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Abstract

We show that illiquid bonds can become more expensive than liquid bonds with almost

identical cash flows during market distress times. The economic mechanism behind the results

is search frictions. When the search friction is high, marginal traders prefer to sell liquid bonds

at lower prices than illiquid bonds because failure to find buyers can be costly. We empirically

identify the reversed liquidity premium through within-issuer-date matching of bonds and the

regression discontinuity design based on newly issued corporate bonds. In both the identification

settings, we find that the yield differentials between illiquid and liquid bonds become negative

during the market distress times. Using insurance company trades, we document transaction-

level evidence for the reversed liquidity premium for same-issuer bonds on the same day that

are traded by the same insurer.
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1 Introduction

It is widely documented that corporate bonds carry illiquidity discounts. As they are traded in

the over-the-counter (OTC) markets with search frictions, the standard search-based theories also

predict that holding corporate bonds requires price compensations and these bonds tend to be

cheaper than otherwise similar bonds.1 While most existing empirical studies agree with such

theoretical predictions, recent studies also document that liquid bonds can experience heavy net

selling pressure during market distress times.2 Can liquid bond prices be lower than illiquid bond

prices? In this paper, we show that illiquid bonds can become more expensive than liquid bonds

with almost identical cash flows when the market is more seller-driven.

Our results are puzzling and an apparent violation of the law of one price. We provide a simple

stylized model to deliver the intuition, straightforward yet powerful explanation based on search

frictions. Liquidity premium can reverse depending on market-wide sell pressure. When buyers are

marginal investors, their valuation determines asset prices. They need to be compensated through

an illiquidity discount (i.e., higher profit) for sacrificing immediacy in trading. Consequently,

illiquid assets should generally be priced lower than liquid assets. When selling pressure is stronger,

however, sellers become the marginal investors whose risk premium predominantly determines asset

prices. Sellers also weigh the tradeoff between immediacy and trading profits, but the effect of their

valuation on asset prices is opposite to that of buyers. Sellers, who experience greater disutility in

holding assets due to holding costs, seek higher profits (i.e., higher sale prices) as compensation for

sacrificing immediacy when trading illiquid securities. Likewise, they are willing to sacrifice profits

to attain immediacy. Therefore, when sellers dominate the market, liquid assets can become even

cheaper than illiquid assets because selling liquid assets at lower prices can provide sellers with a

greater benefit of immediacy.

The main contribution of this paper is to identify the reversed effects of liquidity on prices

and demonstrate the existence of negative liquidity spreads (i.e., a reversed liquidity premium)

in distress times. Identifying the effects of liquidity on price is empirically challenging, however,

because the liquidity is endogenous. Any unobservable changes in fundamental values can affect

both asset price and liquidity. Also, flight to liquidity tends to be coupled with flight to quality

since high quality assets tend to be more liquid. We use corporate bond data from the enhanced and

academic Trade Reporting and Compliance Engine (TRACE) for the period from 2005 through 2021

and employ several identification strategies that leverage the unique features of the US corporate

bond market.

First, we use same-issuer bonds to find bonds that have (almost) identical cash flows but differing

liquidity. To this end, we match a bond to another bond that is issued by the same issuer and have

same maturities and credit rating but different bond age, following the identification method in

1For the theoretical studies of search-based price discounts, see Duffie, Gârleanu, and Pedersen (2005), Duffie,
Gârleanu, and Pedersen (2007), Vayanos and Wang (2007), Vayanos and Weill (2008), Weill (2008), Lagos and
Rocheteau (2009), Lagos, Rocheteau, and Weill (2011), among many others

2See, e.g., Duffie (2020), Kargar et al. (2021), O’Hara and Zhou (2021a), and He et al. (2022); Ma et al. (2022)
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Choi, Hoseinzade, Shin, and Tehranian (2020). This approach allows us to control for unobservable

time-varying information shared by bonds issued by the same firm, thereby isolating the effects

of liquidity. Through careful matching, we are able to demonstrate that liquidity spreads are

time-varying and tend to become negative during market-wide events. For example, average yield

spreads of these matched pairs between old illiquid and young liquid bonds fall to -0.3% (-0.2%)

following the announcement of Lehman Brothers’ bankruptcy (the COVID pandemic), suggesting

that liquid bonds were in fact cheaper than illiquid bonds during the time of distress. Throughout

our other empirical strategies, we keep this idea of exploiting the same-issuer bonds to control for

the unobservable time-varying information related to the fundamental values.

Moreover, we provide our unique identification strategy using regression discontinuity design

based on new bond issues with salient maturities. We first observe a prominent discontinuity in

the relationship between liquidity and time to maturity at the 10-year and 30-year marks. Various

liquidity-related variables, such as customer and interdealer trade turnovers, proportion of zero

trading days, and bid-ask spreads, show a significant increase in average liquidity of sample bonds

at the 10-year and 30-year time to maturity cutoffs. This is driven by that disproportionately

large number of bonds being issued with specific salient maturities, such as 10 years and 30 years.

This phenomenon of salient issuance maturity can be attributed to several factors. First, there

may be heuristics or conventions followed by firms when issuing bonds. For example, they may

choose to issue 30-year bonds as a standard practice for long-term financing, rather than selecting

alternative maturities such as 29 years or 31 years. Similarly, the choice of 10-year maturity may

be driven by its salience for intermediate-term bond issues. In addition, the preference of bond

investors and their investment objectives and mandates can also play a role in shaping the issuance

of bonds with specific maturities. For instance, intermediate bond funds often mandates to hold

bonds with maturities between 5 and 10 years. Consequently, issuing a 10-year bond would attract

a larger customer base and potentially lead to better pricing at the time of issuance compared to,

for example, issuing an 11-year bond. These newly issued bonds tend to be highly liquid during a

short period after the issuance, driving the discontinuity observed in the sample.

We leverage this discontinuity sourced by the salient new-issue maturity to identify the effects

of liquidity on prices. Specifically, we employ the regression discontinuity design (RDD) around the

time to maturity cutoffs of 10- and 30-years. The ”treated” group consists of bonds newly issued

with these salient maturities, while the ”control” group includes existing older bonds with time

to maturity at the issuance longer than the salient choices. We then estimate the local treatment

effects on bond yield spreads while controlling for issuer-day fixed effects and bond IPO underpricing

to account for any potential informational differences that may not vary smoothly at the cutoffs.

Also, by the design, we control for any unobservable term-structure effects.

We find positive local treatment effects on yield during times of distress, consistent with the re-

versed liquidity premium and negative liquidity spread. In contrast, we find the negative treatment

effects in general, indicating the well-known liquidity premium. For example, during the period

with below-median VIX (TED and DEF), our results show that the liquid newly issued bonds have
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discontinuously lower yields at the cutoff by about 11 basis points (6 and 8 basis points). During

the distress times, however, we find the opposite. The treatment effects are positive, by about 24

basis points (15 and 30 basis points) during the period with VIX (TED and DEF) above its 80th

percentile. We also find positive treatment effects during the 2008 financial crisis and the 2020

COVID crisis, indicating the reversed liquidity premium.

Next, we construct measures of search friction, such as dealer network centrality, length of

intermediation chain, and the ratio of interdealer trades by using transaction data including dealer

identifier from the academic verison of TRACE. These measures are used in the previous literature

on the OTC market search friction, including studies by Li and Schürhoff (2019), Friewald and

Nagler (2019), Goldstein and Hotchkiss 2020, and O’Hara and Zhou (2021b), among others. We

then examine the relationship between yield and search friction measures, while controlling for

issuer-day fixed effects and bond characteristics. Our findings align with the predictions of our

model. Specifically, lower search friction is associated with lower yields (thus higher prices) during

normal times, but higher yields (thus lower prices) during distressed periods. We also find consistent

results within the bond-day context across different dealers with varying levels of search friction,

as measured by dealer centrality.

One question might still remain: do we know whether investors actually sell the liquid bond

at a lower price, when they also hold the illiquid bond with the same fundamental value traded in

the market at a higher price? We find that they do. To show it directly, we use transaction-level

data of insurance companies obtained from the National Association of Insurance Commissioners

(NAIC). We show that constrained insurance companies (the risk-based capital ratio higher than

the median) who hold multiple downgraded bonds of a same issuer choose to sell more liquid bonds

at lower prices following downgrades of bond credit rating. We do not find such results from

placebo settings such as placebo event days of 3-year prior to the downgrades and a placebo group

of unconstrained insurance companies.

Overall, the results support our hypothesis that in seller-dominated markets, investors tend to

prioritize immediacy even by selling more liquid bonds at lower prices. It is important to note that

even if an illiquid bond is traded at a higher price in the OTC market on the same day, it does not

guarantee that an investor could sell the same bond at that price on that day due to the presence

of search friction in OTC markets.

Note that we do not argue that our mechanism is the only economic force at work. There are

other potential explanations. Boudoukh, Brooks, Richardson, and Xu (2019), for example, argue

the liquidity spread narrows (but is still positive) because of price pressure arising from flight from

low-quality sovereign bonds. Chaderina, Mürmann, and Scheuch (2022) document that liquid price

declines are greater because of coordination failure among insurance companies by examining fire

sales of P&C insurance company after the catastrophic hurricanes. Lou and Sadka (2011) show

that liquid stock returns are lower during financial crisis because they are more sensitive to market

wide returns. Ma, Xiao, and Zeng (2022) focus on the price pressures from the pecking order of

mutual funds in selling their more high-quality liquid holdings during the COVID-19 crisis and find
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that price declines are greater for higher-quality liquid holdings such as Treasury and high-quality

bonds. Our view is that these explanations including ours are not necessarily mutually exclusive.

Certainly, a more realistic view is that all these forces can even have amplifying effects on the

pricing impact of illiquidity. It is worth noting, however, that unique importance of our search

friction channel is that it can amplify all the other channels working through the OTC markets.

We also want to emphasize that our study differs from these studies in the following important

ways. First, we show how the liquidity spread can become negative: not only price declines are

greater, but the price levels of liquid assets are lower than those of illiquid assets. We provide a

stylized model to show how search frictions can explain this seemingly-counter-intuitive empirical

findings. As our model shows, incorporating search friction is crucial in generating this effect. More

importantly, our novel empirical strategies including the RDD based on salient new issue maturity

identify the effects of liquidity on prices showing that illiquid bond prices can in fact be higher

than liquid bond prices and that this effect is driven by the search friction channel in the distress

periods. Also, we provide a set of granular customer transaction-level evidence by using insurance

company trading with the reversed liquidity premium.

The existence of negative liquidity spreads carries significant implications for liquidity manage-

ment. It suggests that the perceived value of liquid assets in OTC markets may be relatively lower

when investors require liquidity the most. This implies that relative amounts of liquidity buffers,

which is often based on average valuation during normal periods, might have been overestimated.

Therefore, it highlights the importance of maintaining cash and cash-like buffers as reliable sources

of liquidity during periods of market distress. Also, in trading venues with minimal search frictions

like exchanges, we would not expect to observe such an inversion of prices between liquid and illiq-

uid assets. Thus, they can be a complimentary source of liquidity buffers for investors holding OTC

assets. In addition, our findings underscore the importance of considering the dynamic valuation of

liquid assets. The dominance of sellers in the market has a direct impact on the price of liquidity

in the search-based OTC markets. Therefore, when determining the adequate amount of liquid

buffers in a portfolio, it is crucial to account for the dynamic valuations of liquid assets based on

different scenarios of market conditions.

Our paper is related to the literature on search-based asset pricing. In their seminal work, Duffie,

Gârleanu, and Pedersen (2005) show that liquidity premium arises due to search frictions using an

OTC market setup with a single asset. Duffie, Gârleanu, and Pedersen (2005) further extend this

framework with risk averse investors to study asset pricing implications in OTC markets. More

closely-related works to our paper include search-based models with multiple assets such as Vayanos

and Wang (2007) and Weill (2008), and Vayanos and Weill (2008). Vayanos and Wang (2007) and

Weill (2008) show that buyers’ market choice can create cross-sectional variations in prices due to

endogenous liquidity difference. In these models, however, sellers do not have market choices. One

common feature among the existing OTC market models with multiple markets is that sellers are

never marginal investors who drive cross-sectional variations. As a result, liquid assets are generally
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more expensive whenever there are cross-sectional variations.3 Our paper differs from this line of

literature because we allow sellers become marginal investors instead of buyers in a simple model,

which is the key mechanism which generate negative liquidity spread between liquid and illiquid

assets. We empirically show that this is the case.

Our paper contributes to the literature on the pricing of liquidity (Amihud and Mendelson

1988, Acharya and Pedersen 2005), the liquidity premium of corporate bonds (Chen et al. 2007,

Lin et al. 2011, De Jong and Driessen 2012, Acharya et al. 2013), and that of sovereign bonds

(Cornell and Shapiro 1989, Amihud and Mendelson 1991, Longstaff et al. 2005, Pasquariello and

Vega 2009, Favero et al. 2010, Goyenko et al. 2011, among many others) by documenting the

seemingly counter-intuitive situation in relative prices of liquid securities during times of distress.

Our paper also contributes to the literature on price pressures in bond markets (Greenwood and

Vayanos 2014, Ellul et al. 2011a, Feldhütter 2012, Manconi et al. 2012, D’Amico and King 2013,

Goldstein et al. 2017, Boudoukh et al. 2019, Choi et al. 2020, Helwege and Wang 2019, Chernenko

and Doan 2020). Especially, our paper builds on Feldhütter (2012) who examine bonds trading at

different prices due to search frictions in OTC markets to identify liquidity crises. Also, our paper

provides the mechanism and rationale behind recent findings of Boudoukh, Brooks, Richardson,

and Xu (2019) that liquid government bonds become cheaper during times of distress as well as

Ma, Xiao, and Zeng (2022) that high-quality liquid holdings of mutual funds such as Treasures and

high-quality corporate bonds experience lower returns during the 2020 COVID crisis.

The rest of paper is organized as follows. In Section 2, we present our model. In Section 3,

we describe our data and sample construction as well as key variables. In Section 4, we document

the empirical strategies to identify the illiquiidty premium and present the results. Section 4.4

examines the insurance company transactions. In Section 5, we conclude.

2 An Illustration with a Simple Model

We first demonstrate the main economic mechanism using a simple stylized model. Consider two

identical assets (asset 1 and asset 2) which pay one unit of consumption good in the next period.

The discount rate is fixed to zero. Asset 1 is traded in market 1, and asset 2 is traded in market 2.

Due to search frictions, an investor is able to trade if the investor is matched with a counterparty.

An investor choosing market 𝑖 = 1, 2 is matched successfully with probability 𝑓𝑖. We assume 𝑓1 > 𝑓2

so that that market 1 is more liquid than market 2.

Consider a risk-neutral buyer who can choose to trade in either of the two markets. With a

successful match in market 𝑖, the buyer acquires asset 𝑖 by paying price 𝑝𝑖. Otherwise, the buyer

keeps the reservation utility of zero. The buyer’s value of trading in market 𝑘 is given by

𝑉𝑖 = 𝑃𝑟(Success)× Trading gains + 𝑃𝑟(Fail)× Reservation value = 𝑓𝑖(1− 𝑝𝑖)

3Most of the existing papers with multiple assets also have generic symmetric equilibria where there is no cross-
sectional variation.
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If the buyer is indifferent between the two markets, the expected value of choosing each market

should be the same:

𝑓1(1− 𝑝1) = 𝑓2(1− 𝑝2)

Because the probability of a successful buying trade is higher for asset 1 (i.e., 𝑓1 > 𝑓2), the trading

gain of the buyer should be smaller for the asset (i.e., 1− 𝑝1 < 1− 𝑝2.) That is, the price of asset

1 should be higher than that of asset 2. The liquidity spread between asset 1 and 2 is positive

because

𝑝1 − 𝑝2 =
𝑓1 − 𝑓2

𝑓1
(1− 𝑝2) > 0

Therefore, when buyers are marginal investors, it has to be the case that liquid assets should be

more expensive.

Now, we consider the case of a seller who can choose between the two markets. We assume that

the seller has a lower valuation of the asset than the buyer; he has to pay a holding cost of 𝛿 if he

does not sell it immediately. The seller’s value of trading in market 𝑘 is given by

𝑉𝑖 = 𝑓𝑖𝑝𝑖 + (1− 𝑓𝑖)(1− 𝛿) = 𝑓𝑖(𝑝𝑖 − 1 + 𝛿) + 1− 𝛿

If the seller is indifferent between the two markets, the expected value of choosing each market

should be the same:

𝑓1(𝑝1 − 1 + 𝛿) = 𝑓2(𝑝2 − 1 + 𝛿)

Because the probability of a successful selling trade is higher for asset 1 (i.e., 𝑓1 > 𝑓2), the trading

gain of the seller should be smaller for the asset (i.e., 𝑝1 − 1 + 𝛿 < 𝑝2 − 1 + 𝛿.) That is, the price of

asset 1 should be lower than that of asset 2. The liquidity spread between asset 1 and 2 is negative

because

𝑝1 − 𝑝2 =
𝑓2 − 𝑓1

𝑓1
(𝑝1 − 1 + 𝛿) < 0

Therefore, when sellers are marginal investors, it has to be the case that liquid assets should be

cheaper.

