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ABSTRACT

When pricing options via Monte Carlo simulations,
precision can be improved either by performing longer
simulations, or by reducing the variance of the esti-
mators. In this paper, two methods for variance re-
duction are combined, the control variable and the
change of measure (or likelihood) methods. We specif-
ically consider Asian options, and show that a change
of measure can very significantly improve the pre-
cision when the option is deeply out of the money,
which is the harder estimation problem. We also show
that the simulation method itself can be used to find
the best change of measure. This is done by incorpo-
rating an updating rule, based on an estimate of the
gradient of the variance. The paper includes simula-
tion results.

Keywords: Asian Options; Change of Measure; IPA;
Automatic Control

1 INTRODUCTION

Options are financial instruments traded on orga-
nized markets as well as over the counter. Options are
also embedded in other financial instruments, such as
bonds; for instance, the possibility for the seller of a
bond to buy it back at some stated price is an op-
tion. While there is a great variety of options, only
a few explicit valuation formulas are known. For a
description of option pricing the reader is referred to
the book by Hull 1993 or to Boyle et al. 1998.
Monte Carlo simulation is one of the preferred pric-
ing tools when no explicit formula is available. In this
paper, we introduce an apparently new method for
improving the efficiency of Monte Carlo simulation,
based on a change of measure; the method may also
be used in conjunction with a control variable. We fo-
cus on Asian (or average) options, but it will be seen
that the methodology can be applied to other types
of options. Further extensions of the method will be
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examined in subsequent publications.

After a brief description of the probem of valuing
Asian options in Section 2, Section 3 shows how con-
trol variables and change of measure may be com-
bined. Then Section 4 introduces Infinitesimal Per-
turbation Analysis (IPA) in order to find the optimal
change of measure at the same time the simulation is
performed.

2 PRICING ASIAN OPTIONS

There are two assets: the risk-free asset e™ and the
risky asset S, with

S = So€”t+aw"

for 0 <t < T, where (1) r, 5o > 0, p and ¢ > 0 are
constants and (2) W is standard Brownian motion.
Let {F:;0 <t £ T} be the augmented filtration gen-
erated by W. A European contingent claim is a non-
negative Fr-measurable random variable, such that
E* Pr is finite. Here the expectation E™ is with respect
to the equivalent measure P* under which discounted
asset prices {€~"tS,} form a martingale (the so-called
risk-neutral measure, see Harrison and Pliska 1981).
This model is arbitrage-free and, moreover, complete,
meaning that (1) no strategies exist that permit risk-
less profits, (2) any European type contingent claim
with a time T" maturity can be exactly replicated, and
(3) the price at time ¢ of such a contingent claim, with
payoff Pr at time T is

Po=e T T-OEYPr|F), 0<t<T,

In the sequel no more reference will be made to u, as
it has effectively disappeared from the problem, and
P* (resp. E*) will be denoted P (resp. E).

Asian (or average) options have payoffs which de-
pend on the average value of the risky asset at some
specified time points in [0,T]. In the literature, two
cases have been considered: (1) continuous averaging,



see for example Geman and Yor 1993; (2) discrete-
averaging at equally spaced time points (Turnbull and
Wakeman 1991). In either case no explicit formula for
the distribution of the average exists yet, though Ge-
man and Yor derived the Laplace transform of call op-
tion prices (with respect to time, not exercise price),
which can be inverted numerically (see Fu, Madan,
and Wang 1997). We describe below how to use sim-
ulation to produce discrete averages; if the number
of averaging points is large enough, we obtain an ap-
proximation for the value of options on a continuous
average.
Suppose the payoff of the option is a function of

1< T
A= N ; Sin where h= N (1)

Consider a call option on the indicated average, with
exercise price K, that is to say, the payoff at maturity
is Pr = (A — K)4+ (other types of options on the av-
erage, such as puts, can be treated in the same way).

From the previous discussion, the problem reduces to )

the estimation of
6=E[(A-K)4]. 2)

We will suppose that we wish to value the option at
time 0. For dates between 0 and T, it is straightfor-
ward to transform the problem so it becomes equiv-
alent to the valuation at time 0 (see Geman and Yor
1993 for details). From our assumptions, and the fact
that {e~"tS;} is a martingale, the log-returns {X},

with S
X,' = lo th ) ,
& (S(i—l)h

are independent with common N((r — 62/2)h,oh)
distribution.

