~α,T), then:

(1) The discounted probability of ruin is

ψv(u) = ~α+v(T +~t>~α+v)
u~1>, (5.1)

where ~α+v satisfies equation ~α+v = ϕv(~α+v) = ~αk̂[v(T + ~t>~α+v)] and can be
computed iteratively.

(2) The discounted distribution of the deficit Yu, ψv(u, y), has the form

ψv(u, y) = ~α+v(T +~t>~α+v)
uTy~1>.
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Remark. For the positive geometric distribution case, i.e., p(x) = (1 − q)qx−1, x =
1, 2, . . ., Theorem 3 gives

ψv(u) = ~α+v[q + (1− q)~α+v]
u, and ψv(u, y) = ~α+v[q + (1− q)~α+v]

uqy,

where ~α+v satisfies equation ~α+v = k̂[v(q + (1− q)~α+v)]. The discounted ruin prob-
ability ψv(u) is the same as the function D̄v(u) derived in Wu and Li (2009) for the
geometric claims, in which the constant ξv equals ~α+v.
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