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Abstract

In this paper, we study the expected value of a discounted penalty function at ruin of the
classical surplus process modified by the inclusion of interest on the surplus. The ‘penalty’ is
simply a function of the surplus immediately prior to ruin and the deficit at ruin. An integral
equation for the expected value is derived, while the exact solution is given when the initial
surplus is zero. Dickson’s (1992) formulae for the distribution of the surplus immediately

prior to ruin in the classical surplus process are generalised to our modified surplus process.

Keywords: ruin penalty function, surplus prior to ruin, deficit at ruin, Laplace transform,

Volterra equation, compound Poisson process, force of interest.

1 Introduction

Consider a compound Poisson risk model. Assume that 7T;, = Y .7_; Yk is the time of the n-th
claim and X, is the amount of the n-th claim. Suppose that {X,,n > 1} and {Y,,n > 1}
are two independent sequences of i.i.d. positive random variables, where {X,,, n > 1} have
common distribution F(z) = Pr{X; < z} with mean p > 0, and {Y;,, n > 1} have common
exponential distribution Pr{Y; < z} = 1 — exp{—Az}, z > 0, where A > 0.

The number of claims up to time ¢ is denoted by N(t) = sup{n : T,, < t}. The claim
number process is a Poisson process with rate A, and the aggregate claim amount up to time
tis

N()

Zt)=> X,.
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Assume that the insurer receives interest on its surplus at a constant force é per unit time.
Let Us(t) denote the surplus at time ¢. Then

t

Us(t) = ue® + 58 — / S g7 (z) (1.1)
0

where u is the initial surplus and ¢ = (14 6)Ap is the rate of premium income per unit time,

where 6 > 0 is the premium loading factor.

Let the time of ruin be

{ inf{t : Us(t) < 0}

oo if Us(t) > 0 for all £ > 0.

Denote by 1s(u) the ruin probability for the surplus process given by equation (1.1). Then
Ys(u) = Pr{Ts < oo} = Pr{U;>0 (Us(t) < 0)}.

The following notation applies throughout this paper:
d

f(z) = el O

R = 1-F(z)= % [ Py

- A 1
Polw) = 1—9s(w); P() = doolu); $(0) =L =17
U(Ty) = the surplus immediately prior to ruin;
|[U(Ts)] = the deficit at ruin;

Fyu,z) = PHU(TY) <z, Ts < oo} flu,z) = %Fg(u,m);

Hs(u,z,y) = Pr{U(Ty) <z, |U(Ts)| <y, Ts < oo};
2
h&(u7x7y) = 6$ayH5(u7$ay)

We consider the expected value of a discounted function of the surplus immediately prior

to ruin and the deficit at ruin when ruin occurs as a function of the initial surplus u, namely,
Dsa(u) = E(w(U(Ty), [U(Ts)l) e I(T; < o0))

where I(A) is the indicator function of a set A, w is a non-negative function, and « is a

non-negative valued parameter. We can interpret exp{—aTs} as the ‘discounting factor’.
The function ®s.0(u) provides a unified means of studying the joint distribution of the

surplus immediately prior to ruin and the deficit at ruin. The distributions of these quanti-

ties, both joint and marginal, have been studied by many authors including Dickson (1992),
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Dufresne and Gerber (1988), Gerber et al (1987), Gerber and Shiu (1997, 1998) and Lin
and Willmot (1999). In particular, Gerber and Shiu (1998) studied the function ®s_¢ o (u)
in detail, but they did not consider the case when § > 0.

In this paper, we will follow ideas in Sundt and Teugels (1995). In particular, we will
consider the function ®s4-0(u) = ®s(u). We will also derive an integral equation for ®;,(u)
and find the Laplace transform of an auxiliary function of ®s,(u). We then find an exact
solution for ®5(0) and generalise Dickson’s (1992) formulae for the distribution of the surplus
prior to ruin when 6 = 0 to the situation when 6 > 0. Applications of the results will be

illustrated by a variety of examples.

2 Integral equations

Using similar arguments to Gerber and Shiu (1998) and Sundt and Teugels (1995), we
condition on the time, ¢, and on the amount, z, of the first claim. We note that if z <

ue® + ¢35 I) then ruin does not occur, but if z > uelt + ¢35y I) then ruin occurs. Thus,

Bso(u) = / A / E((U(T;), |U(Ts))e=T (T < 00)| X, = z, Y = t)dF(z)dt
6t+c—(5)

/ /\e_(’\+°‘)t/0 1, a(ue‘st—l—c’(l&) z)dF(x)dt

—l—/ )\e_(’\“")t/ w(ue® + ¢3¥, z — ue® — — 5y NdF(z)dt
ue‘”+cs(6)

t]

Substituting y = ue’ + c§%f) = ue® 4 c(e®® — 1)/6 in the above equation, we have

Dsq(u) = )\(6u+c)%—a /:o ((5y+c)_ﬁ«9£_1 /Oy<I>5,a(y——z)dF(:c)dy
+A (5u+c)4\j5£ /uoo ((Sy-i-c)_%ﬂ_1 /yoow(y, z — y)dF(z)dy
= AGu+9F [Ty + o F (/ 50y — 2)dF(z )+A(y)) dy (2.1)

u

where

At) = /t ~ w(t, s — t)dF(s).