From now on 7 is a given risk-free interest rate, and
the problem considered is the estimation of E(A — K)
for that particular value of r. However, our method
requires that the risk-free rate be varied in the sim-
ulations. This is why we use the following notation,
where u represents any risk-free rate:

X* = (u-02/2)h+0vhZ;, 1<i<N
X+ = (X%...,X%)
Z = (Z1,...,2n)
B, = Zi+---+2Z;, 1<i<N, By=0
= Sﬁ'-l)heXP(Xzy)’ 1<i<N

~ 1 N
Ay = a(Xu)=J_V'Z :.Lh

=1

Te = T—0%)2, Uy = u—02/2,

where the {Z;} are independent with common dis-
tribution N(0, 1).

The “naive” Monte Carlo estimation of the option
is peformed by generating independent random vari-
ables {Z;} ~ N(0,1) to obtain the sample mean for
(A, — K)4. This estimator is unbiased, and the Cen-
tral Limit Theorem yields confidence intervals for its
precision. However, it is well known now Broadie and
Glasserman 1996, Boyle, Broadie, and Glasserman
1997, Fu, Madan, and Wang 1997 that accuracy of
Monte Carlo simulations can be improved by using
control variables or changes of measure.

3 CONTROL VARIABLES PLUS
CHANGE OF MEASURE

3.1 The Estimators

The method of the control variable Bratley, Fox, and
Schrage 1987, Ross 1997 has been applied the pricing
of Asian options by Boyle, Broadie, and Glasserman
1997, Lemieux 1996 among others, using the geomet-
ric average as control variable. Let

N ¥
Gy = (H :z) : (3)
i=1
denote the geometric average, and let
Vi = (Au - K)g, Y3 =(Gu—K)s.
The controlled estimator
Dy =Y +a(EY] - Y7) (4)

is an unbiased estimator of @ for any constant a. In
particular, as shown in Ross 1997, the variance Var 6
is minimized when

_ Cov(¥1,Y?)

T VarY,

It is shown in Lemieux 1996 that

E(Gu — K)4] = e**"/20(dy) - K®(dz)  (5)
where:
c = logSo+mh(—]—V—;-1—)
N+1
2 2
8 = 0?hm———
7 "eN +1)(6N)
2
—1
g = SHS K 4 s

S



Straightforward calculations also lead to

e2 )@ (dy) — 2KE(Yy]
K20(dg) - (E[Yz))?,  (6)

Var[(Gu — K)4]

where dy = d; + s. Since the covariance between Y*
and Y3* is unknown, the optimal value of « is gener-
ally replaced by its usual estimation &, also obtained
from Monte Carlo simulation. In Boyle, Broadie,
and Glasserman 1997, Fu, Madan, and Wang 1997,
Lemieux 1996, a constant coefficient @ = 1 was used.
In this paper, we use the estimated optimal value &,
as explained in Bratley, Fox, and Schrage 1987 and
in Ross 1997.

Another approach that can sometimes improve the
precision of Monte Carlo simulation is the change of
measure method, or “likelihood ratio method”. In this
particular case, a well-known formula says that for
any measurable f: Ry — IR and any v € R

Ef(Z) = Eem BN §(Z 4 v),

(if one side of the equation exists, then the other ex-
ists as well and the two are equal). For the valua-
tion of Asian options, we consider f(Z) = a(X*“),
v'=(u — r)vh/o, and define

L, =exp

N [w—r)ﬁr D,

2 o

u?,~r,2,T u—'rf:XT
= ex —_ .
P12 o? =t
_tager (SN T
So
We thus have

E [(Ar - K)+]

E [(@(X7) - K)4]
- E [Lu(a(f(' + (u—r)h) - K)+]
= E[Lu(Au - K)4].

Hence, the likelihood ratio L, changes the risk-
neutral rate from u to r.