Fixing liquidity as an exogenous input, this simple model illustrates the relation between liq-

uidity and asset prices in two different cases by setting marginal investors differently. When there

are sufficiently large number of buyers relative to that of sellers, buyers become marginal investors,

in which case asset prices are set by the trade-off between liquidity and trading gains in terms of

buyers’ valuations. In this case, sellers strictly prefer trading in liquid market. On the other hand,

when there are sufficiently large number of sellers relative to that of buyers, an opposite situation

7



Asset 1 Asset 2

Buyer

Seller

indifferent

Strictly prefer

Higher price Lower price

Liquid Illiquid

Asset 1 Asset 2

Buyer

Seller

indifferent

Strictly preferLower price Higher price

Liquid Illiquid

(a) buyers are marginal investors (b) sellers are marginal investors

Figure 1. Liquidity Premia under Different Marginal Investors

arises. This is illustrated in Figure 1.

3 Data

In this section, we describe the data and our sample, motivate and explain key variables related to

search friction and market distress, and present descriptive statistics.

3.1 Corporate Bond Data and Sample Construction

Our data source for corporate bond pricing is the enhanced and academic Trade Reporting and

Compliance Engine (TRACE) databases from the Financial Industry Regulatory Authority (FINRA).

The academic version of TRACE has an advantage of having a masked identifier for dealers. The

academic version becomes available with 36-month delays and our academic TRACE data ends

at the end of 2017. We extend the sample period to December 2021 by using the enhanced

TRACE. Thus, our sample period runs from February 7, 2005 through December 31, 2021.4

We exclude retail-sized trades (i.e., trades with volumes below $100,000) following Bessembinder,

Kahle, Maxwell, and Xu (2008) and also exclude observations with negative yields. We also ob-

tain bond-specific information including ages, credit ratings, maturity, amounts outstanding, and

other characteristics from the Mergent Fixed Income Securities Database (FISD). Our sample con-

tains fixed-coupon bonds after excluding convertible and foreign currency bonds. Finally, our main

sample contains 10,442,580 bond-day observation.

4The TRACE becomes comprehensive after February 7, 2005 as it begins the full dissemination of bond transactions
for the entire universe of corporate bonds. To filter the reporting errors in TRACE, we follow the standard filtering
procedures described in Dick-Nielsen (2009) and Dick-Nielsen (2014) for the enhanced TRACE and Choi et al. (2022)
for the academic TRACE. We also employ price-sequence-based filters (reversal and median filters) as suggested in
Dick-Nielsen (2014) and Edwards, Harris, and Piwowar (2007).
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In addition, we supplement the main sample by constructing a subsample at a more granular

level by using the insurance company data obtained from the National Association of Insurance

Commissioners (NAIC). The use of NAIC insurance company data offers distinct advantages, as

it allows us to access customer-level information. Specifically, this enables us to precisely identify

specific bonds held by an insurance company (IC) on a given day and further discern the bonds they

opt to sell, along with the corresponding dates and prices. The availability of such granular data is

not readily accessible for other bond investors, rendering ICs as a unique and suitable subject for

examining our underlying premises. We use the subsample in Section 4.4 and more details on the

subsample construction are described in Appendix A.

3.2 Key Variables

This section explains two key variables related to the economic forces in our story that generate

the reversed liquidity premium: search friction and seller-driven markets.

3.2.1 Proxies of Search Friction

To construct measures of search friction, we use the academic TRACE, which includes the identifier

of dealer at the transaction level. Specifically, we employ three different proxies to capture the search

friction.

Dealer network centrality. Previous studies have highlighted the significance of dealer networks

in facilitating search processes in OTC markets (e.g., Di Maggio et al. 2017, Li and Schürhoff

2019, Friewald and Nagler 2019, and Goldstein and Hotchkiss 2020). Dealers with higher centrality

are better connected and can more easily find counterparties, indicating lower search friction.

Therefore, bonds more often traded by more central dealers are easier to locate and have lower

search friction.

Thus, we calculate the eigenvector centrality of the dealer network to measure the connectivity

of dealers. Specifically, each month, the dealer network is defined by dealers and connections

between two dealers. The two dealers are connected if there are interdealer trades between them

during that month and we assign weights to the connection based on numbers of trades. Using this

dealer network, we calculate the eigenvector centrality for each dealer to define the dealer network

centrality measure, DlrCentrality. We also define the bond-level centrality measure, Centrality, as

an average of DlrCentrality weighted by the number of trades made by the dealer for that particular

bond during the month.

Length of intermediation chain. More intermediation trades between two customer trades (i.e.,

a longer intermediation chain) indicates a greater reliance on intermediation to find a suitable coun-

terparty, implying higher difficulty and a lengthier search process (e.g., Friewald and Nagler 2019).

Also, Shen et al. (2021) show that a higher search intensity (lower search friction) is associated with

shorter chains, because a customer is more likely to find alternative counterparties quickly instead
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of waiting for a dealer to arrange the intermediation.5 Thus, the longer chain length is related to

the higher search friction.

Thus, we use intermediation chain length as another measure of search friction by following

Friewald and Nagler (2019). The intermeidation chains are defined as a chain of trades starting

from a customer sale that moves the initial volumes to customers through dealers. The length of

these chains are dfeind as the number of dealers involved in the transaction.

Ratio of interdealer trades. We also use the ratio of interdealer trades to all trades to measure

the level of search friction, following O’Hara and Zhou (2021b). Holding customer trades constant,

a higher interdealer trade ratio indicates a greater reliance on more interdealer trades to find

counterparties, suggesting difficulty in finding counterparties and thus a higher degree of search

friction.

3.2.2 Proxies of Market Distress

To capture the presence of greater seller mass in the market, we employ several widely used proxies

such as the VIX (CBOE Volatility Index), TED spread (difference between 3-Month LIBOR and

3-Month Treasury Bill rates), and default spread (difference between Moody’s seasoned Baa and

Aaa corporate bond yields). We define the distress periods as periods in which it exceeds its 80th

percentile within the sample.

These measures serve as general indicators of market conditions and are associated with in-

creased selling pressure in the corporate bond market. Prior studies also document consistent

evidence. For example, Goldstein et al. (2017) show that during high VIX and TED periods, un-

derperforming bond mutual funds experience more severe outflows holding else constant, indicating

increased selling activity in corporate bonds. Also, in times of greater uncertainty reflected by high

VIX, investors are more likely to sell corporate bonds rather than spending cash-like assets to buffer

liquidity needs (e.g., Jiang et al. 2021).

Additionally, we use specific episodes of market crises—the 2008 financial crisis and the COVID

pandemic—to capture periods of heightened seller dominance.

3.3 Summary Statistics

Table 1 shows the summary statistics of full sample. Panel A shows the descriptive statistics for our

main sample of bond-day observations with available daily yields. Our sample bonds on average

have the yield spread of 2.34% and time to maturity of 9.07 years. 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 and 𝐶ℎ𝑎𝑖𝑛𝐿𝑒𝑛𝑔𝑡ℎ

have smaller number of observations since they require the academic TRACE data to be calculated.

The average 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 is 0.58 where 0 and 1 is the sample minimum and maximum score for

the dealer centrality. 𝑑𝑎𝑖𝑙𝑦 𝑏𝑖𝑑𝑎𝑠𝑘 also has lower number of observations since it requires both

5Difference aspects of search friction can affect the chain length differently. For example, Shen et al. (2021)
also show that a lower search costs (i.e., costs associated with maintaining trading infrastructure) is related to longer
chains. However, we focus on the search friction as the search intensity because the likelihood finding the counterparty
is the main economic channel in our intuition.

10



customer sell and buy transactions on a day to be well-defined. In Panel B, we also present

descriptive statistics for transaction-level observations from the academic TRACE to calculate the

𝐷𝑙𝑟𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦. In Panel C, we show statistics for the bond-quarter panel which includes bond-

quarter observations without any transactions as well. For example, the zero trading day (𝑧𝑡𝑑) has

a median of 1 which indicates that more than half of bond-quarter of our sample bonds during the

sample period does not have any transaction. Definitions of all variables are detailed in Appendix

B.

4 Reversed Liquidity Premium

Our key hypothesis is that illiquid securities can be traded at higher prices than liquid securities of

the same cash flows during the seller-dominated markets due to the search friction. To identify the

effects of liquidity on security prices, it is essential to account for any unobservable time-varying

information that may be associated with the fundamental cash flows of bonds. For example, the

liquidity can be positively correlated with credit quality and fundamental value, both of which

positively affect the bond prices.

To address this challenge, we employ several distinct empirical strategies to isolate the effects

of liquidity and validate the existence of reversed liquidity premium. For each strategy, we explain

our motivation and empirical setup to identify the reversed liquidity premium and then present the

results.

4.1 Matching Same-issuer Bonds with Different Level of Liquidity

Our first strategy is to examine the yields of corporate bonds that are issued by a same firm but

with different level of liquidity, following the identification strategy of Choi, Hoseinzade, Shin, and

Tehranian (2020). We first explain the methodology and present results.

4.1.1 Matching: Empirical Setup

We exploit the relationship between bond age and liquidity to capture the variation in liquidity

across different bonds issued by the same firm.

Newly issued young bonds tend to have higher level of liquidity. Over time, as bonds mature,

they generally become less liquid as a significant portion of the issued bonds are acquired by

buy-and-hold investors, such as insurance companies, who are prominent participants in the bond

market.6 Additionally, starting immediately after issuance, bonds tend to experience active trading

due to demand from investors who were unable to participate in the competitive primary markets.7

Such demand for newly issued bonds becomes satiated as an increasing number of investors acquire

6Many papers document the bond age as a strong proxy for the liquidity. See, e.g., Sarig and Warga (1989),
Alexander, Edwards, and Ferri (2000), Schultz (2001), Houweling, Mentink, and Vorst (2005), and Ericsson and
Renault (2006), among many others.

7E.g., Nikolova et al. (2020)
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the bonds, leading to decreasing liquidity over time. Figure 2 visually illustrate this relationship

by using liquidity proxies, including customer-dealer and inter-dealer volumes, days of zero trading

(ZTD), and bid-ask spreads, for bonds with different maturities throughout the lifespan of the

bonds.

Given this relationship, we implement a matching strategy based on the age of the bonds to

create pairs of bonds that exhibit contrasting levels of liquidity within the same issuer. Specifically,

we define liquid bonds as those with an age of less than one year. We exclude bonds with an age of

less than 30 days (since issuance) to account for the bond IPO underpricing.8 We then match each

liquid bond with an older bond (the illiquid bond) issued by the same firm. In our matching, we

require that the difference in time-to-maturity is less than one year and that there is a minimum

age difference of three years between the matched bonds. Additionally, the matched bonds should

be of the same credit rating and seniority. We also exclude bonds with remaining time-to-maturity

less than three years.9 In situations where multiple potential matches are available, we prioritize

the match based on several criteria in the following order: minimizing the difference in time-

to-maturity, minimizing the difference in amount outstanding, and maximizing the difference in

age. By following this approach, we aim to ensure that the matched bonds have nearly identical

fundamental values yet notable difference in the liquidity.

We check the quality of matching in Table 2. The matched sample contains 241,426 bond-day

with available transaction yields from both matched bonds of 1,994 unique matched pairs from 505

issuers between 2005 and 2021. By construction, they have very similar time-to-maturities but very

different age. On average, young bonds in our sample have the average age of 0.19 years, while

old bonds have the average age of 6.58 years when they first appeared on the matched sample.

Meanwhile, average time-to-maturities for the young and matched old bonds are 6.71 and 6.70,

respectively. Approximately 90% of the bonds in our sample are investment-grade (IG) bonds,

showing that the sample is heavily skewed towards investment grade bonds. This is because the

matching within IG firms are more successful than HY firms due to larger number of issues. Panel

B of Table 2 shows summary statistics for daily Liquidity Spreads as well as differences in age and

time to maturity. While the Liquidity Spread is on average positive, we can observe that negative

spread is also presence. In Panel C, we examine mean differences between old and young bonds.

Overall, they are well-matched. Young bonds have statistically significant (at the 10% level) longer

maturities and smaller amount outstanding than old bonds on average, but the magnitude of mean

difference is tiny. All liquidity-related variables indicate the young bonds are traded more actively

with higher level of liquidity than matched old bonds.

Finally, we construct a measure for the liquidity premia, 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑, as differences in

8E.g., Cai et al. (2007)
9The age effects on short-term bonds are typically marginal due to their shorter lifespan. As the remaining

time-to-maturity of these bonds approaches zero, they tend to become more similar to cash-like instruments. Also,
buy-and-hold investors, such as insurance companies, generally do not acquire young short-term bonds, as depicted in
Figure A1. In addition, when comparing short-term bond prices, even smaller differences in time to maturity might
be relatively more significant. Thus, we exclude the short-term bonds as our matching strategy is less reliable for
them.
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yield spreads between liquid bond and illiquid bond of a matched pair for each day. By construction,

the negative 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 means that price of liquid bond is lower (i.e. yield is higher) than

its matched counterpart of illiquid bond. In this section, we visually inspect the reversed liquidity

premium by using time series of 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 during market distress periods.

4.1.2 Matching: Results

In Figure 3, we present the time series of the 20-day moving average of the liquidity spread from

2005 to 2021. It is visually evident that the 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 turns negative during the 2008 finan-

cial crisis and the COVID pandemic. Specifically, following the collapse of Lehman Brothers in 2008

and the COVID pandemic in 2020, the average 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 experiences a sharp decline, reach-

ing levels over -0.3% (-0.2% during the COVID pandemic). Subsequently, the 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑

gradually reverts towards near-zero and eventually returns to positive levels. We also observe de-

creases in the liquidity spread coinciding with other market distress events and high-VIX periods,

such as the European debt crisis between 2010 and 2012. The 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 starts narrowed

in 2013 and stayed near-zero level until the COVID shock.

Indeed, examining the time-series of the 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 provides an intuitive understanding

of the reversed liquidity premium during market distress. The periods of negative liquidity spreads,

particularly during the 2008 financial crisis and the COVID pandemic, indicate a reversed relation-

ship between price and liquidity. However, it is crucial to acknowledge that the matched sample

we employ covers only a tiny fraction of the overall bond population by construction. This limited

sample size is a result of the stringent matching criteria we have established, prioritizing accurate

matching over sample size. Although relaxing the matching criteria could potentially yield a larger

sample, it would come at the expense of compromised matching accuracy. We prioritize the smaller

yet cleaner sample to pinpoint the reversed liquidity premium in this matching approach. We rely

on other empirical strategies to examine the more general sample of bonds.

4.2 Regression Discontinuity Design

In this section, we show the existence of reversed liquidity premium using an identification strategy

that employs a regression discontinuity design (RDD) based on the saliency in maturity profiles at

issuance, similar to those in Bai et al. (2023) and Bretscher et al. (2023).

4.2.1 RDD: Empirical Setup

We begin by observing a noticeable discontinuity in the relationship between liquidity and time-

to-maturity within the corporate bond universe. This discontinuity is also documented in Bai

et al. (2023) and Bretscher et al. (2023). Figure 4 provides a non-parametric visualization of this

relationship, through liquidity-related variables such as customer and interdealer trading turnover

(trading volume divided by amount outstanding), the fraction of days without any trade (referred

to as the zero trading day, 𝑧𝑡𝑑), and bid-ask spreads. Clear jumps are evident around the 10- and
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30-year marks of time-to-maturity. The results illustrated in Figure 4 suggest that, in general,

corporate bonds exhibit significantly higher levels of trading activity and liquidity around these

specific maturity cutoffs of 10 and 30 years.

The observed discontinuity can be attributed to the salient maturity profiles of new bond is-

sues.10 The disproportionately large number of bonds issued with specific salient time-to-maturities

contributes to this observed discontinuity. Specifically, 10-year bonds are the most commonly is-

sued, followed by 30-year and 5-year bonds, as depicted in Figure 5. The substantial supply of new

issues to the bond universe, coupled with distinctly high levels of liquidity of newly issued younger

bonds discussed in Section 4.1.1, creates the discontinuity observed in the sample.11

It is worth noting that we do not observe a prominent spike around the 5-year cutoff. This

can be attributed to a relative difference of 5-year bond issues compared to existing bonds. There

is larger amount outstanding of older bonds around 5-year time to maturity as bonds with longer

when-issued maturities are accumulated. Also, the significant issuance of 10-year bonds, combined

with that a chunk of the issuance being distributed between 5 and 10 years when issued, contributes

to reducing the relative age gap between newly issued 5-year bonds and existing older bonds with

similar time-to-maturity.

Regression Discontinuity Design. To establish a discontinuity design, we focus on two

cutoffs: 10 years and 30 years, which correspond to the salient time to maturity points of new

issues. We define the ”treated” group comprising bonds that are issued with a time to maturity

of 10 years (for the 10-year cutoff) or 30 years (for the 30-year cutoff). We allow a margin of 2

months from these when-issued maturities to account for small variations in the maturities.12 We

also require time to maturity to be less than the cutoff to ensure the sharp design of discontinuity.