A call option is “out of the money” (at time 0)
if So < K; the more an Asian option is out of the
money, the larger P[4, < K]. Suppose the option to
be valued is out of the money. Here is an intuitive in-
terpretation of the advantages of the likelihood ratio
method. The larger the drift u, the larger the proba-
bility that the option ends up in the money at matu-
rity (S% > K), and the smaller the number of samples
required to estimate the value of E[L,(A, — K)4].

Changing u changes the way the values of (A, — K) 4
are weighted, so that the expectation remains the
same; this is achieved by multiplying by L,,. The vari-
ance of the estimator is

Var[L,(A - K);]=EL3(A - K)2 - 6%, (7)

which varies with u. The estimation of § becomes
easier if this variance is reduced. If we can choose
u such that P(L, < 1, 4, > K) is large, then we may
hope that the resulting variance does not hinder the
gain in computational effort (see L'Ecuyer 1994).The
typical situation osberved is that the variance of the
estimator L, (A, — K )+ has a minimum for some value
of u (see below). Unfortunately we cannot solve for
the optimal u analytically.

In order to apply the change of measure method,
we define the estimator

Dy =Ly(Ay — K)4. (8)

‘We can add a control variable to this estimator, which
yields
Dy = LY{* + o(EYy - Y7) (9)

where now YJ = (G, — K); is estimated from (3)
and (3) in parallel to Y*. This means that we use
common random numbers (CRN) to try to increase
the correlation between Y and Y5 . The coefficient &
that we use is the estimated optimal one.

Finally, we consider applying a change of measure
to the controlled estimator as well, which yields:

Dy = LY + a(EY] — L,Y) (10)

where, again, the coefficient « is estimated for the
optimal variance reduction. Since this quantity is not
available analytically, we estimated it.

3.2 SIMULATION RESULTS

We show in Table 1 the results of experiments using
r = 0.05,0%2 = 0.2,S = 50,7 = 1.0 and M = 10000
replications. The efficiency of the estimators is de-
fined as in L’Ecuyer 1994, namely the inverse of the
product of the CPU time and the variance of the es-
timator. Since our simulations are rather short, all of
the experiments reported in Table 1 took the same 5
seconds of CPU time to run. We show the estimators
in order of decreasing variance (in all but one case:
when K = 30 and so the option is deep in the money).
At the bottom, we have included the estimated value
of o that minimizes the variance of Dy.

Remark Longer simulations could show differences
in CPU time, the naive being of course the fastest



r=0.0502=0.2,5 =50,T = 1.0 and M = 10,000

Estimators
Method K= 30 K= 45 K=50 K= 55 K =75
Naive || 20.46 + 0.26 | 8.45 + 0.216 | 5.80 + 0.189 | 3.83 £ 0.160 | 0.630 + 0.068
D, 20.34 £ 0.137 | 8.32 + 0.115 | 5.66 + 0.096 | 3.74 + 0.075 | 0.583 + 0.020
o} 20.31 + 0.016 | 8.28 + 0.013 | 5.64 + 0.012 | 3.72 £ 0.011 | 0.585 + 0.010
Ds 20.31 + 0.014 | 8.28 + 0.011 | 5.64 + 0.010 | 3.71 + 0.010 | 0.583 + 0.009
Dy 20.31 + 0.014 | 8.27 + 0.009 | 5.62 £ 0.008 | 3.70 £ 0.006 | 0.573 + 0.003
Variance
Method K= 30 K= 45 K=50 | K=55 K=15
Naive 176.09 121.70 92.58 66.28 12.04
D, 49.04 34.59 23.76 14.95 1.07
D, 0.64 0.42 0.36 0.33 0.25
Dy 0.48 0.28 0.25 0.24 0.23
D, 0.53 0.207 0.150 0.095 0.028 !
&t 0.998 1.05 1.07 1.10 1.20 |

Table 1: Comparison of the Methods

method, followed by Dg, D; and then D3 and Dy,
which have the same computational effort.

We obtained the same pattern of results for other
parameter values, namely that the estimators D, and
D, do better than Dy and D3, and that D4 appears
to be better than Dz. While both D3 and D4 work
better as Sy/K decreases, Dy is consistently better
than the rest of the estimators.

To simulate D3 and D4 we proceed as follows. The
initial values are B; = 0,5, A, = 0,G, = 1.

Algorithm 1: Simulation at u.
1. For 0 < i < N do:

(a) Generate Z; ~ N(0,1) and set B; = B;+Z;,
(b) Define X} = ush + Vo2h Z;,

(c) Set Sy, = Sti_ e, Au= Au+ Sy, Gu =
Gy *x S*

i

2. Calculate Ay, = Ay/N,Gy, = ¥/G.,
3. L, = exp{—("T;;ZT - (%J—)\/athN}

At the end of this loop, a single trajectory of the
process with drift u has been simulated, and D3, D3
and D, can be computed. Then this simulation is
repeated M times to obtain the estimated a and the
corresponding confidence interval as usual.

Remark: In our simulations, we have used the ac-
celerated Box-Muller method (see Ross 1997 for the
details) where trigonometric functions are not used.

At each iteration ¢ < N/2 we use two independent
seeds for our uniform variates and produce two inde-
pendent samples of N(0, 1) variables Za; 1, Za;.

In order to estimate the optimal value of u, CRNs -
were used: in steps 1(b) and 3 of Algorithm 1, sev-
eral trajectories were evluated in parallel, each cor-
responding to a different value of u (functional es-
timation). Figure 1, Figure 2 and Figure 3 show the
estimated variance of Dy, D3 and Dy using functional
estimation with CRN as described, for 10 values of u.
The solid line is for K = 30,45, the short dashed
line is for K = 50, long dashes are for K = 55 and
the longer dashes are for K = 75. For Figure 2 we
used M = 5,000 replications and it took 9 seconds
(for each value of K) with 10 values of u in the range
shown. To produce Figure 1 and Figure 3 we used
M = 10,000, which took 20 to 28 seconds, for each
value of K.

10, \
1000, o \ ,
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H ! \ s
600} 40! AN N s
H s
AN

o] : ~_ _ -
! ~ -
200: w: ~
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" Figure 1: Variance of Dy (at left is the case K = 30)

To summarize, the estimated optimal values of u
used in Table 1 are shown in Table 2, and the best
estimator is the one that uses the change of mea-
sure in both the Arithmetic Asian Option as well as
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Figure 3: Variance of Dy

in the control variable, and the corresponding gain
in variance reduction can be considerably high. The
problem with this estimator is that in order to de-
termine the optimal value of u, several preliminary
simulations must be performed for functional estima-
tion. The rest of the paper deals with this problem.

[ [ K=30 [ K=45 | K=50 | K=55 | K=75 |
D, || 025 [ 0.40 [ 050 | 0.60 | 0.80

Dy 0.07 0.07 0.07 0.07 0.07
D, 0.25 0.40 0.50 0.60 0.80

Table 2: Optimal Values u* for the Change of Mea-
sure.

4 SPEEDING UP THE SIMULATION

Knowledge of the optimal parameter u will lead to
faster estimation of 6. In the preceeding section, pilot
tests had to be performed to estimate the best value
u before performing the simulation. Since the opti-
mal v* and the gain in variance reduction are both
problem dependent, it is not clear that such a proce-
dure actually improves the efficiency with respect to
D,. Here we propose the algorithm to adapt and find
the optimal value u* as it estimates the price of the
option.

Our method consists in varying the parameter u as
the simulation progresses, in the following fashion:

Un41l = Un — 6nFn(un) (11)

where Fy,(u) is an estimator of the derivative with
respect to u of the variance of the estimator D4. Such

recursions are known as stochastic approximation, or
“Robbins-Monroe procedures” (Robbins and Monro
1951) when ¢, is a suitably decreasing sequence.

Let u be constrained to some compact interval U,
and call J(u) = Var(Dy). Call F, the g-algebra gen-
erated by {ug, Fi,...,F,_1}. we state the following
result without proof. The result follows from Fu 1990,
Kushner and Yin 1997, Kushner and Vazquez-Abad

1996.

Assumptions:

e YueU,

J{(-) is continuous in u

du
e supE[Y?] < K < o

o E[Fn(un)| 7o) . =
%J(uﬂ) + B, and S e8]} < o

Jj=n

oC o
'E €n = +00, E €2 < oo
n=1

n=1

e J(-) is convex and therefore has a unique mini-
mum uv* € U.