As a next step, we define the ”control” group as bonds issued with a time-to-maturity strictly

greater than the cutoff after accounting for the margin (i.e., cutoff plus 2 months), and with a

minimum age of 0.5 years. This ensures that any bonds in the control group are older than any

bonds in the treated group at any given date at any point of the running variable (time to maturity).

Thus, this establishes a clear distinction between the treated and control groups, that the treated

groups have higher level of liquidity around the new issuance. We call this combined sample of

”treated” and ”control” bonds as the RDD sample. By the design, bonds in our RDD sample

exhibit a discontinuous increase in the level of liquidity at the cutoff as the running variable (time

to maturity) decreases.

Using the RDD sample, we examine the local treatment effects at the time-to-maturity cutoffs

on bond yield spreads. We use two different ways of running our regression discontinuity design.

10This phenomenon is not present within the lifetime of an individual bond. For instance, Figure 2 illustrates that
there is no discontinuity around the 10-year time-to-maturity mark for bonds issued with 20- and 30-year maturities.

11The discontinuity we observed in Figure 4 can be also resembled in institutional ownership such as mutual fund
shares (e.g., Figure A2). Figure A1 shows that this is likely due to that they tend to acquire newly issued bonds with
desirable maturity that matches their investment strategy and mandates, because the newly issued bonds are more
liquid and easier to search. Consistently, we do not find any jump in institutional ownership holding the when-issued
maturity constant in Figure A1.

12In other words, the when-issued maturities are within the range of (cutoff − 2 months, cutoff + 2 months).
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First, we visually inspect the discontinuity in a non-parametric way by using binned scatter plots

of Cattaneo et al. (2019) within a fixed bandwidth of 6 months around the cutoffs. Second, we

estimate the local treatment effects from the sharp RDD. We let bandwidths to be selected in

an optimal data-driven way by following Calonico et al. (2014a) and Calonico et al. (2015). To

implement the sharp RDD, we exclude bonds from the control group if their time to maturity is

shorter than the specified cutoffs.

To address any potential systematic differences in fundamental values between the treated and

control groups at the cutoffs, such as fundamentally different firms issuing long-term bonds in

control groups, we control for the issuer-day fixed effects using the full sample. Also, we control for

the IPO underpricing by including a dummy variable that indicates the period of 30 days following

the initial offering date.13 This control variable helps to capture any effects related to the initial

pricing of bonds in the IPO market.

During normal times, we expect to observe discontinuously lower yields (higher prices) for newly

issued liquid bonds (treated group) compared to older bonds with lower liquidity (control group).

However, during distress times and seller-dominated markets, our story predicts the opposite:

discontinuously higher yields (lower prices) for newly issued liquid bonds.

4.2.2 RDD: Results

Figure 6 displays the relationship between yield spreads and time to maturity as the running

variable, with cutoffs of 10 years (Panels A1, B1, and C1) and 30 years (Panels A2, B2, and C2)

and a fixed bandwidth of 0.5 years. We examine the different impacts of the local treatment (liquid

new issuance at the cutoffs) on yield spreads during normal (below median VIX, TED, or DEF)

and stress (VIX, TED, or DEF above its 80th percentile) periods by plotting them separately.

The solid line represents the relationship between the yield spread and the running variable for

the newly issued ”treated” bonds, while the dashed line represents the relationship for the older

”control” bonds. The local treatment effects are quantified as the difference between the solid and

dashed lines at the respective cutoffs indicated by vertical lines.

The results in Figure 6 confirms our main hypothesis. For example, in Panels A1, the local

treatment effects at the 10-year cutoff are approximately -6 basis points during the normal period.

However, during the high VIX period, the local treatment effects become positive, around +15 basis

points. These effects are statistically significant as the bands around fitted lines represents the 95%

confidence interval. This finding aligns with our prediction that the treated group, bonds with

higher liquidity, tends to be discontinuously cheaper (more expensive) on average during distressed

(normal) periods than bonds in the control group around the time-to-maturity cutoffs. We find

qualitatively similar results for the 30-year cutoff (Panel A2). Results are also similar when we use

TED and DEF instead of VIX in Panels B and C.

13For example, Cai et al. (2007) document a positive initial return on the first trading day within a week following
the bond IPO. The returns are not significant after the second trading days.
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In Table 3, we present the results of the RDD analysis with data-driven optimal bandwidth

selection, as described in Section 4.2.1. The results consistently support our narrative across all

specifications. In Column 1 of Panel A, we observe a negative and statistically significant local

treatment effect (-1.8 basis points) around the cutoff of 10-year, confirming the existence of an

average liquidity premium. This negative local treatment effects become more pronounced during

periods of below-median VIX, with an estimated effect of around -11 basis points (see Column 2

of Panel A), indicating a stronger liquidity premium. During periods when the VIX is between its

median and 80th percentile, the treatment effects remain negative but with a smaller magnitude

(-5 basis points). However, when the VIX is high (above its 80th percentile), the sign of the local

treatment effect flips. The estimated effect becomes positive (24.5 basis points) and statistically

significant at the 1% level, supporting the presence of an reversed liquidity premium. The results

are qualitatively similar when using a cutoff of 30 years (Colums 5 through 8). In Panels B and

C, we replicate the analysis using TED and DEF instead of VIX as measures of market conditions.

We find similar results, providing additional support for our hypothesis outlined in Section 4.2.1.

In Panel D of Table 3, we examine the sub-samples of the 2008 financial crisis and the 2020

COVID crisis separately. The 2008 financial crisis sub-period covers the period from July 2007 to

March 2009. The COVID period in 2020 is divided into three sub-periods: COVID1 (January 30

to March 14), COVID2 (March 15 to March 22), and COVID3 (March 23 to April 8).14 Previous

studies have shown that selling pressures from bond investors peaked between March 15 and March

22, and started to stabilize after March 23 (e.g., Ma et al. 2022). The results of Panel B show that,

consistent with our hypothesis, the local treatment effects are reversed (i.e., becoming positive and

consistent with the reversed liquidity premium) during market-wide crisis events. For example,

Columns 1 and 5 show that the average treatment effects around the 10-year (30-year) time-to-

maturity cutoff during the 2008 financial crisis period are approximately 31 basis points (10 basis

points). Similarly, we find the positive and significant treatment effects around the 10-year time-

to-maturity cutoff during the COVID2 sub-period.

Overall, The results in Section 4.2 indicate a clear discontinuity in the relationship between

bond yield and time to maturity around the salient cutoffs of 10 and 30 years. Importantly, we

find the reversed treatment effects between normal and seller-dominated markets, confirming our

hypothesis. Under the identifying assumption that any unobserved confounders, except the higher

level of liquidity in the treated group of new issues, are smoothly varying around the time to

maturity cutoffs, we identify the liquidity premium during the normal periods and the reversed

liquidity premium during the seller-dominated periods.

14These periods align with major events during the early 2020, such as the declaration of a Public Health Emergency
by WHO on January 30, the Fed rate cut to zero and announcement of QE on March 15, and the Fed’s announcement
of extensive new measures to support the economy including the Primary Market Corporate Credit Facility (PMCCF)
and the Secondary Market Corporate Credit Facility (SMCCF) on March 23.
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4.3 Search Frictions and Reversed Liquidity Premium

In the previous sections, we focus on identifying the reversed effects of liquidity on bond prices. In

this section, we focus on the search friction channel. To do so, we take advantage of our granular

data with dealer IDs by employing proxies of search friction discussed in Section 3.2.1.

We first discuss results within the same-issuer bonds. Then we present results comparing trades

of a same bond by different dealers.

4.3.1 Comparing Same-issuer Bonds with Different Levels of Search Frictions

We examine the effects of search friction on yields of same-issuer bonds by running the following

regression:

𝑌 𝑆𝑖,𝑡 = 𝛼+ 𝛽1𝑆𝐹𝑖,𝑡 ·𝐻𝑖𝑔ℎ𝑋𝑡 + 𝛽2𝑆𝐹𝑖,𝑡 + 𝑐𝑡𝑟𝑙𝑠𝑖,𝑡 + 𝜇𝑣,𝑡 + 𝜀𝑖,𝑡 (1)

where the dependent variable, 𝑌 𝑆, represents the daily yield spread of the bond. We include a

dummy variable, 𝐻𝑖𝑔ℎ𝑋𝑡, which equals one when the VIX (or TED or DEF) is above its 80th

percentile, and zero otherwise. The independent variable of interest, 𝑆𝐹 , captures different as-

pects of search friction. Specifically, we employ three measures: 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦, 𝐶ℎ𝑎𝑖𝑛𝐿𝑒𝑛𝑔𝑡ℎ, and

𝐼𝑛𝑡𝑒𝑟𝐷𝑒𝑎𝑙𝑒𝑟𝑅𝑎𝑡𝑖𝑜. The variable definitions are detailed in Section 3.2.1 and the Appendix B. We

control for bond characteristics, denoted as 𝑐𝑡𝑟𝑙𝑠𝑖,𝑡, including the logged time-to-maturity, logged

amount outstanding, and logged age of the bond. We also include issuer-times-day fixed effects to

account for unobservable time-varying factors specific to each issuer.

Table 4 shows the estimated results of the regression specification (1). The results are consistent

with our notion that bonds with higher search friction are priced lower during the seller-dominated

markets and higher during normal periods. In Column (1) of Panel A, for example, the coefficient on

𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 alone is negative (-0.260) and significant at the 1% level. This indicates that bonds with

higher centrality (indicating lower search friction) are priced higher compared to bonds with lower

centrality. Also, the coefficient on the interaction term 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 ·𝐻𝑖𝑔ℎ𝑋 is positive (0.505) and

statistically significant at the 1% level. The sum of two coefficients (𝛽1 + 𝛽2) are also positive and

significant at the conventional level. This suggests that bonds with higher centrality are priced lower

during the high-VIX period, indicating the reversed liquidity premium. The estimated coefficients

imply that liquidity premium for bonds with average centrality is 15 basis points in normal periods

and -14 basis points during the high-VIX period. Qualitatively similar results are obtained when

using other measures of search friction, different proxies of seller-dominated markets, and during

market-wide crisis episodes (in Panel B).

In Figure 7, we examine the effects of search friction measures on yields across quintiles of VIX,
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TED, and DEF. Specifically, we use the following specification:

𝑌 𝑆𝑖,𝑡 = 𝛼+

5∑︁
𝑛=1

𝛽𝑛𝑆𝐹𝑖,𝑡 · 1(𝑋 𝑞𝑢𝑖𝑛𝑡𝑖𝑙𝑒 = 𝑛)𝑡 + 𝑐𝑡𝑟𝑙𝑠𝑖,𝑡 + 𝜇𝑣,𝑡 + 𝜀𝑖,𝑡 (2)

where we use a dummy variable for n-th quintile of VIX, TED, or DEF, 1(𝑋 𝑞𝑢𝑖𝑛𝑡𝑖𝑙𝑒 = 𝑛) and

the search friction measures, 𝑆𝐹𝑖,𝑡, including 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦, 𝐶ℎ𝑎𝑖𝑛𝐿𝑒𝑛𝑔𝑡ℎ, and 𝐼𝑛𝑡𝑒𝑟𝐷𝑒𝑎𝑙𝑒𝑟𝑅𝑎𝑡𝑖𝑜.

The findings in Figure 7 are consistent with the results presented in Table 4. We observe a

reversed relationship between search friction measures and yields, which indicates the reversed liq-

uidity premium, during periods of market distress characterized by high VIX, TED, and DEF. In

addition, while they all shows the evidence of reversed liquidity premium, different search friction

measures exhibit slightly different patterns across levels of VIX, TED, and DEF, reflecting the var-

ious channels through which search friction operates. For instance, the coefficient on 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 is

only positive in the fifth quintile, but generally increases as the seller-market proxy (ex. VIX) rises.

This is consistent with decreases in the liquidity premium as seller dominance is heightened. On the

other hand, the coefficients on 𝐶ℎ𝑎𝑖𝑛𝐿𝑒𝑛𝑔𝑡ℎ are mostly statistically insignificant, except during

high levels of VIX, TED, and DEF, which are indicative of seller-dominated markets. These non-

significant results during normal periods may be due to confounding effects in the 𝐶ℎ𝑎𝑖𝑛𝐿𝑒𝑛𝑔𝑡ℎ

measure. Shen et al. (2021) document that longer chain lengths are associated with higher search

friction through the search intensity channel but it can also be related to lower search costs asso-

ciated with dealers maintaining trading infrastructure (which can lead to a lower search friction).

When sellers dominate the market, the search intensity channels may become prominent, driving

the observed results. The coefficients on 𝐼𝑛𝑡𝑒𝑟𝐷𝑒𝑎𝑙𝑒𝑟𝑅𝑎𝑡𝑖𝑜 generally exhibit a decreasing pattern

with higher levels of seller-market proxies, which aligns with our hypothesis. It is also worth noting

that not only the highest quintile but also the second highest quintile show signs consistent with

the existence of an reversed liquidity premium.

In Figure 8, we replicate the analysis in Figure 7 after excluding the issuer-times-day fixed

effects, thus without controlling for unobservable fundamental values. Notably, all patterns in

Figure 8 are opposite to those observed in Figure 7. In all specifications, the sign of the coefficient

indicates that bonds with lower search friction are associated with higher prices, consistent with

the liquidity premium. In particular, the results indicate even stronger liquidity premium during

periods of market distress characterized by high VIX, TED, and DEF. This result confirms our

premise that controlling for both observable and unobservable time-varying fundamental values

is crucial for identifying the effects of liquidity on the asset prices. Without controlling them,

the relationship between search friction (liquidity) and price is endogenous to the quality, hence

positive.
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4.3.2 A Same Bond on a Same Day Traded by Different Dealers

We now examine a same bond traded on a same day but by different dealers. The different dealers

have different level of search ability, proxied by their network centrality within the interdealer

network. Using this setting, we can pin-down our key intuition that it is the different levels of

search friction that drives the reversed effects on prices since we control for any unobservable

time-varying factors at the bond level.

To further illustrate the setup, we can consider an example where these transactions of the

bond had different waiting times although they executed on a same day. In other words, customer

transactions via peripheral dealers, on average, would have experienced longer waiting times (thus

higher search friction) compared to transactions on the same day but facilitated by central dealers.

If sellers tend to sacrifice their profits during seller-dominated markets for immediacy, customer-sell

transactions conducted through more central dealers within a bond-day would be associated with

higher yields (lower prices) than transactions conducted by peripheral dealers. Also, we would not

observe this for the transactions where customer buys from dealers nor for the normal periods.

To test this idea, we estimate the following regression model, seperately for customer sells and

buys:

𝑌 𝑆𝑖,𝑘,𝑑,𝑡 = 𝛼+ 𝛽1𝐷𝑙𝑟𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑑,𝑡 ·𝐻𝑖𝑔ℎ𝑋𝑡 + 𝛽2𝐷𝑙𝑟𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑑,𝑡 + 𝜇𝑖,𝑡 + 𝜀𝑖,𝑘,𝑑,𝑡 (3)

where the dependant variable is yield spread of transaction. The main independent variable is

dealer-level centrality, 𝐷𝑙𝑟𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦, which we calculate for each dealer by using interdealer net-

work each month. 𝐻𝑖𝑔ℎ𝑋 is a dummy variable for the VIX (or TED or DEF) above its 80th

percentile. We also include bond-times-day fixed effects (𝜇𝑖,𝑡). In addition, we control for the log

of trade size as well as dealer fixed effects.

Table 5 shows results from estimating regression specification (3). The estimated coefficients

on 𝐷𝑙𝑟𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 ·𝐻𝑖𝑔ℎ𝑋𝑡 is positive and significant at the conventional levels when we examine

customer-sell transactions (see, Panel A). However, when we examine customer-buy transactions,

we found coefficients on 𝐷𝑙𝑟𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 · 𝐻𝑖𝑔ℎ𝑋𝑡 that are marginal and statistically insignificant

(see, Panel B). The results are similar when we examine the 2008 financial crisis. Overall, the

results are consistent with our notion that sellers may prioritize immediacy over profits.

In sum, the results are consistent with our hypothesis that the liquidity measured by search

friction has positive effects on prices during normal periods but negative effects on prices during

seller-dominated markets proxied by high levels of VIX, TED, and DEF as well as during the

market-wide crisis of the 2008 financial crisis and the 2020 COVID crisis.
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4.4 Same-customer Trades and Reversed Liquidity Premium: Evidence from

Insurance Company

Our results so far are consistent with the reversed liquidity premium story. However, we have

not examined the customer side story. For example, can the results be driven by differences in

customers’ bargaining power rather than dealers search ability? Do investors sell more liquid

bonds at lower prices even when they also hold illiquid bonds at the same time traded at higher

prices?

In this section, we provide a direct evidence controling for the customer side by leveraging

insurance company transaction data obtained from the National Association of Insurance Commis-

sioners (NAIC). The use of NAIC insurance company data offers distinct advantages, as it allows

us to access customer-level transaction data reported in the NAIC Schedule D filings. This enables

us to precisely identify the specific bonds held by an insurance company (IC) on a given day and

further discern the bonds they opt to sell, along with the corresponding dates and prices. The

availability of such granular data is not readily accessible for other bond investors, rendering ICs

as a unique and suitable subject for examining our underlying premises.