Theorem 1 Under the stated Assumptions, the se-
quence {un } converges strongly to the optimum: u, —
u™ a.s. If the mmimum is not unigque, the limit will
be a local minimum.

In order to use Theorem 1 it is necessary to have
an estimator of the desired derivative that satisfies
the assumptions. Infinitesimal Perturbation Analysis
(IPA) can be used, as we proceed to establish. Recall
that Dy = L, Y, and Notice first that:

D4y = D, + a(Er(}é) —L,Ys

where, as before, Y; = (Ar — K)y and Y, = (G —
K),. We shall call F;(u),i = 2,4 the IPA estimator
such that:

EF;(u) = (%Varu(Di) = 8%
The IPA estimator F; is defined, as usual(see
Glasserman 1991), as the stochastic derivative of D2:
if we fix Z;,...,ZnN, the square of the estimator is
a piecewise differentiable function of v and F; is its
derivative.
Define the following path-dependent quantities:

vo_ ((u—r)T+\/m3N>

E(D})

u 0,2



1 N
A, = = ihSE,
Ni=0

Theorem 2 The IPA estimators Fy and Fy are un-
brased and are gien by:

Fy(u) 2L2(I)Y2 + 2L2Y, Ay (12)
Fy(u) = 2L%(Y) ~ aYa){l, (Y1 — aY?)
+  Arliviso; — ¢Grliy,>01}  (13)

Proof : We shall state the proof for F; only, since
the proof for Fj is completely analogous. From (7),

O VarlLu(du = K)1] = peEILA(Au— KL
Let G(u) = L2(A, — K)2, and m € I, where I is any
compact interval of R. Then ;%G(u) is given by (12),
and is seen to be a continuous function of u. Moreover,
its absolute value is uniformly bounded (for u € U)
by a variable of the form

N
CleczBN {Aﬁ 'lS:‘ + Cg(Aﬂ)z [04 + C5€CGBN] }

i=1

(where 7 and C) to Cg are constants), which has a
finite expectation. Observing that from Taylor’s The-
orem

- =G ,
) dp (p)|p=E
where £ is between u and u + 4, we get
0 ‘ 0

from the Dominated Convergence Theorem. (]

Calculation of both IPA formulas can be done while
simulating one path with minimal extra effort: in-
deed all quantities but A7, are available at the endo
of the N readings, and this extra summation adds
a negligible computational effort. Table 3 shows the
result from simulations performed to estimate the
IPA derivatives using M = 50, 000 replications, which
took 31 seconds for each value of u.

Our first simulations used

(n+1)M

Fam) =7 3. Falk)

k=nM+1

where M independent replications were performed at
value u = u,, to obtain F;(k), D;(k),k=1,...,M,i=

2,4. Then (11) is applied using ¢, = €/n. It is
straightforward to verify the Assumptions for this
case, where 3, = 0. While we obtained convergence
to the correct optimal u, the procedure was very slow.
The reason for this is that the values of F,; are very
small: as it should be obvious from Table 3, estimat-
ing the derivative is a harder problem for the reduced
variance estimator D4 than it is estimating F,. Yet
the two estimators seem to have the same optimal
value for u, or at least very close, which happened
for other parameter values as well. We therefore ac-
celerated the procedure by driving the stochastic ap-
proximation with a convex combination of the two
derivatives, or:

| (M
Falwn) = pugr D Fa(k)
k=nM+1
1 (n+1)M
+ (1“Pn)M Z Fy(k),
k=nM+1

where p, = p§, so that lim,—. pn = 0. Theorem 1
asserts that u,) — u" a.s. still holds, but the conver-
gence is accelerated (we used p = 0.98).

Summarizing, the speed up estimation is achieved
as:

I & =
Ds= =" Dy(un)
mn:m

where Dy4(u,,) is the sample mean estimator obtained
with M replications of Algorithm 1 at value un as
F,.(uy) is estimated.