4.4.1 Same-customer Trades: Empirical Setup

To examine the seller-dominated situation where the reversed liquidity premium might arise, we use

downgrades of bond credit rating as a testing ground. Additionally, we specifically concentrate on

ICs that hold multiple bonds from the same issuer. This allows us to investigate the ICs’ decision

regarding which bonds they elect to sell based on the varying levels of liquidity, as well as the

corresponding prices at which these transactions occur. The sample construction is detailed in

Section 3.1 and Appendix A.

While in general a downgrade of an individual bond does not necessarily create market-wide

selling pressures, it does, however, tend to create localized selling pressures on the specific bond.

This can be attributed to the heightened default risks associated with the downgrade, as well as

increased holding costs under limited regulatory balancesheet capacity or investor mandates. For

example, insurance companies often respond to such downgrades by reducing their holdings of the

affected bond, at least partly, primarily driven by the amplified regulatory costs incurred as a

consequence (e.g., Ellul et al. 2011b).

Our aim is to compare bonds that are identical except for their search frictions. To achieve this,

we narrow our focus to bonds issued by the same firm that were downgraded on the same day. We

construct our sample by conditioning on the trading activities of ICs who hold multiple downgraded

bonds from the same issuer. It is worth noting that our empirical design does not provide conclusive

evidence on whether ”ICs on average” exert fire-sale pressures for the downgraded bonds. This is

because our sample is conditioned ex-post based on multiple same-issuer bonds and the trading

by ICs.15 Instead, our aim is to directly observe whether investors tend to sell bonds with lower

15For example, as a result, our sample can be skewed towards firms with a higher number of bonds and ICs with
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search friction at lower prices than market prices of same-issuer bonds with higher search friction

that they also possess.

We include all downgrades in order to ensure an adequate number of observations in our sample.

Later, we examine downgrades to investment grade and high-yield rating, separately. In principle,

the regulatory costs for ICs may remain unaffected if a bond downgrade does not alter the NAIC

risk categories, which are based on rating groups. This is due to the NAIC assigning the same

regulatory costs within a given NAIC risk category when calculating the regulatory measure of

risk-based capital (RBC). However, even if this is the case, a downgrade can still heighten the

regulatory concerns and expected regulatory costs from a more pessimistic outlook on the credit

risks associated with the bond and potential subsequent downgrades. Consequently, ICs may indeed

face regulatory pressures to sell at least a portion of the bonds, particularly when their regulatory

capacity is more constrained. It is important to note that our sample construction is conditioned on

IC trades, which means we are likely to selectively examine cases where there is greater regulatory

pressure. Also, we specifically focus on a subset of constrained ICs (with below-median RBC ratio)

that face greater regulatory pressures, motivated by Ellul et al. (2011b). 16 Subsequently, we

examine the less constrained ICs as a placebo group for comparative purposes.

Thus, our identifying assumptions for the analyses of ICs are as follow. The downgraded bonds

are traded in the locally seller-dominated markets. We focus on ICs who are constrained by the

regulatory measure, hold multiple downgraded bonds of the same firm, and trade at least a portion

of their downgraded holdings. We posit that these ICs have compelling reasons, such as regulatory

pressures, to sell the bonds with a sense of urgency.

As a next step, we confirm our premises that constrained ICs are more likely to sell downgraded

bonds with lower search friction to a greater extent than same-issuer downgraded bonds with higher

search friction. To do so, we first calculate a rank of search friction among same-issuer downgraded

bonds for each IC.17 Specifically, we define 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 as a ranking of 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 within a IC-issuer

as of the downgrade month. For example, 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 of 1 represents the most liquid bond (measured

by 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦) within the downgrade-issuer-IC group. We assign 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 of 5 for the 5th ranks

and below. If two bonds within issuer-IC have an exactly same centrality, we assign both to a lower

rank.18 Table A2 presents the frequency distribution of each 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 value in the downgrade-

bond-IC sample. The table indicates that we have a total of 7,254 downgrade-issuer-IC groups

involving multiple bonds from the same issuer held by an IC that have been downgraded. Notably,

approximately 40% of these cases involve the downgrading of at least three distinct bonds from the

same issuer held by an IC.

We now examine whether ICs are more likely to sell more liquid bonds to a larger extent.

more corporate bond holdings.
16Ellul et al. (2011b) shows that more constrained ICs with below-median risk-based capital ratio exerts significantly

larger selling pressures by examining corporate bonds downgraded to high-yield bonds.
17We do this for each IC since the selling decision is made within an IC.
18For example, 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 of three bonds is assigned as {1, 3, 3} when the later two bonds have have the same

centrality. This is why 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 = 2 has less observations than 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 = 1 when all IC-issuer pairs have at least
two bonds by the construction.
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In Figure 9, Panel A shows that more than 50% of bonds in the lowest search friction group

(𝐶𝑡𝑟𝑅𝑎𝑛𝑘 = 1) are net sold by ICs after the downgrade during the sample window. The second

lowest search friction group (𝐶𝑡𝑟𝑅𝑎𝑛𝑘 = 2) is also sold about 48% cases. On the other hand, a

substantially smaller number of bonds with higher search friction has been sold. For example, only

less than 20% of bonds in the least liquid group (𝐶𝑡𝑟𝑅𝑎𝑛𝑘 = 5) are sold. Panel B of Figure 9

shows that those bonds with lower search friction are also sold by larger amounts. For example,

the holding size on average decreased by more than 40% (about 10%) for the bonds in the most

(least) central group.

In Figure 10, we examine the daily average net trading volume for each 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 group over a

period of 180 days following the downgrade date. The results indicate that the most liquid bonds

consistently experience larger selling pressures throughout the entire sample window, particularly

in the immediate aftermath of the downgrade.

Overall, the results indicate that bonds with lower search friction are subject to greater and

more immediate selling pressure compared to their less liquid counterparts. In the next section, we

examine the price effects and liquidity premium among these bonds.

4.4.2 Same-customer Trades: Results

We first investigate whether ICs who sell bonds with lower search friction (hence more liquid) trade

them at lower prices compared to the less liquid same-issuer bond holdings which are traded in the

market on the same day.

Based on the results in the previous section, we define a group of liquid bonds as bonds with

the highest two 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 values within IC-issuer-day (i.e., 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 of 1 and 2). We define

the variable 𝐻𝑖𝑔ℎ𝐶𝑡𝑟 as a dummy variable that equals one if 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 ≤ 2 and zero otherwise.

Similarly, we define the variable 𝐿𝑜𝑤𝐶𝑡𝑟 as a dummy variable that equals one if 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 ≥ 3 and

zero otherwise. With these variables, we then run the following regression:

𝑌 𝑆𝑖,𝑡 =𝛼+ 𝛽1𝐻𝑖𝑔ℎ𝐶𝑡𝑟𝑗,𝑖,𝑡 · 𝐼𝐶𝑠𝑒𝑙𝑙𝑗,𝑖,𝑡 + 𝛽1𝐿𝑜𝑤𝐶𝑡𝑟𝑗,𝑖,𝑡 · 𝐼𝐶𝑠𝑒𝑙𝑙𝑗,𝑖,𝑡

+ 𝛽3𝐻𝑖𝑔ℎ𝐶𝑡𝑟𝑗,𝑖,𝑡 + 𝑐𝑡𝑟𝑙𝑖,𝑡 + 𝜇𝑣,𝑡 + 𝜀𝑗,𝑖,𝑡
(4)

where 𝑌 𝑆𝑖,𝑡 is the daily yield spread of bond. 𝐼𝐶𝑠𝑒𝑙𝑙𝑗,𝑖,𝑡 is a dummy variable for bond 𝑖 sold by

IC 𝑗 on day 𝑡. We also include log(𝑡𝑡𝑚), log(𝑎𝑔𝑒), and log(𝑎𝑚𝑡𝑜𝑢𝑡) as control variables as well

as downgrade-issuer-IC-day fixed effects. Consequently, there should be available yields for both

𝐻𝑖𝑔ℎ𝐶𝑡𝑟 and 𝐿𝑜𝑤𝐶𝑡𝑟 groups within the same issuer and same day to be included in the analyses.

Table 6 shows the estimated results from the regression model specified in equation (4). The

results imply that constrained ICs tend to sell more liquid bonds at lower prices following down-

grades, consistent with our story. In Column 1, the coefficient on 𝐻𝑖𝑔ℎ𝐶𝑡𝑟 is 0.28 and statistically

significant at the 1% level. This suggests that the market yield of bonds with lower search friction

sold by ICs was, on average, 0.28% higher than the market yield of their same-issuer bond holdings

with higher search friction (𝐿𝑜𝑤𝐶𝑡𝑟) traded on the same day. This indicates that ICs sold their
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more liquid (𝐻𝑖𝑔ℎ𝐶𝑡𝑟) bond holdings at lower prices than their less liquid (𝐿𝑜𝑤𝐶𝑡𝑟) holdings of

same-issuer bonds. The results are even more pronounced for bonds that have been downgraded to

high-yield status (Columns 3). This could be attributed to a higher prevalence of sellers for high-

yield bonds and greater regulatory pressures that prompt ICs to place a higher value on immediacy.

However, we do not find similar results for 𝐿𝑜𝑤𝐶𝑡𝑟 bonds sold by ICs. If any, the coefficients are

negative, although it lacks statistical power, suggesting that bonds with higher search frictions were

sold at higher prices (lower yields).

The daily market prices may not necessarily be the same as the prices at which ICs actually

traded. Thus, in Columns 4 through 6, we refine our analysis by further pinning-down on the

transaction prices at which ICs actually sold the bonds. We calculate the dependent variable, 𝑌 𝑆,

using only customer-sell transactions. For each bond 𝑖 sold by IC 𝑗 on day 𝑡, we use the yield of

that specific transaction to calculate the yield spread. However, if IC 𝑗 did not sell bond 𝑖 on day

𝑡, we use the average yield from customer-sell transactions. This approach enables us to directly

compare the yield at which ICs sold their bonds with the market yields of their same-issuer bond

holdings on a same day. We find qualitatively similar and quantitatively stronger results (Columns

4–6 of Table 6) confirming our premises that ICs sell bonds with lower search friction at lower

prices.

In Figure 11, we illustrate the differences in average yield spreads among bonds categorized by

their search friction levels, specifically bonds with the lowest (𝐶𝑡𝑟𝑅𝑎𝑛𝑘 of 1) and second lowest

(𝐶𝑡𝑟𝑅𝑎𝑛𝑘 of 2) search friction, as well as the remaining bonds (𝐶𝑡𝑟𝑅𝑎𝑛𝑘 over 3). We define

𝐶𝑡𝑟𝑅𝑎𝑛𝑘(𝑛) as dummy variables for each group (𝑛 =1, 2, and 3). We also distinguish between

days with and without IC sells and 𝐼𝐶𝑠𝑒𝑙𝑙 represents a dummy variable for days with IC sell. The

benchmark average yield is based on bonds with high search friction (𝐶𝑡𝑟𝑅𝑎𝑛𝑘 over 3) and no IC

sells. The differences from the benchmark yield are estimated by running the following regression:

𝑌 𝑆𝑖,𝑡 = 𝛼+
3∑︁

𝑛=1

𝛽𝑛𝐶𝑡𝑟𝑅𝑎𝑛𝑘(𝑛)𝑗,𝑖,𝑡 · 𝐼𝐶𝑠𝑒𝑙𝑙𝑗,𝑖,𝑡 +
2∑︁

𝑛=1

𝛾𝑛𝐶𝑡𝑟𝑅𝑎𝑛𝑘(𝑛)𝑗,𝑖,𝑡 + 𝜇𝑣,𝑗,𝑡 + 𝜀𝑖,𝑡 (5)

where the difference of each group from the benchmark can be estimated from the coefficient

estimates 𝛽𝑛 and 𝛾𝑛.

Consistent with previous findings, we observe higher yields for bonds with lower search friction

in Figure 11. Additionally, the most liquid bonds (highest 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦) are priced at the lowest

levels (i.e., have highest yield spreads). Notably, when IC sells bonds with higher search friction,

they do so at a lower yield. This aligns with our intuition that sacrificing immediacy requires a

compensation. However, it is worth noting that this may occur less frequently and involve limited

quantities (e.g., Figures 9 and 10).

For robustness, we conducted placebo tests by replicating Figure 11 using dates three years

prior to the actual downgrade dates as placebo event dates. Figure 12 presents the replicated

graphs. Interestingly, we did not find significant differences across the search friction rankings
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(𝐶𝑡𝑟𝑅𝑎𝑛𝑘) or between days with and without IC sells in this placebo setting. This suggests that

the observed differences in average yield spreads in the original analysis are specific to the actual

downgrade events and not a result of random variation. This is consistent with our notion that both

seller-dominated markets and search frictions are key drivers of the reversed liquidity premium.

4.4.3 Same-customer Trades: Results from ICs selling multiple same-issuer bonds

In Figure 13, we observe similar findings when we focus on a subset of ICs who sell multiple same-

issuer bonds on the same day. This consistently supports our hypothesis that sellers are willing

to forego profits in favor of enhanced liquidity, resulting in liquid and easily searchable bonds

being sold lower than illiquid bonds with higher search friction. One possible explanation for this

phenomenon is that it was challenging to sell the illiquid bonds in significant quantities due to their

higher search friction. Moreover, the results may also be driven by the fact that the market price

for liquid (easy-to-search) bonds was lower, driven by the sellers’ valuation in the market.

We also use the placebo event dates to replicate Figure 13 for the robustness check. The

replicated results in Figure 14 demonstrate that there are no significant differences in yields of

bonds sold by ICs across different levels of search frictions (𝐶𝑡𝑟𝑅𝑎𝑛𝑘) within the same IC-issuer

on the same day. These findings align with our premises that the trade-off between immediacy and

profits is the primary driver of the reversed liquidity premium.

4.4.4 Additional Evidence: Same bond, Different Customers

We further take advantage of the IC data where we know the customer identity. In particular,

we explore the scenario where the same bonds are traded by different ICs on the same day. In

this case, our assumption is that ICs with lower searching ability may have experienced greater

difficulties in searching, such as longer waiting times for trades, compared to ICs who have higher

searching ability. There can be many sources for different search ability by ICs, but we focus on

their past trading relationship to more central dealers since we can measure it with our data. Thus,

by observing the transactions of ICs with different search ability on the same day for the same

bonds, we can examine the role of search friction in determining trading outcomes, after controlling

for the unobservable fundamental value as well as observed IC-level characteristics such as size and

the RBC ratio. Specifically, we run the following regression:

𝑌 𝑆𝑗,𝑖,𝑡 =𝛼+ 𝛽1𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐼𝐶𝑗,𝑖,𝑡 + 𝑐𝑡𝑟𝑙𝑗,𝑡 + 𝜇𝑖,𝑡 + 𝜀𝑗,𝑖,𝑡 (6)

where 𝑌 𝑆𝑗,𝑖,𝑡 is the yield spread calculated from the sell transaction by IC 𝑗 of bond 𝑖 on day 𝑡.

To define 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐼𝐶, we first calculate the IC-level centrality as average 𝐷𝑙𝑟𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 of dealers

involved in transactions with the IC during the past 180 days from the day of bond downgrade.

We then define 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐼𝐶 as a dummy variable that takes one if the IC-level centrality is above

its 75th percentile and zero otherwise.
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Table 7 shows the results from the regression specification (6). The results are consistent with

our story. The coefficients on 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐼𝐶 are positive and statistically significant at the conventional

levels in all specifications. For example, Column 1 shows that the coefficient on 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐼𝐶 is 0.47,

implying that sell-transactions by ICs with higher search ability (i.e., traded with more central

dealers) have on average 47 basis points higher yield spread within a same bond-day. The results

are both qualitatively and quantitatively stronger for bonds downgraded to HY than IG.

In sum, by observing insurance company trades we find results consistent with the reversed

liquidity premium that in the seller-dominated markets investors sell more liquid (easier-to-search)

bonds at a lower price, instead of their less-liquid (difficult-to-search) same-issuer bond holdings

that are traded in the market on the same day.

4.4.5 Alternative Explanation: Coordination Failure

We run robustness checks to examine whether a coordination failure of insurance company trading

drives our results. Chaderina et al. (2022) documents that bonds most commonly held by ICs

experience disproportionally more selling pressures from ICs due to a failure of coordination during

fire-sale events from hurricane disasters, since more liquid bonds are commonly held and ICs are

more likely to sell them. We test whether our results remain intact after controlling for the number

of ICs holding the bonds.

In addition to the regression specification of equation (4), we include controls for the measures

of commonality in IC holdings and their interaction with IC sell day, 𝐼𝐶𝑠𝑒𝑙𝑙. We construct two

commonality measures similarly following the approach of Chaderina et al. (2022): 𝐶𝑜𝑚𝑚𝑜𝑛𝑎𝑙𝑖𝑡𝑦,

defined as number of IC bond holders divided by total number of ICs in our sample; 𝐻𝑖𝑔ℎ𝐶𝑜𝑚𝑚,

defined as a dummy variable that equals to one if 𝐶𝑜𝑚𝑚𝑜𝑛𝑎𝑙𝑖𝑡𝑦 greater than its sample 75th

percentile and zero otherwise. By incorporating these variables, we aim to control for the influence of

commonality in IC holdings on the relationship between search friction and yield spreads. However,

it is important to note that these channels are not mutually exclusive. Given that our analysis

focuses on a selective sample of ICs with multiple same-issuer downgraded bonds, our results

cannot establish the presence or absence of the coordination channel.

Table 8 shows the results. The coefficient estimates for 𝐻𝑖𝑔ℎ𝐶𝑡𝑟 · 𝐼𝐶𝑠𝑒𝑙𝑙 remain both qualita-

tively and quantitatively intact after controlling for the commonality, compared with those reported

in Table 6. Overall, the results suggest that the coordination failure channel is unlikely to be the

driving force behind our results in Section 4.4.2.

4.4.6 Placebo Results: Less Constrained Insurance Companies

We additionally conduct placebo tests using a group of less constrained ICs as a comparison. Our

underlying assumption is that the more constrained ICs value immediacy more and therefore may

trade more liquid bonds at lower prices. If this is the case, in contrast, we expect the less constrained

ICs to be less motivated to sell more liquid bonds at lower prices, as they have greater flexibility
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in their trading decisions. Thus, we created a placebo sample consisting of less constrained ICs

(RBC ratios above the median) and similarly analyze their transactions. Figure A3 confirms that

the less constrained ICs exert smaller selling pressures consistent with Ellul et al. (2011b), and do

not show the pattern of immediacy trading in more liquid bonds compared to Figure 10.

Table 9 presents the results of the placebo test. Coefficient estimates for 𝐻𝑖𝑔ℎ𝐶𝑡𝑟 · 𝐼𝐶𝑠𝑒𝑙𝑙

are not statistically significant at the conventional level. Also, the economic magnitudes of the

coefficients are smaller compared to those reported in Table 6. An exception is Column (2) where

the coefficient is marginally significant. One possible explanation for this marginal significance is

that certain ICs may still have the intention to sell downgraded bonds due to risk management

or potential future regulatory concerns. Another explanation could be that other constrained ICs

also sell bonds with lower search friction during similar time periods. However, overall, the results

support our hypothesis that constrained ICs are more willing to sacrifice their profits in order to

benefit from lower search friction.

4.4.7 Discussion: Why Not Selling the Less Liquid Bond?

Why investors do not sell their less liquid bond holding which is traded at a higher price on the

same day? Our intuition claims that this can be explained by the search friction in OTC markets.

Investors are less likely to find a counterparty to sell less liquid bonds in the seller-dominated

markets. Although some investors in the market are able to sell the bonds on the day, it does not

mean that the other investors can immediately sell the bond at the same price because of the search

friction in the OTC markets and limited amounts of buyers. Thus, the constrained sellers such as

the constrained ICs with multiple downgraded bonds are better off selling more liquid bonds even

at a lower price for the immediacy. Whether the equilibrium market price of liquid bond becomes

lower than the illiquid counterpart is thus a function of mass of sellers (constrained investors) in

the market and the likelihood of matching (search friction). This is exactly the key intuition we

are trying to capture. Overall, the evidence from insurance company transactions in Section 4.4

show the results consistent with our economic intuition.

5 Conclusion

In this paper, we provide evidence that prices of liquid assets with lower search friction in OTC

markets can be lower than those of illiquid assets with similar fundamental characteristics but

higher search friction. We propose a simple model to illustrate the equilibrium prices of liquidity,

which can be reversed depending on whether the buyer’s or seller’s valuation determines the price.

When buyers are marginal investors, liquid assets are generally more expensive than illiquid assets

because buyers who hold the illiquid asset should be compensated with higher profits. On the other

hand, when sellers are marginal investors, an opposite situation arises. Sellers who sell the illiquid

asset should be compensated with higher trading gains through higher prices. This leads to the
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reversed liquidity premium. Such an equilibrium arises due to the feedback between liquidity and

investor concentration.

We then provide empirical evidence that identifies the reversed liquidity premium through

several distinct empirical strategies. First, we use the unique feature of corporate bond markets that

there are multiple bonds issued by an issuer but with different levels of search friction. Moreover,

we provide our unique identification strategy using the regression discontinuity design based on the

salient maturity of new issuance. In addition, we exploit the rich transaction-level data with dealer

identifier to construct measures of search friction and examine effects of search-based measures

of liquidity on yields within issuer-day across different market conditions. Overall, we find that

bonds with lower search friction (hence more liquid) become cheaper than the less liquid bonds

after controlling for the fundamental values during the seller-dominated markets proxied by periods

of high VIX, TED, and DEF measures as well as the market-wide crisis events during the 2008

financial crisis and the 2020 COVID crisis.

In addition, we explore a granular database of insurance company transactions to provide a

more direct evidence of investors trading with the reversed liquidity premium. We use constrained

insurance companies holding multiple downgraded bonds of the same issuer as a testing ground.

We find that insurance companies tend to sell bonds with lower search friction at lower prices

compared to their same-issuer bond holdings with higher search friction traded at higher prices in

the market. This suggests that the search friction takes an important role in shaping the reversed

liquidity premium.

Our findings challenge the notion that holding more liquid corporate bonds is an effective

strategy to mitigate liquidity events. For example, investors chasing high-yields, such as high-yield

mutual funds, tend to minimize cash-like holdings in their portfolio and hold liquid corporate bonds

as a buffer mandated by the SEC liquidity management rule since holding cash is especially costly to

them. We highlight the importance of diversifying holdings to include cash and cash-like securities

that are traded in markets with smaller search frictions.

In addition, our results have important implications for liquidity regulations aimed at enhancing

the financial stability. For example, the recent proposal by the SEC in November 2022 to enhance

open-end fund liquidity frameworks aligns with our findings.19 It recognizes the difference in liquid-

ity between normal and stressed conditions. Our findings further emphasize that the ”valuation” of

liquid assets in search-based OTC markets can diminish when investors need them the most. This

implies that the size of liquidity buffers may be overestimated during normal times. Therefore,

effective liquidity management should not only consider the time-varying market liquidity but also

the dynamic valuation of liquidity in OTC markets.

19In November 2022, the SEC proposed ”enhancements to open-end fund liquidity framework” to emphasize the dif-
ference in the liquidity between normal and stressed conditions. E.g., https://www.sec.gov/news/press-release/2022-
199
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Table 1. Descriptive Statistics

This table provides descriptive statistics. The sample period from February 7, 2005 through December 31, 2021. In
Panel A, we present bond-day level variables. 𝑌 𝑆 is the daily yield spread in percentage. The daily yield is calculated
as a trade-volume-weighted yield to maturity for each day using non-retail sized transactions (greater than $100k in
values). We then calculate the yield spread as the difference between the daily yield and a risk-free yield from the
Treasury yield curve. Time-to-maturity (𝑡𝑡𝑚) are remaining years to the maturity. 𝑎𝑔𝑒 is defined as years passed
after the issuance. We also report the dollar amount outstandings in millions of dollars (𝑎𝑚𝑡𝑜𝑢𝑡). 𝐶𝑟𝑒𝑑𝑖𝑡 𝑅𝑎𝑡𝑖𝑛𝑔
is the median credit rating among three ratings from the S&P, Moody’s and Fitch in the numeric scale (AAA=21).
𝑑𝑎𝑖𝑙𝑦 𝑏𝑖𝑑𝑎𝑠𝑘 is the realized bid-ask spread calculated by customer buy and sell trades within bond-day. We also report
descriptive statistics for search friction measures. 𝐼𝑛𝑡𝑒𝑟𝑑𝑒𝑎𝑙𝑒𝑟𝑅𝑎𝑡𝑖𝑜 is a ratio of interdealer transaction among all
transaction during the past 180 days. 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 is the dealer network centrality calculated from monthly interdealer
network, averaged at the bond-month level weighted by number of transactions. 𝐶ℎ𝑎𝑖𝑛 𝐿𝑒𝑛𝑔𝑡ℎ is the average length
of intermediation chains during the past 180 days. We follow Friewald and Nagler (2019) to calculate the chain
length and assign 0 if there is no intermediation chain. We use the Academic TRACE to calculate 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 and
𝐶ℎ𝑎𝑖𝑛 𝐿𝑒𝑛𝑔𝑡ℎ, thus the sample period is limited to 2017 for these variables. In Panel B, we present transaction-level
variables from the academic TRACE from February 7, 2005 through December 31, 2017. 𝑌 𝑆 is based on the yield
of each transaction. 𝐷𝑙𝑟𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 is the dealer eigenvector centrality of interdealer network, calculated each month
for each dealer. 𝑙𝑜𝑔(𝑡𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒) is log of trade volume in par value. In Panel C, we present variables calculated at
the bond-quarter level. 𝐶𝑢𝑠𝑉 𝑜𝑙 and 𝐼𝑑𝑉 𝑜𝑙 are sum of customer volume and interdealer volume, respectively, scaled
by amount outstanding for the bond during the quarter. 𝑧𝑡𝑑 is the zero trading day, defined as a fraction of days
without any trade during the quarter for the bond. 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑙𝑦 𝑏𝑖𝑑𝑎𝑠𝑘 is defined as a median of 𝑑𝑎𝑖𝑙𝑦 𝑏𝑖𝑑𝑎𝑠𝑘 during
the quarter for the bond. The variable definitions are detailed in Appendix B. We report the number of observations
(N), mean, standard deviation (Std.), and 5%, 25%, 50% (median), 75%, and 95% quantiles.

N Mean Std P5 P25 P50 P75 P95

Panel A. Bond-day
𝑌 𝑆 (%) 10,442,580 2.341 3.815 0.292 0.757 1.369 2.575 7.039
𝑡𝑡𝑚 (𝑦𝑒𝑎𝑟) 10,442,580 9.07 9.066 0.846 3.242 5.971 9.528 28.46
𝑎𝑔𝑒 (𝑦𝑒𝑎𝑟) 10,442,580 3.881 3.62 0.285 1.322 2.943 5.273 9.977
𝑎𝑚𝑡𝑜𝑢𝑡 ($𝑀𝑀) 10,442,580 925.7 764.5 250 450 725 1140 2500
𝐶𝑟𝑒𝑑𝑖𝑡 𝑅𝑎𝑡𝑖𝑛𝑔 10,424,399 13.07 3.63 6 12 13 16 18
𝑑𝑎𝑖𝑙𝑦 𝑏𝑖𝑑𝑎𝑠𝑘 (𝑏𝑝𝑠) 3,560,421 34.96 58.6 -7.833 6.291 20.49 42.44 134.81
𝐼𝑛𝑡𝑒𝑟𝑑𝑒𝑎𝑙𝑒𝑟𝑅𝑎𝑡𝑖𝑜 10,425,859 0.138 0.08 0.04 0.079 0.12 0.181 0.292
𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 6,652,508 0.583 0.122 0.377 0.508 0.588 0.661 0.774
𝐶ℎ𝑎𝑖𝑛𝐿𝑒𝑛𝑔𝑡ℎ 6,652,508 0.329 0.337 0 0 0.242 0.571 0.998

Panel B. Transaction-level (academic TRACE, up to 2017)
𝑌 𝑆 (%) 13,005,484 3.333 5.406 0.377 0.972 1.886 3.796 10.127
𝐷𝑒𝑎𝑙𝑒𝑟𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 13,005,484 0.591 0.278 0.094 0.373 0.621 0.837 0.99
𝑙𝑜𝑔(𝑡𝑟𝑎𝑑𝑒𝑠𝑖𝑧𝑒) 13,005,484 13.45 1.41 11.51 12.21 13.28 14.51 15.89

Panel C. Bond-quarter
𝐶𝑢𝑠𝑉 𝑜𝑙 1,310,548 0.054 0.118 0 0 0 0.055 0.289
𝐼𝑑𝑉 𝑜𝑙 1,310,548 0.016 0.045 0 0 0 0.009 0.089
𝑧𝑡𝑑 1,310,548 0.851 0.265 0.19 0.817 1 1 1
𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑙𝑦 𝑏𝑖𝑑𝑎𝑠𝑘 (𝑏𝑝𝑠) 405,838 33.26 43.7 0.445 10.27 22.05 38.13 110.93
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Table 2. Descriptive Statistics of Matched Bonds and Matching Quality

This table provides descriptive statistics for 1,994 unique matched pairs of the young and the old bonds in our
matched sample from February 2005 through December 2021. There are 241,426 bond-day-level observations in the
matched sample (i.e., 120,713 daily matched pair). The matching process is described in Section 4.1.1. In Panel A,
we report summary statistics of bond characteristics, such as 𝑡𝑡𝑚, 𝑎𝑔𝑒, 𝑎𝑚𝑡𝑜𝑢𝑡, and 𝐶𝑟𝑒𝑑𝑖𝑡 𝑅𝑎𝑡𝑖𝑛𝑔 for young and
old bonds separately. The 𝑟𝑎𝑡𝑖𝑛𝑔 is reported just once because bonds in a matched pair have exactly same rating.
The reported variables in Panel A are calculated when the bond pairs are first appeared on our matched sample.
We report mean, standard deviation (Std.), and 5%, 25%, 50% (median), 75%, and 95% quantiles. Panel B shows
descriptive statistics for 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 as well as differences in 𝑎𝑔𝑒 and 𝑡𝑡𝑚 between matched bonds. Panel C
provides the mean differences between young and matched old bonds by using the bond-day sample. In addition to
the bond characteristics, we include: daily customer trade volume scaled by amount outstanding, 𝑑𝑎𝑖𝑙𝑦 𝐶𝑢𝑠𝑉 𝑜𝑙; daily
interdealer trade value scaled by amount outstanding, 𝑑𝑎𝑖𝑙𝑦 𝐼𝑑𝑉 𝑜𝑙; fraction of zero-trading days during the previous
quarter, 𝑍𝑇𝐷; and daily bid-ask spread, 𝑑𝑎𝑖𝑙𝑦 𝑏𝑖𝑑𝑎𝑠𝑘. Definitions for all variables are detailed in the Appendix B. We
report averages of each variable for the matched bonds and the mean differences. Also, the numbers in parentheses
are the standard errors two-way clustered at the issuer and day levels. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% levels, respectively.

Panel A. Bond characteristics as of the first matched date

Mean Std. 5% 25% 50% 75% 95%

𝑎𝑔𝑒, young 0.193 0.198 0.085 0.090 0.099 0.178 0.717
𝑎𝑔𝑒, old 6.580 4.723 3.417 4.400 5.094 5.925 19.828
𝑡𝑡𝑚, young 6.705 4.396 3.830 4.906 4.942 6.919 19.775
𝑡𝑡𝑚, old 6.696 4.434 3.833 4.668 5.303 6.407 19.671
𝑎𝑚𝑡𝑜𝑢𝑡, young 878.1 753.8 27 400 686 1100 2500
𝑎𝑚𝑡𝑜𝑢𝑡, old 906.0 841.4 110 350 600 1150 2750
𝑟𝑎𝑡𝑖𝑛𝑔 14.689 2.758 10 13 15 16 19

Panel B. Daily Matched Pair

Mean Std P5 P25 P50 P75 P95

𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 (%) 0.020 0.249 -0.330 -0.057 0.028 0.121 0.357
Difference in 𝑎𝑔𝑒 5.081 2.536 3.228 4.027 4.736 5.268 9.199
Difference in 𝑡𝑡𝑚 -0.030 0.522 -0.903 -0.419 -0.038 0.361 0.860

Panel C. Mean Differences in Bond-Day Sample

Young Old Difference s.e.