Algorithm 2: Accelerated Simulation
1. Choose an initial value u(0)
2. Forn=0,...m do:

(a) Set u = wu(n)
(b) Form=1,...,M do
i. For 0 <i < N do:
A. Generate Z; ~ N/(0,1) and set
B, = B; + Z;,
B. Define X} = ush + Vo?h Z;,
C. Set S; = Si-1eX, Ay = Ay +
Si,Gu = Gu * S,
D. Set A’ = A" +18S;.
ii. Calculate A, = A,/N,G, =
NGy, A = AA'/N,Y1,Ys, LU
iii. Update the sample means Y7,Ys, Fy
and F4
(c) Set p=pxpo, Frn=pFr+ (1 - p)F,
(d) Update up41 = un — £F,

n



Derivative Estimation via IPA
Value of u [ Var(D,) | [ Var(D,) | F,
0.2 45.32 ~175.5+ 15.7 0.21 —2.08 £0.29
0.3 32.01 —-093.4+9.2 0.16 —-1.13£0.17
0.4 25.44 -38.7+ 7.3 0.15 —-0.28 £ 0.35
0.5 23.69 3.80+8.3 0.17 0.25 £ 0.77
0.6 26.05 45.44 + 12.0 0.20 0.34 £ 0.53
0.7 32.94 94.88 + 20.2 0.22 0.36 £ 0.78
0.8 45.80 168.82+41.6 | 0.49 6.29 + 21.68

Table 3: 7 = 0.05, 0% = 0.2, 5, = 50, K = 50,T = 1.0 and M = 50,000

We show in Figure 4 a plot of typical trajecto-
ries of the values of u, vs n for our estimator, the
solid line for K = 75,¢p = 0.008, the long dashes
for K = 50,¢g = 0.001 and the short dashes for
K = 30,¢9 = 0.0001. Initial values of u were cho-
sen far from the optimum. The update intervals were
all of length M = 500, with n = 20 updates, and
the computational effort was of 6 seconds for each
simulation.

2000 4000 6000 8000 10000

Figure 4: u,, vs n for three different systems.

The variance of Ds is very close to the optimal one
in Table 1, since in all cases convergence was achieved
within the first three or four iterations of the stochas-
tic approximation.

6000 8000 10000

72000 4000

Figure 5: Values of u for K = 30 and different pg.

Figure 5 gives the results of the algorithm for
K = 30, e = 0.0005 with different values of the initial
condition.

In practice, it may be difficult to know how to
choose the paramecters. We suggest an initial guess
at u = r and proceed with the updates.

The estimated variances of Ds are shown in Ta-
ble 4, as well as those of D; and Dy for ease of com-
parison. The computational effort is also shown, in-
cluding the time required for the pilot simulations
in order to set-up the estimation of Dy. Using our
self-optimized method, we can achieve nearly optimal
variance in 6 seconds without previous knowledge of
the behaviour or preliminary tests.

5 Concluding Remarks

We have presented a Self-Optimized estimator with
Accelerated Simulation. It is based on the usual con-
trol variable estimator, but changes the measure in
the hope of decreasing the variance, which is justified
when the option is out of the money.

Dani, mon cher, recall that up to now the “best”
known accepted estimation is D, and summarize how
we can beat efficiency (considering variance and CPU
time), stress that this works better the more “in the
money” the option is. Duality with out of the money?
And well, say here whatever, that this is real nice and
we have further work, such as exploring the relation
between F3, Fy, convexity in general of the variances
w.r.t u, plus the fact that the method is general, and

~ can be applied to other derivative securities, etc. Men-

tion that it can be combined with other methods for
variance reduction such as quasi MonteCarlo, anti-
thetics, etc, as long as a change of measure is appli-
cable. Of course, we don’t optimize the new measure,
we propose a family of transoformations and optimize
a parameter u. Enfin, parle des extensions, si tu veux.



r = 0.05,0° =0.2,5 = 50,7 = 1.0 and M = 10,000

Estimators

Method K= 30 K=50 K=175

D, 20.31 + 0.016 | 5.64 + 0.012 | 0.585 £ 0.010

Dy 20.31 + 0.014 | 5.62 + 0.008 | 0.573 £ 0.003

Dy 20.31 £ 0.015 | 5.62 + 0.008 | 0.578 + 0.004

Variance CPU Time

Method K= 30 K=50 K=175 in seconds

D, 0.64 0.36 0.25 5

Dy 0.53 0.15 0.03 31

Dy 0.54 0.18 0.04 6

Table 4: Statistical Properties the Self-Optimized Estimator
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