𝑎𝑔𝑒 0.528 5.609 -5.081*** (0.094)
𝑡𝑡𝑚 5.855 5.825 0.030* (0.016)
𝑎𝑚𝑡𝑜𝑢𝑡 1,241.4 1,340.4 -98.952* (55.125)
𝑑𝑎𝑖𝑙𝑦 𝐶𝑢𝑠𝑉 𝑜𝑙 (𝑏𝑝𝑠) 51.143 26.516 24.627*** (1.453)
𝑑𝑎𝑖𝑙𝑦 𝐼𝑑𝑉 𝑜𝑙 (𝑏𝑝𝑠) 18.630 9.265 9.365*** (1.086)
𝑧𝑡𝑑 0.154 0.325 -0.171*** (0.015)
𝑑𝑎𝑖𝑙𝑦 𝑏𝑖𝑑𝑎𝑠𝑘 (𝑏𝑝𝑠) 25.754 34.756 -9.001*** (1.225)
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Table 3. Regression Discontinuity: Local Treatment Effects of Search Friction on Yield Spread

The table presents regression discontinuity design results using different time-to-maturity thresholds (10- and 30-
years). The dependent variable is the yield spread. The sub-sample of treated and control bonds is used for a
sharp RDD, as explained in Figure 6. Panel A displays local treatment effects for the entire sample (Columns 1 and
5) and sub-samples based on VIX levels (Columns 2–4 and 6–8). Panels B and C uses TED and DEF instead of
VIX, respectively. In Panel D, we use sub-samples for specific time periods, including 2008𝐶𝑟𝑖𝑠𝑖𝑠 (July 1, 2007 –
March 31, 2009), 𝐶𝑂𝑉 𝐼𝐷1 (January 30, 2020 - March 14, 2020), 𝐶𝑂𝑉 𝐼𝐷2 (March 15, 2020 - March 23, 2020), and
𝐶𝑂𝑉 𝐼𝐷3 (March 23, 2020 - April 8, 2020). The bandwidth is optimally chosen for each sample following Calonico
et al. (2014a) and Calonico et al. (2015). In addition to conventional estimates, bias-corrected estimates with robust
standard errors, following Calonico et al. (2014b) and Calonico et al. (2020), are reported. We control for the issuer-
day fixed effects, log of amount outstanding, and a dummy variable for bond age less than 30 days, by using the full
sample. Standard errors are clustered at the day level. The sample period spans from 2005 to 2021. N(left) and
N(right) indicate the number of observations within the bandwidth on the left and right of the cutoff, respectively.
Similarly, N(left bc) and N(right bc) are corresponding number of observations within the bias-corrected bandwidth.
*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel A. Local treatment effects across Level of VIX

Cutoff: ttm = 10 Cutoff: ttm = 30

VIX level VIX level

<50𝑡ℎ 50𝑡ℎ–80𝑡ℎ > 80𝑡ℎ <50𝑡ℎ 50𝑡ℎ–80𝑡ℎ > 80𝑡ℎ

(1) (2) (3) (4) (5) (6) (7) (8)

Conventional -0.013* -0.100*** -0.039*** 0.245*** -0.019*** -0.022*** -0.016*** 0.123***
(0.007) (0.009) (0.008) (0.021) (0.004) (0.006) (0.006) (0.012)

Bias-corrected -0.018*** -0.105*** -0.046*** 0.235*** -0.018*** -0.024*** -0.018*** 0.133***
(0.007) (0.009) (0.008) (0.021) (0.004) (0.006) (0.006) (0.012)

Robust -0.018** -0.105*** -0.046*** 0.235*** -0.018*** -0.024*** -0.018*** 0.133***
(0.007) (0.010) (0.009) (0.023) (0.004) (0.006) (0.007) (0.013)

Bandwidth 1.016 0.984 1.071 1.571 3.097 2.517 3.093 1.459
N(left) 440725 203504 143561 132973 550577 226981 175084 62161
N(right) 34522 16534 11780 8991 14811 6946 4811 1799
Bias-corr. Bandwidth 2.188 2.007 2.138 2.255 6.627 6.522 5.414 4.197
N(left bc) 869231 396910 267456 170775 926422 457538 259294 133080
N(right bc) 62157 28912 19721 11537 23687 10818 6750 2896

Panel B. Local treatment effects across Level of TED

Cutoff: ttm = 10 Cutoff: ttm = 30

TED level TED level

<50𝑡ℎ 50𝑡ℎ–80𝑡ℎ > 80𝑡ℎ <50𝑡ℎ 50𝑡ℎ–80𝑡ℎ > 80𝑡ℎ

(1) (2) (3) (4) (5) (6)

Conventional -0.059*** -0.051*** 0.141*** -0.036*** -0.071*** 0.054**
(0.006) (0.011) (0.020) (0.005) (0.009) (0.022)

Bias-corrected -0.062*** -0.054*** 0.148*** -0.036*** -0.068*** 0.064***
(0.006) (0.011) (0.020) (0.005) (0.009) (0.022)

Robust -0.062*** -0.054*** 0.148*** -0.036*** -0.068*** 0.064***
(0.007) (0.013) (0.023) (0.006) (0.009) (0.023)

Bandwidth 0.923 1.841 1.787 3.057 2.045 0.898
N(left) 240,766 199,100 98,974 337,568 98,664 28,217
N(right) 15,795 15,809 10,297 9,280 3,476 903
Bandwidth bias 1.668 3.067 2.975 5.717 4.294 3.072
N(left bc) 414,735 314,360 150,364 518,374 183,756 70,015
N(right bc) 26,758 23,158 13,608 13,538 4,608 1,376
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Panel C. Local treatment effects across Level of DEF

Cutoff: ttm = 10 Cutoff: ttm = 30

DEF level DEF level
<50𝑡ℎ 50𝑡ℎ–80𝑡ℎ > 80𝑡ℎ <50𝑡ℎ 50𝑡ℎ–80𝑡ℎ > 80𝑡ℎ

(1) (2) (3) (4) (5) (6)

Conventional -0.077*** -0.056*** 0.284*** -0.041*** -0.044*** 0.071***
(0.008) (0.009) (0.023) (0.005) (0.010) (0.020)

Bias-corrected -0.082*** -0.056*** 0.296*** -0.041*** -0.047*** 0.082***
(0.008) (0.009) (0.023) (0.005) (0.010) (0.020)

Robust -0.082*** -0.056*** 0.296*** -0.041*** -0.047*** 0.082***
(0.009) (0.010) (0.025) (0.006) (0.010) (0.020)

Bandwidth 0.817 1.241 1.436 2.394 2.355 0.707
N(left) 179,908 164,217 105,700 239,488 134,127 27,703
N(right) 16,856 10,423 7,157 8,661 3,561 922
Bias-corr. Bandwidth 1.837 1.832 3.004 4.235 5.046 2.651
N(left bc) 394,452 225,966 190,162 368,505 238,948 82,923
N(right bc) 32,087 14,837 11,300 11,272 5,134 1,496

Panel D. Local treatment effects: the 2008 crisis and COVID period

Cutoff: ttm = 10 Cutoff: ttm = 30

2008𝐶𝑟𝑖𝑠𝑖𝑠 𝐶𝑜𝑣𝑖𝑑1 𝐶𝑜𝑣𝑖𝑑2 𝐶𝑜𝑣𝑖𝑑3 2008𝐶𝑟𝑖𝑠𝑖𝑠 𝐶𝑜𝑣𝑖𝑑1 𝐶𝑜𝑣𝑖𝑑2 𝐶𝑜𝑣𝑖𝑑3
(1) (2) (3) (4) (5) (6) (7) (8)

Conventional 0.286*** 0.035 0.523* -0.245** 0.093*** 0.059*** -0.182* -0.094*
(0.030) (0.036) (0.284) (0.106) (0.019) (0.022) (0.105) (0.050)

Bias-corrected 0.308*** 0.051 0.629** -0.195* 0.101*** 0.064*** -0.180* -0.075
(0.030) (0.036) (0.284) (0.106) (0.019) (0.022) (0.105) (0.050)

Robust 0.308*** 0.051 0.629* -0.195* 0.101*** 0.064** -0.180* -0.075
(0.033) (0.037) (0.323) (0.115) (0.020) (0.026) (0.104) (0.054)

Bandwidth 1.300 1.302 3.760 2.816 1.855 5.743 6.665 2.580
N(left) 30,126 5,734 2,321 4,880 22,262 11,130 1,855 2,698
N(right) 4,452 333 141 345 273 488 82 113
Bias-corr. Bandwidth 2.921 3.333 6.699 5.315 3.961 5.935 13.44 4.667
N(left bc) 56,982 12,892 4,137 9,392 30,301 11,533 2,618 4,047
N(right bc) 5,682 1,016 474 979 349 489 141 139
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Table 4. Effects of Search Friction on Yields

This table provides the regression results for the following model:

𝑌 𝑆𝑖,𝑡 = 𝛼+ 𝛽1𝑆𝐹𝑖,𝑡 ·𝐻𝑖𝑔ℎ𝑋𝑡 + 𝛽2𝑆𝐹𝑖,𝑡 + 𝑐𝑡𝑟𝑙𝑠𝑖,𝑡 + 𝜇𝑣,𝑡 + 𝜀𝑖,𝑡

where the dependent variable 𝑌 𝑆𝑖,𝑡 is daily yields in percentage. 𝑆𝐹𝑖,𝑡 is a measure of search friction: 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦,
𝐶ℎ𝑎𝑖𝑛𝐿𝑒𝑛𝑔𝑡ℎ, and 𝐼𝑛𝑡𝑒𝑟𝐷𝑒𝑎𝑙𝑒𝑟𝑅𝑎𝑡𝑖𝑜. 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 is the dealer eigenvector centrality in the interdealer network
calculated each month. We first calculate the centrality for dealer-month and aggregate them at the bond-level by
taking average weighted by number of transactions. 𝐶ℎ𝑎𝑖𝑛𝐿𝑒𝑛𝑔𝑡ℎ is average length of the intermediation chain
during past 180 days, where we assign the length of 0 to non-changed transactions. 𝐼𝑛𝑡𝑒𝑟𝐷𝑒𝑎𝑙𝑒𝑟𝑅𝑎𝑡𝑖𝑜 is the ratio
of interdealer transactions to all transactions during past 180 days. The definitions are detailed in Appendix B. The
sample period runs from February 7, 2005 through December 31, 2017, except when we use 𝐼𝑛𝑡𝑒𝑟𝐷𝑒𝑎𝑙𝑒𝑟𝑅𝑎𝑡𝑖𝑜. Then,
the sample period extends to 2021. In Panel A, 𝐻𝑖𝑔ℎ𝑋𝑡 is a dummy variable that equals one if a seller-market proxy
X (VIX, TED, or DEF) is higher than its sample 80th percentile and zero otherwise.In Panel B, we employ a set
of distressed dummy variables, {2008𝐶𝑟𝑖𝑠𝑖𝑠, 𝐶𝑂𝑉 𝐼𝐷}, indicating the following sub-periods of {July 2017–March
2009 and March 15–March 23, 2020}, respectively. The control variables, 𝑐𝑡𝑟𝑙𝑠, include: logged time-to-maturity,
𝑙𝑜𝑔(𝑡𝑡𝑚); logged amount outstandings, 𝑙𝑜𝑔(𝑎𝑚𝑡𝑜𝑢𝑡); and logged bond age, 𝑙𝑜𝑔(𝑎𝑔𝑒). We also include issuer-times-day
fixed effects (𝜇𝑣,𝑡). *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. The
numbers in parentheses are standard errors two-way clustered at the issuer and day levels.

Panel A. High VIX, TED, and DEF

High X: VIX TED DEF

(1) (2) (3) (4) (5) (6) (7) (8) (9)

𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 ·𝐻𝑖𝑔ℎ𝑋 0.505*** 0.498*** 0.435***
(0.112) (0.131) (0.108)

𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 -0.260*** -0.246*** -0.258***
(0.038) (0.039) (0.037)

𝐶ℎ𝑎𝑖𝑛𝐿𝑒𝑛𝑔𝑡ℎ ·𝐻𝑖𝑔ℎ𝑋 -0.078** -0.097* -0.098***
(0.038) (0.051) (0.034)

𝐶ℎ𝑎𝑖𝑛𝐿𝑒𝑛𝑔𝑡ℎ -0.013 -0.014 -0.007
(0.010) (0.010) (0.009)

𝐼𝑛𝑡𝑒𝑟𝐷𝑒𝑎𝑙𝑒𝑟𝑅𝑎𝑡𝑖𝑜 ·𝐻𝑖𝑔ℎ𝑋 -1.282*** -2.203*** -2.200***
(0.266) (0.332) (0.355)

𝐼𝑛𝑡𝑒𝑟𝐷𝑒𝑎𝑙𝑒𝑟𝑅𝑎𝑡𝑖𝑜 0.374*** 0.430*** 0.437***
(0.075) (0.076) (0.076)

𝑙𝑜𝑔(𝑡𝑡𝑚) 0.282*** 0.282*** 0.303*** 0.282*** 0.282*** 0.302*** 0.282*** 0.282*** 0.302***
(0.012) (0.012) (0.009) (0.012) (0.012) (0.009) (0.012) (0.012) (0.009)

𝑙𝑜𝑔(𝑎𝑚𝑡𝑜𝑢𝑡) -0.032 -0.031 -0.030** -0.031 -0.031 -0.029** -0.032* -0.031 -0.029**
(0.019) (0.019) (0.013) (0.019) (0.019) (0.013) (0.019) (0.019) (0.013)

𝑙𝑜𝑔(𝑎𝑔𝑒) 0.071*** 0.070*** 0.054*** 0.071*** 0.070*** 0.054*** 0.071*** 0.070*** 0.053***
(0.007) (0.007) (0.004) (0.007) (0.007) (0.004) (0.007) (0.007) (0.004)

𝛽1 + 𝛽2 0.244** -0.091** -0.908*** 0.252** -0.111** -1.773*** 0.177* -0.105*** -1.762***
Issuer·day f.e. Y Y Y Y Y Y Y Y Y
N 5,183,228 5,183,228 8,578,288 5,183,228 5,183,228 8,578,288 5,183,228 5,183,228 8,578,288
Adj. R2 0.920 0.920 0.924 0.920 0.920 0.924 0.920 0.920 0.924

Panel B. The 2008 crisis and COVID

𝑆𝐹 : 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 𝐶ℎ𝑎𝑖𝑛𝐿𝑒𝑛𝑔𝑡ℎ 𝐼𝑛𝑡𝑒𝑟𝐷𝑒𝑎𝑙𝑒𝑟𝑅𝑎𝑡𝑖𝑜
(1) (2) (3)

𝑆𝐹 · 2008𝐶𝑟𝑖𝑠𝑖𝑠 0.774*** -0.158** -3.917***
(0.186) (0.073) (0.725)

𝑆𝐹 · 𝐶𝑂𝑉 𝐼𝐷 -5.900***
(1.012)

𝑆𝐹 -0.245*** -0.014 0.338***
(0.038) (0.010) (0.077)

𝛽1,2008 + 𝛽2 0.530*** -0.171** -3.579***
𝛽1,𝑐𝑜𝑣𝑖𝑑 + 𝛽2 -5.562***
Control Y Y Y
Issuer·day f.e. Y Y Y
N 5,183,228 5,183,228 8,578,288
Adj. R2 0.920 0.920 0.924
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Table 5. Effects of Different Dealer Centrality on Yields within a Same Bond on a Same Day

This table presents the regression results for the model specified as follows:

𝑌 𝑆𝑖,𝑘,𝑑,𝑡 = 𝛼+ 𝛽1𝐷𝑙𝑟𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑑,𝑡 ·𝐻𝑖𝑔ℎ𝑋𝑡 + 𝛽2𝐷𝑙𝑟𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑑,𝑡 + 𝜇𝑖,𝑡 + 𝜀𝑖,𝑘,𝑑,𝑡

where the dependent variable 𝑌 𝑆𝑖,𝑘,𝑑,𝑡 represents the yield spread for each transaction 𝑘 of bond 𝑖 by dealer 𝑑 on
day 𝑡. 𝐷𝑙𝑟𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑑,𝑡 is the eigenvector centrality calculated from interdealer network each month. 𝐻𝑖𝑔ℎ𝑋𝑡 is a
dummy variable that equals one if the VIX (TED or DEF) is greater than its 80th percentile, and zero otherwise.
In Columns 1–3 (Columns 4–6), we use customer-sell (customer-buy) transaction only. We include bond-times-day
fixed effects (𝜇𝑖,𝑡). In Columns 3 and 6, we additionally include the dealer fixed effect. We also control for the log of
transaction volume, 𝑙𝑜𝑔(𝑡𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒). The sample period runs from February 7, 2005 through December 31, 2017. *,
**, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. The numbers in parentheses
are standard errors two-way clustered at the bond and day levels.

Panel A. Customer Sell

Distress: VIX TED DEF

(1) (2) (3) (4) (5) (6) (7) (8) (9)

𝐷𝑙𝑟𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 ·𝐻𝑖𝑔ℎ𝑋 0.036*** 0.033*** 0.027** 0.058*** 0.052*** 0.032** 0.029** 0.027** 0.022**
(0.012) (0.012) (0.011) (0.018) (0.018) (0.016) (0.012) (0.011) (0.011)

𝐷𝑙𝑟𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 -0.024*** -0.024*** 0.012* -0.025*** -0.025*** 0.012 -0.023*** -0.023*** 0.013*
(0.003) (0.003) (0.007) (0.002) (0.002) (0.007) (0.003) (0.003) (0.007)

𝑙𝑜𝑔(𝑡𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒) -0.020*** -0.011*** -0.020*** -0.011*** -0.020*** -0.011***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

𝛽1 + 𝛽2 0.012 0.008 0.039** 0.033* 0.027 0.043** 0.006 0.003 0.035**
Bond·day f.e. Y Y Y Y Y Y Y Y Y
Dealer f.e. N N Y N N Y N N Y
N 3,156,435 3,156,435 3,156,186 3,156,435 3,156,435 3,156,186 3,156,435 3,156,435 3,156,186
Adj. R2 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995

Panel B. Customer Buy

Distress: VIX TED DEF

(1) (2) (3) (4) (5) (6) (7) (8) (9)

𝐷𝑙𝑟𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 ·𝐻𝑖𝑔ℎ𝑋 0.001 0.005 0.000 -0.010 -0.003 -0.004 -0.003 -0.001 -0.007
(0.008) (0.008) (0.010) (0.011) (0.011) (0.013) (0.008) (0.007) (0.008)

𝐷𝑙𝑟𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 0.030*** 0.029*** -0.000 0.031*** 0.031*** 0.000 0.031*** 0.031*** 0.001
(0.002) (0.002) (0.005) (0.002) (0.002) (0.005) (0.002) (0.002) (0.005)

𝑙𝑜𝑔(𝑡𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒) 0.031*** 0.016*** 0.031*** 0.016*** 0.031*** 0.016***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

𝛽1 + 𝛽2 0.031*** 0.034*** 0.000 0.021** 0.028*** -0.004 0.027*** 0.029*** -0.006
Bond·day f.e. Y Y Y Y Y Y Y Y Y
Dealer f.e. N N Y N N Y N N Y
N 4,345,602 4,345,602 4,345,414 4,345,602 4,345,602 4,345,414 4,345,602 4,345,602 4,345,414
Adj. R2 0.996 0.996 0.997 0.996 0.996 0.997 0.996 0.996 0.997

Panel C. The 2008 crisis

Customer Sell Customer Buy

(1) (2) (3) (4) (5) (6)

𝐷𝑙𝑟𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 · 2008𝐶𝑟𝑖𝑠𝑖𝑠 0.081*** 0.074*** 0.057** -0.017 -0.009 -0.013
(0.026) (0.025) (0.026) (0.018) (0.017) (0.022)

𝐷𝑙𝑟𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 -0.023*** -0.024*** 0.011 0.031*** 0.031*** 0.001
(0.003) (0.003) (0.007) (0.002) (0.002) (0.005)

𝑙𝑜𝑔(𝑡𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒) -0.020*** -0.011*** 0.031*** 0.016***
(0.001) (0.001) (0.001) (0.001)

𝛽1 + 𝛽2 0.058** 0.050** 0.068** 0.014 0.022 -0.013
Bond·day f.e. Y Y Y Y Y Y
Dealer f.e. N N Y N N Y
N 3,156,435 3,156,435 3,156,186 4,345,602 4,345,602 4,345,414
Adj. R2 0.995 0.995 0.995 0.996 0.996 0.997
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Table 6. Do Insurance Companies Sell More Liquid Bonds at Lower Prices?

This table provides the regression results for the following model:

𝑌 𝑆𝑖,𝑡 = 𝛼+ 𝛽1𝐻𝑖𝑔ℎ𝐶𝑡𝑟𝑗,𝑖,𝑡 · 𝐼𝐶𝑠𝑒𝑙𝑙𝑗,𝑖,𝑡 + 𝛽1𝐿𝑜𝑤𝐶𝑡𝑟𝑗,𝑖,𝑡 · 𝐼𝐶𝑠𝑒𝑙𝑙𝑗,𝑖,𝑡 + 𝛽3𝐻𝑖𝑔ℎ𝐶𝑡𝑟𝑗,𝑖,𝑡 + 𝑐𝑡𝑟𝑙𝑖,𝑡 + 𝜇𝑣,𝑗,𝑡 + 𝜀𝑗,𝑖,𝑡

where the dependent variable is the yield spread. In Columns 1–3, we use the daily yield spread, 𝑌 𝑆𝑖,𝑡. In Columns
4–6, we use yield spreads calculated from sell transactions only, where we use the yield of sell transaction of IC 𝑗 for
bond 𝑖 on day 𝑡 obtained from the NAIC if available; otherwise, we use the all sell transactions in the TRACE for
bond 𝑖 on day 𝑡. 𝐻𝑖𝑔ℎ𝐶𝑡𝑟𝑗,𝑖,𝑡 is a dummy variable that equals one if 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 ≤ 2 and zero otherwise. 𝐿𝑜𝑤𝐶𝑡𝑟𝑗,𝑖,𝑡
is a dummy variable that equals one if 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 ≥ 3 and zero otherwise. 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 is the ranking of 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦
within the same-issuer holdings of an IC in our sample, where 1 represents the highest centrality bond. 𝐼𝐶𝑠𝑒𝑙𝑙𝑗,𝑖,𝑡 is
a dummy variable that equals one if the bond 𝑖 is sold by IC 𝑗 on day 𝑡, and zero otherwise. In Columns 2-3 and 5-6,
we also divide the sample into two groups: bonds downgraded to IG; and bonds downgraded to HY, respectively. All
specification includes control variables of log(𝑡𝑡𝑚), 𝑡𝑡𝑚, and log(𝑎𝑚𝑡𝑜𝑢𝑡) as well as downgrade-issuer-IC-day fixed
effects (𝜇𝑣,𝑗,𝑡). The numbers in parentheses are standard errors clustered at the issuer and day levels. *, **, and ***
denote statistical significance at the 10%, 5%, and 1% levels, respectively.

𝑌 𝑆 𝑌 𝑆
(sell transaction)

All IG HY All IG HY
(1) (2) (3) (4) (5) (6)

𝐻𝑖𝑔ℎ𝐶𝑡𝑟 · 𝐼𝐶𝑠𝑒𝑙𝑙 0.279*** 0.179** 0.437*** 0.451*** 0.146* 0.870***
(0.079) (0.081) (0.156) (0.104) (0.087) (0.219)

𝐿𝑜𝑤𝐶𝑡𝑟 · 𝐼𝐶𝑠𝑒𝑙𝑙 -0.244 -0.225 -0.059 -0.271 -0.261 -0.033
(0.159) (0.156) (0.216) (0.173) (0.173) (0.218)

𝐻𝑖𝑔ℎ𝐶𝑡𝑟 0.066 0.051 0.281 0.080 0.060 0.353*
(0.047) (0.047) (0.177) (0.061) (0.066) (0.204)

𝑙𝑜𝑔(𝑡𝑡𝑚) -0.135 0.142 -1.130 -0.421 -0.005 -1.708*
(0.227) (0.107) (0.721) (0.331) (0.162) (0.898)

𝑙𝑜𝑔(𝑎𝑚𝑡𝑜𝑢𝑡) 0.296** 0.137*** 0.799* 0.350* 0.118* 0.962*
(0.141) (0.047) (0.408) (0.204) (0.063) (0.500)

𝑙𝑜𝑔(𝑎𝑔𝑒) 0.194 0.116** 0.572 0.205 0.152** 0.562
(0.140) (0.054) (0.534) (0.189) (0.075) (0.635)

Down·Issuer·IC·Day f.e. Y Y Y Y Y Y
N 1,727,757 1,159,839 567,918 1,060,258 677,387 382,871
Adj R2 0.907 0.889 0.886 0.887 0.860 0.872
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Table 7. Do Insurance Companies with Different Search Friction Trade at Different Prices?

This table provides the regression results for the following model:

𝑌 𝑆𝑗,𝑖,𝑡 =𝛼+ 𝛽1𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐼𝐶𝑗,𝑖,𝑡 + 𝑐𝑡𝑟𝑙𝑗,𝑡 + 𝜇𝑖,𝑡 + 𝜀𝑗,𝑖,𝑡

where the dependent variable is yield spread calculating using each IC sell transaction, 𝑌 𝑆𝑗,𝑖,𝑡. 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐼𝐶𝑗,𝑡 is a
dummy variable that takes one if IC-level centrality is above its 75th percentile and zero otherwise. The IC-level
centrality is an average of dealer centrality of transactions by IC 𝑗 during the past 180 days from the downgrade day.
We include downgrade-bond-day fixed effects (𝜇𝑖,𝑡). The control variable, 𝑐𝑡𝑟𝑙, include the risk-based capital ratio
and log of total assets of IC. The numbers in parentheses are standard errors clustered at the issuer and day levels.
*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

All IG HY All IG HY
(1) (2) (3) (4) (5) (6)

𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐼𝐶 0.466** 0.158* 0.861** 0.455*** 0.152* 0.842**
(0.180) (0.084) (0.370) (0.172) (0.084) (0.350)

𝑅𝐵𝐶𝑟𝑎𝑡𝑖𝑜 -0.017 -0.017 -0.014
(0.019) (0.013) (0.042)

log(𝐼𝐶𝑠𝑖𝑧𝑒) -0.025 -0.016*** -0.038
(0.023) (0.006) (0.053)

Down·Bond·Day f.e. Y Y Y Y Y Y
N 2,653 1,337 1,316 2,653 1,337 1,316
Adj R2 0.997 0.999 0.996 0.997 0.999 0.996
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Table 8. Robustness Check: Coordination Failure as Alternative Explanation

This table reports results from replicating Table 6 after controlling for the commonality in IC holdings. We use two
variables of commonality: number of distinct ICs who hold the bond as of a day before the downgrade scaled by
number of ICs in our sample, 𝐶𝑜𝑚𝑚𝑜𝑛𝑎𝑙𝑖𝑡𝑦; and a dummy variable for 𝐶𝑜𝑚𝑚𝑜𝑛𝑎𝑙𝑖𝑡𝑦 greater than its sample 75th
percentile, 𝐻𝑖𝑔ℎ𝐶𝑜𝑚𝑚. We also include interaction terms between the commonality variables and 𝐼𝐶𝑠𝑒𝑙𝑙. All other
specifications are the same as Table 6. The numbers in parentheses are standard errors clustered at the issuer and
day levels. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel A.

𝑌 𝑆 𝑌 𝑆
(sell transaction)

All IG HY All IG HY
(1) (2) (3) (4) (5) (6)

𝐻𝑖𝑔ℎ𝐶𝑡𝑟 · 𝐼𝐶𝑠𝑒𝑙𝑙 0.242** 0.124* 0.412** 0.528*** 0.083 1.095***
(0.096) (0.066) (0.202) (0.144) (0.120) (0.278)

𝐿𝑜𝑤𝐶𝑡𝑟 · 𝐼𝐶𝑠𝑒𝑙𝑙 -0.288* -0.287* -0.076 -0.182 -0.332 0.269
(0.152) (0.167) (0.243) (0.261) (0.209) (0.343)

𝐻𝑖𝑔ℎ𝐶𝑡𝑟 0.064 0.050 0.296* 0.079 0.059 0.368*
(0.047) (0.046) (0.169) (0.062) (0.065) (0.193)

𝐶𝑜𝑚𝑚𝑜𝑛𝑎𝑙𝑖𝑡𝑦 · 𝐼𝐶𝑠𝑒𝑙𝑙 1.119 1.746 0.403 -2.431 1.981 -7.500
(2.207) (2.867) (3.443) (3.585) (3.494) (5.195)

𝐶𝑜𝑚𝑚𝑜𝑛𝑎𝑙𝑖𝑡𝑦 2.709 1.095 10.827 1.452 0.175 9.381
(4.686) (2.163) (8.305) (6.174) (2.984) (9.375)

Control Y Y Y Y Y Y
Down·Issuer·IC·Day f.e. Y Y Y Y Y Y
N 1,727,757 1,159,839 567,918 1,060,258 677,387 382,871
Adj R2 0.907 0.889 0.886 0.887 0.860 0.873

Panel B.

𝑌 𝑆 𝑌 𝑆
(sell transaction)

All IG HY All IG HY
(1) (2) (3) (4) (5) (6)

𝐻𝑖𝑔ℎ𝐶𝑡𝑟 · 𝐼𝐶𝑠𝑒𝑙𝑙 0.232*** 0.185*** 0.309* 0.474*** 0.161** 0.915***
(0.082) (0.068) (0.161) (0.124) (0.082) (0.261)

𝐿𝑜𝑤𝐶𝑡𝑟 · 𝐼𝐶𝑠𝑒𝑙𝑙 -0.305** -0.218 -0.214 -0.249 -0.242 0.032
(0.152) (0.135) (0.259) (0.197) (0.151) (0.299)

𝐻𝑖𝑔ℎ𝐶𝑡𝑟 0.064 0.051 0.286 0.076 0.060 0.353*
(0.048) (0.047) (0.180) (0.062) (0.065) (0.205)

𝐻𝑖𝑔ℎ𝐶𝑜𝑚𝑚· 𝐼𝐶𝑠𝑒𝑙𝑙 0.129 -0.018 0.376 -0.075 -0.042 -0.168
(0.210) (0.189) (0.426) (0.197) (0.193) (0.392)

𝐻𝑖𝑔ℎ𝐶𝑜𝑚𝑚 0.237 -0.003 1.043** 0.256 -0.014 1.072**
(0.159) (0.108) (0.434) (0.196) (0.148) (0.465)

Control Y Y Y Y Y Y
Down·Issuer·IC·Day f.e. Y Y Y Y Y Y
N 1,727,757 1,159,839 567,918 1,060,258 677,387 382,871
Adj R2 0.907 0.889 0.887 0.887 0.860 0.873
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Table 9. Placebo Test using Less Constrained ICs

This table reports results from the replication of Tables 6 by using the sample of less constrained ICs (i.e., ICs with
above-median RBC ratio). The numbers in parentheses are standard errors clustered at the issuer and day levels. *,
**, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

𝑌 𝑆 𝑌 𝑆
(sell transaction)

All IG HY All IG HY
(1) (2) (3) (4) (5) (6)

𝐻𝑖𝑔ℎ𝐶𝑡𝑟 · 𝐼𝐶𝑠𝑒𝑙𝑙 0.121 0.191* 0.078 0.316 0.160 0.626
(0.131) (0.115) (0.245) (0.230) (0.142) (0.534)

𝐿𝑜𝑤𝐶𝑡𝑟 · 𝐼𝐶𝑠𝑒𝑙𝑙 -0.190 -0.199 -0.215 -0.312 -0.367 -0.218
(0.153) (0.176) (0.210) (0.204) (0.257) (0.271)

𝐻𝑖𝑔ℎ𝐶𝑡𝑟 0.009 0.033 0.113 0.014 0.051 0.125
(0.055) (0.043) (0.191) (0.074) (0.059) (0.218)

Control Y Y Y Y Y Y
Down·Issuer·IC·Day f.e. Y Y Y Y Y Y
N 995,896 710,898 284,998 613,907 421,165 192,742
Adj. R2 0.911 0.889 0.891 0.892 0.862 0.877
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Figure 2. Relationship between Time-to-maturity and Trading Volume, Frequency, and Bid-ask
Spread across Maturity at Issuance

This figure shows relationships between time-to-maturity (𝑡𝑡𝑚) and the four liquidity-related variables in 4 for bonds
with when-issued 𝑡𝑡𝑚 of 3, 5, 7, 10, 20, and 30 separately. We use binned scatter plot of Cattaneo et al. (2019) to fit
non-parametric way.
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Figure 3. Time Series of Liquidity Spread

This figure depicts the time series of the liquidity spread. The 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦𝑆𝑝𝑟𝑒𝑎𝑑 is defined as illiquid bond yields
minus matched liquid bond yields. The matching is detailed in Section 4.1.1. We calculate the spread each day if
both yields from liquid and matched illiquid bonds are available for the same day. To remove effects of outliers, we
winsorize the yields of liquid and illiquid bonds at the l% level as well as the liquidty spreads at the 0.5% level. The
sample period runs from February 7, 2005 through December 31, 2021. The black solid line represents the 20-days
moving average of 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦𝑆𝑝𝑟𝑒𝑎𝑑. We also add a scatter plot to visualize 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦𝑆𝑝𝑟𝑒𝑎𝑑 of each matched pair.
The grey area plot in the bottom shows the VIX. Dashed vertical lines indicate the Lehman Brothers Bankruptcy
(September 15, 2008), and the COVID pandemic (March 2020). The x-axis represents calendar dates and the y-axis
represents 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦𝑆𝑝𝑟𝑒𝑎𝑑 in percentages. 07:49 Saturday, June 10, 2023 1
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Figure 4. Relationship between Time-to-maturity and Trading Volume, Frequency, and Bid-ask
Spread in Pooled Sample

This figure shows the relationship between time-to-maturity (𝑡𝑡𝑚) and liquidity-related variables in a non-parametric
way. Specifically, we use customer trading volume scaled by amount outstanding, 𝐶𝑢𝑠𝑉 𝑜𝑙; interdealer trading volume
scaled by amount outstanding, 𝐼𝑑𝑉 𝑜𝑙; fraction of zero-trading days, 𝑧𝑡𝑑; and quarterly median bid-ask spreads,
𝑏𝑖𝑑𝑎𝑠𝑘. All variables are calculated quarterly. We use data-driven non-parametric binned scatter plot of Cattaneo
et al. (2019).
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Figure 5. Histogram of Time-to-maturity at Issuance

This figure provides a histogram of times-to-maturity at the issuance of bonds. The x-axis represents time-to-maturity
at the issuance in years. Each bin has a width of month.
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Figure 6. Regression Discontinuity Based on Newly Issued Bonds

This figure visualizes the regression discontinuity around 𝑡𝑡𝑚 cutoffs of 10-years (Panels A1, B1, and C1) and
30-years (Panels A2, B2, and C2). We use the binscatter regression method of Cattaneo et al. (2019), which plots
non-parametric relationships through data-driven binned scatter plots with cubic fitted lines. The dependent variable
is the yield spread (𝑌 𝑆). The x-axis represents the difference between 𝑡𝑡𝑚 and the cutoff. The bandwidth is 0.5
years. The ”new issue” group (black, solid line) includes bonds with when-issued 𝑡𝑡𝑚 within a range of ± 2 months
from the cutoffs. The ”older” group (gray, dashed line) is defined as bonds with when-issued 𝑡𝑡𝑚 >cutoff + 2 months
and 𝑎𝑔𝑒 > 0.5. This practically limits the minimum age of ”older” group is at least 0.5 years older than the maximum
age of ”new issue” group around the cutoffs. In Panel A, we seperately plot period with VIX below its median and
the distressed period of VIX above its 80th percentile. In Panels B and C, we use TED and DEF instead of VIX.
The shaded area indicates the 95% confidence interval using standard errors clustered by date.
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Figure 7. Effects of Search Friction on Yields across Quintiles of VIX, TED, and DEF

This figure plots the coefficient estimates from the following regressions:

𝑌 𝑆𝑖,𝑡 = 𝛼+

5∑︁
𝑛=1

𝛽𝑛𝑆𝐹𝑖,𝑡 · 1(𝑋 𝑞𝑢𝑖𝑛𝑡𝑖𝑙𝑒 = 𝑛)𝑡 + 𝑐𝑡𝑟𝑙𝑠𝑖,𝑡 + 𝜇𝑣,𝑡 + 𝜀𝑖,𝑡

where 1(𝑋 𝑞𝑢𝑖𝑛𝑡𝑖𝑙𝑒 = 𝑛) is a dummy variable that equals to one if VIX (or TED or DEF) belongs to its n-th quintile.
Quintile 1 contains the lowest values. 𝑆𝐹𝑖,𝑡 is the search friction measure: 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 (Panel A); 𝐶ℎ𝑎𝑖𝑛𝐿𝑒𝑛𝑔𝑡ℎ (Panel
B); and 𝐼𝑛𝑡𝑒𝑟𝐷𝑒𝑎𝑙𝑒𝑟𝑅𝑎𝑡𝑖𝑜 (Panel C). We also include log(𝑡𝑡𝑚), log(𝑎𝑚𝑡𝑜𝑢𝑡), log(𝑎𝑔𝑒), as well as issuer-times-day
fixed effects. We plot coefficient estimates for 𝛽𝑛 for each specification. The vertical band represents the confidence
interval at the 95% level using standard errors two-way clustered at the issuer and day levels.
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Figure 8. Without Controlling Fundamental Values: Effects of Search Friction on Yields across
Quintiles of VIX, TED, and DEF

In this figure, we reproduce Figure 7 without controlling for the issuer-times-day fixed effects. Instead, we only
include the day fixed effects.
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Figure 9. Average Selling Decision and Net Changes in Holding across Level of Liquidity

This figure shows the relationship between CtrRank and ICs’ selling decision. The x-axis represents CtrRank. In
Panel A, y-axis is 1(Sold), a dummy variable that equals to one if the IC net sells the bond during the sample window
and zero otherwise. In Panel B, y-axis is d(Holding) which is the net change in holdings during the sample window
calculated for each IC and bond. The dot represents an average of variables within each CtrRank. The vertical band
shows the 95% confidence interval.
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Figure 10. Net Trading of Insurance Company Following Downgrades

This figure displays the average dollar amounts (in par value) of net trades conducted by insurance companies in our
sample after experiencing downgrades, plotted separately for each level of 𝐶𝑡𝑟𝑅𝑎𝑛𝑘. To visualize the trend, we have
employed non-parametric local mean smoothing. The x-axis indicates the number of days following the downgrades.
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Figure 11. Do Insurance Companies Sell More Liquid Bonds at Lower Prices?

This figure shows the average yield spreads of sample bonds compared to a benchmark group of same-issuer bonds
with lower centrality (𝐶𝑡𝑟𝑅𝑎𝑛𝑘 >= 3) on days without IC sales. The bond-day observations are divided into six
groups based on centrality ranking (𝐶𝑡𝑟𝑅𝑎𝑛𝑘 = 1, 2, 𝑎𝑛𝑑 ≥ 3) and whether IC sells the bond on that day. To estimate
the difference from the benchmark for each group, we perform a regression analysis using the following model:

𝑌 𝑆𝑖,𝑡 = 𝛼+

3∑︁
𝑛=1

𝛽𝑛𝐶𝑡𝑟𝑅𝑎𝑛𝑘(𝑛)𝑗,𝑖,𝑡 · 𝐼𝐶𝑠𝑒𝑙𝑙𝑗,𝑖,𝑡 +

2∑︁
𝑛=1

𝛾𝑛𝐶𝑡𝑟𝑅𝑎𝑛𝑘(𝑛)𝑗,𝑖,𝑡 + 𝜇𝑣,𝑗,𝑡 + 𝜀𝑖,𝑡

where 𝐶𝑡𝑟𝑅𝑎𝑛𝑘(𝑛) represents a dummy variable that equals one if 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 = 𝑛 for 𝑛 = 1, 2, and 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 ≥ 𝑛 for
𝑛 = 3; otherwise, it is zero. 𝐼𝐶𝑠𝑒𝑙𝑙𝑗,𝑖,𝑡 is a dummy variable that equals one if IC 𝑗 sold bond 𝑖 on day 𝑡, and zero
otherwise. We also include downgrade-issuer-IC-day fixed effects (𝜇𝑣,𝑗,𝑡). The coefficients 𝛽𝑛 and 𝛾𝑛 estimate the
difference of each group from the benchmark. In Panel A, we use the yield spreads (𝑌 𝑆𝑖,𝑡) as the dependent variable.
In Panel B, we use the yield spreads from sell transactions as Table 6. The vertical dashed line represents the 95%
confidence interval for testing the difference from the benchmark average. We use standard errors two-way clustered
at the issuer and day levels.
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Figure 12. Placebo Events of Three Years Prior to Downgrades: Replicating Figure 11

This figure replicates Figure 11 using placebo dates that are three years prior to the actual downgrades. We use
the downgraded bonds in the sample used in Section 4.4 and define placebo downgrade dates as three years before
the actual downgrade dates. Since our TRACE sample starts from 2005, the sample is limited to bonds that have
placebo events between 2005 and 2017.
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Figure 13. Do Insurance Companies Sell More Liquid Bonds at Lower Prices on the Same Day?

This figure shows the estimated average yield spreads of bonds sold by an IC on the same day across different centrality
rankings (𝐶𝑡𝑟𝑅𝑎𝑛𝑘 = 1, 2, 𝑎𝑛𝑑 ≥ 3) within the same issuer, in comparison to a benchmark group of bonds with the
lowest centrality (𝐶𝑡𝑟𝑅𝑎𝑛𝑘 >= 3). We only use bond-day observations with IC sales. We first plot the average
yield of benchmark group. To determine the difference from the benchmark average for each group, we conduct the
following regression:

𝑌 𝑆𝑖,𝑡 = 𝛼+

2∑︁
𝑛=1

𝛽𝑛𝐶𝑡𝑟𝑅𝑎𝑛𝑘(𝑛)𝑗,𝑖,𝑡 + 𝜇𝑣,𝑗,𝑡 + 𝜀𝑖,𝑡

where 𝐶𝑡𝑟𝑅𝑎𝑛𝑘(𝑛) represents a dummy variable that takes the value one if 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 = 𝑛 for 𝑛 = 1, 2, and 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 ≥
𝑛 for 𝑛 = 3; otherwise, it is zero. We also include the downgrade-issuer-IC-day fixed effects. The coefficients 𝛽𝑛

estimate the difference of each group from the benchmark. This specification leaves us 1,709 IC-bond-day observations
where an IC sold multiple same-issuer bonds on a same day. In Panel A, we use the yield spreads (𝑌 𝑆𝑖,𝑡) as the
dependent variable. In Panel B, we use yield spreads from the sell transactions as described in Table 6. The vertical
dashed line represents the 95% confidence interval for testing the difference from the benchmark. Standard errors are
two-way clustered at the issuer and day levels.
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Figure 14. Placebo Events of Three Years Prior to Downgrades: Replicating Figure 13

This figure replicates Figure 13 using placebo dates that are three years prior to the actual downgrades. We use
the downgraded bonds in the sample used in Section 4.4 and define placebo downgrade dates as three years before
the actual downgrade dates. Since our TRACE sample starts from 2005, the sample is limited to bonds that have
placebo events between 2005 and 2017.
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Appendix

A NAIC Subsample Construction

In this section, we provide a detailed explanation of how we build the subsample of insurance

company (IC) trades sourced from the NAIC. We use the subsample in Section 4.4 where we

examine downgraded bonds held by ICs.

We start from a sample of corporate bonds downgraded between 2007 and 2017Q2.20 The down-

grade is defined based on the median rating of Moody’s, S&P, and Fitch ratings.21 We do not use

downgrades that have another downgrade during previous 90 days to focus on the first downgrade

in case of multiple consecutive downgrades of a bond. This gives us 14,450 downgrade-bond obser-

vations. We keep the downgrades only if there are multiple same-issuer bonds downgraded on the

same day having the same ratings before and after the downgrade. The sample shrinks to 11,213

downgrade-bond. We populate the downgraded bond sample into downgrade-bond-IC sample by

merging the insurance company holding data from the NAIC. We impute the daily snapshot of IC

holdings by using the annual holding and daily transaction data from the NAIC Schedule D. We

only keep the downgrade-bond-IC that have multiple same-issuer downgraded bonds held by a same

IC. After this step, the sample consists of 140,461 downgrade-bond-IC from 8,011 bond-downgrade

observations. We remove downgrade-bond-IC if the IC has not traded the bond or any other same-

issuer bonds during the sample window. Our sample window runs from downgrade date through

180 days after the downgrade date. Afterwards, we have 31,861 downgrade-bond-IC from 5,835

downgrade-bond observations. We also add 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 calculated from the Academic TRACE

data. We remove downgrade-bond-IC observations if Centrality is identical within downgrade-

issuer-IC level. The sample consists of 31,720 downgrade-bond-IC observations populated from

5,758 downgrade-bonds.

As a next step, we merge daily transaction data from the downgrade date through 180 days

after the downgrade to construct the sample of downgrade-bond-IC-day observations. If there is

no transaction in a given bond-date, we still keep the observation in the sample by setting the IC

trade volume to be zero and yield variables to be missing. Bonds are removed from the sample if

their amount outstanding becomes zero, for example, by the maturity. Finally, we keep only ICs

with below-median RBC ratio. The median RBC is calculated each year by using all ICs in the

NAIC database. The RBC ratio is obtained from the NAIC data at the end of previous year. As

a result, we have 3,256,753 daily observations (2,052,151 observations with available yield) from

19,703 downgrade-bond-IC and 5,076 downgrade-bond observations.

20The sample period is limited to our availability of the NAIC database and the Academic TRACE.
21If only two ratings are available, we use the lower one.
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B Variable Definition

Yield and YS. The Yield is yield-to-maturity obtained from the TRACE database. We follow

Bessembinder, Kahle, Maxwell, and Xu (2008) in defining the daily yield. Specifically, we calculate

a daily yield of bond as the trading-volume-weighted average yield for each day, after excluding the

negative yields and yields larger than 250%. YS is calculated by subtracting a maturity-matched

risk-free yield obtained from the Treasury yield curve.

Liquidity Spread. We define the liquidity spread between matched bonds. The matching process

is detailed in Section 4.1.1. For the liquid (young) bond and illiquid (old) bond within a matched

pair, for each day, we calculate Liquidity Spread as following:

𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 ≡ 𝑌 𝑖𝑒𝑙𝑑(illiquid) − 𝑌 𝑖𝑒𝑙𝑑(liquid) (B1)

where both yields are available for the day.

daily bidask. We calculate a realized bid-ask spreads as Adrian, Fleming, Shachar, and Vogt

(2017). Specifically, we calculate the following daily bid-ask spread for each bond 𝑖 and day 𝑡:

bidask𝑖,𝑡 ≡
𝑎𝑠𝑘𝑖,𝑡 − 𝑏𝑖𝑑𝑖,𝑡

(𝑎𝑠𝑘𝑖,𝑡 + 𝑏𝑖𝑑𝑖,𝑡)/2
(B2)

where 𝑎𝑠𝑘𝑖,𝑡 and 𝑏𝑖𝑑𝑖,𝑡 are the transaction-volume-weighted average prices of customer-buy and

customer-sell transactions, respectively, for bond 𝑖 during day 𝑡.

CusVol. The sum of customer trading volumes for a bond during a quarter divided by amount

outstanding of the bond in par values. daily CusVol is calculated daily instead of quarterly.

IdVol. The sum of interdealer trading volumes for a bond during a quarter divided by amount

outstanding of the bond in par values. daily IdVol is calculated daily instead of quarterly.

ztd. The number of trading days without any trade divdied by the number of all trading days,

calculated for each bond and each quarter.

DlrCentrality and Centrality. We first calculate the centrality of dealers, DlrCentrality, by

computing the eigenvector centrality of interdealer network similar to Li and Schürhoff (2019) and

Friewald and Nagler (2019). Each month, two dealers (nodes of the network) are connected if there

are interdealer trades between the two dealers during the month. We weight the connections by

numbers of trades between the two dealers during the month. We aggregate DlrCentrality at the

bond-level to calculate Centrality by taking an average of the dealer centrality weighted by numbers

of trades by the dealer on the bond during the month.

ChainLength. We define the intermediation chain as linked round-trip trades by following

Friewald and Nagler (2019) and identify the intermediation chains using their algorithm. Specifi-

cally, an intermediation chain is defined as a chain of trades which starts from customer sales and

ends when the initial volumes are moved to customers through dealer trades. Following Friewald

and Nagler (2019), we define the length of chain as number of unique dealer in an intermediation
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chain. Finally, ChainLength is an average length of chains duirng the past 180 days. We assign

zero length if there is no intermediation chain.

InterDealerRatio. We define number of interdealer trades divided by number of all trades during

the past 180 days as InterDealerRatio.

VIX. The CBOE Volatility Index.

TED. The 3-Month London Interbank Offered Rate (LIBOR) based on US dollars minus 3-

Month Treasury Bill rates.

DEF. Moody’s seasoned Baa corporate bond yields minus Moody’s seasoned Aaa corporate

bond yields.
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C Other Tables and Figures

Table A1. Descriptive Statistics: Downgraded Bonds held by Insurance Company

This table provides descriptive statistics of sample of downgraded bonds held by insurance company. The sample
construction is detailed in the Section 3.1.

N Mean Std P5 P25 P50 P75 P95

Credit Rating (before) 19,703 13.618 3.479 7 12 14 16 18
Credit Rating (after) 19,703 12.431 3.624 6 10 13 15 17
Rating Difference 19,703 1.187 0.558 1 1 1 1 2

𝑌 𝑆 2,052,151 5.729 8.182 0.631 1.500 3.177 6.398 19.584
𝑌 𝑆 (sell transaction) 1,452,085 6.308 9.008 0.702 1.661 3.588 7.072 21.355
𝑡𝑡𝑚 2,052,151 7.375 7.413 0.917 2.888 5.281 7.830 25.990
𝑎𝑔𝑒 2,052,151 4.285 2.728 1.106 2.248 3.715 5.728 9.142
𝑎𝑚𝑡𝑜𝑢𝑡 2,052,151 1458 1040 349 700 1157 2000 3500
𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 2,052,151 0.551 0.155 0.255 0.504 0.580 0.638 0.725

Table A2. Frequency Table across 𝐶𝑡𝑟𝑅𝑎𝑛𝑘

This table provides frequency of sample observations across 𝐶𝑡𝑟𝑅𝑎𝑛𝑘. We define 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 as a ranking of the
centrality (𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦) within the same-issuer bond held by an IC. 𝐶𝑡𝑟𝑅𝑎𝑛𝑘 = 1 represents the highest centrality
bond.

CtrRank : 1 2 3 4 5

N: 7,254 7,162 2,746 1,270 1,271
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Figure A1. Relationship between Time-to-maturity and Institutional Ownership across Maturity
at Issuance

This figure shows relationships between time-to-maturity (𝑡𝑡𝑚) and the four liquidity-related variables in 4 for bonds
with when-issued 𝑡𝑡𝑚 of 3, 5, 7, 10, 20, and 30 separately. We use binned scatter plot of Cattaneo et al. (2019) to fit
non-parametric way.
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Figure A2. Relationship between Time-to-maturity and Institutional Ownership in Pooled Sample

This figure shows the relationship between time-to-maturity (𝑡𝑡𝑚) and ownerships of mutual fund and insurance
company in a non-parametric way. The ownership information is obtained from the eMAXX and calculated each
quarter-end. We use data-driven non-parametric binned scatter plot of Cattaneo et al. (2019).
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Figure A3. Net Trading of Less-constrained Insurance Company Following Downgrades

This figure displays the average dollar amounts (in par value) of net trades conducted by less-constrained insurance
companies after experiencing downgrades, plotted separately for each level of 𝐶𝑡𝑟𝑅𝑎𝑛𝑘. To visualize the trend,
we have employed non-parametric local mean smoothing. The x-axis indicates the number of days following the
downgrades.
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