Differenﬁiating equation (2.1) with respect to u, we get

d A4
d_uq)é’a(u) ¢+ bu

(I)g’a (u)

— 5u ([ @sau - 2)aF (@) + At ). @2
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Replacing u by ¢ in equation (2.2) and re-arranging, we get for any ¢ > 0,

(+ @) ialt) = (e 61) S Bsalt) + ) [ Balt — $)dF(s) + AAG). (2.3

dt
Thus, integrating equation (2.3) from 0 to u, then performing integration by parts, we get,
(A +a) /O * B o (t)dt
= /Ou(c + 6t)dPs o (t) + A/Ou /0: Qs o(t — s)dF(s)dt + A /Ou A(t)dt
= (c4 6u)®sa(u) — ®sq(0) — 5/“%,1 (£)dt + ,\/u /u Bs.o(t — s)dtdF(s) + ,\/"A (t)dt
= (c+ 6u)Bsa(u) — c@sa(0) 5/ 5.0 (1) dt+)\/ ( "B )dy> dF (s -I-)\/
= (c+ 6u)Psa(u) — cBsa(0) — 6 /0 Bj0(t)dt + X /0 (8)®sa(u — s)ds + A /0 (t)dt,

which implies that

(c + 6u)®sa(u) = c®sa(0) )\/ dt+/ (6 + @ + AF(u — £))®sa(t)dt

or

_ ¢®54(0) Ao u§+a+ AF(u—t)
Dpalu) = 22T - /0 A(t)dt + /0 i 5 o (t)dt

C@ga(()) A u w
e\l dt / o, 1) 5.0 (2)dt, 2.4
¢+ ou c+5u/o Alt)dt + 0 o a(u: 1) Psalt) (24)

where

6+a+)\F(u—t)

Ka(u,t) = c+o6u

In particular, recalling that ®5(u) = ®s0=0(u), we get
(c+ 6u)®s(u) = c®s(0) — A /0 " Ab)dt + /0 “(64 AF(u — 1))®s(2)dt, (2.5)

for any v > 0, and

. C‘I’g(O) A u u
Ps(u) = Tl — /0 A(t)dt + /0 ks (u, 1) ®s(t)dt, (2.6)
where
_ 6+ AF(u—t)
k:g(u,t) = kg,a=o(u,t) = ct 60 .



Both equations (2.4) and (2.6) are types of the following Volterra integral equation

o(z) = U(z) + /O " k(z, s)p(s)ds. 2.7)

It is well known (see, for example, Mikhlin(1957)) that if [ is absolutely integrable and the
kernel k is continuous, then for any z > 0, the unique solution for ¢(z) has the following

representation

o(z) = l(z) + /Ow K(z, s)l(s)ds, (2.8)

where
K(z,s) = i km(z,8), z>s2>0, (2.9)
m=1
is called the resolvent of equation (2.7), and
kn(z,s) = /: k(z,tYkm_1(t,s)dt, m=2,3,..., z>s5>0,

with ky(z, s) = k(z, s).
Further, ¢(z) can be approximated recursively by Picard’s sequence (see Mikhlin(1957))
defined by

on(z) = l(z) + /Om Yn-1(s)l(s)ds, n =1,2,...

with po(z) = U(z).

Therefore, at least in principle, if we can find ®5,(0), we can find the form of the solution
for ®5,(u) and can approximate ®;,(u) recursively. Hence it is important to be able to find
®5,,(0). Gerber and Shiu (1998) have obtained ®5_,(0) using the technique of probability
measure transform. However, we will find ®5(0) = ®s,-0(0) by using Laplace transforms
in the next section. In what follows, unless we state otherwise, the term Laplace transform

refers to a Stieltjes transform.

3 The exact solution for $4(0)

We define an auxiliary function of ®4(u) as

2t - 0= 24

(3.1)

)



Then Z5(0) = 0. Also, if the claim size distribution F is sufficiently regular, then ®s(u) — 0
as u — 0o. In this case, lim, ., Zs(u) = 1 and we can find the Laplace transform of Zj,

namely,

| vs(3) =/0oo e **dZs(x),

with 5(0) = 1. Therefore, we assume that ®s(u) — 0 as u — co. In particular, a sufficient
condition for this assumption is that w is bounded. In fact, if w < L for some L > 0 and F

has a finite second moment, then

(c+ 6u)Ps(u) < L(c+ bu)EI(Ts < 00)
= L(cys(u) + buths(v)) < L(cyp(u) + bupp(u)) — 0

as u — oo. Thus, letting u — 00 in equation (2.5), we get

®5(0) = % /0 Ayt =2 / ~ ®s(1)dt. (3.2)

CcJo

Hence, ®5(0) can also be obtained by finding the standard Laplace transform of ®5, namely
Io° et D4 (t)dt.
Now, equation (3.1) implies that

@5(u) = @5(0) — 5(0) Zs(u). (3-3)

Inserting equation (3.3) into equation (2.5), we get

c<1>5(0) — ¢®5(0) Zs(u) + 6®s(0)u — 6@5(0)uZ(u)
= c®5(0) — A / t)dt + 6 / (®5(0) — ®5(0)Zs(t))dt

+)\/0 (u — £)(@5(0) — ®5(0)Zs(2))dt,

which implies that

)\mA

@6(0)14 1(u) = AuFy(u) + ApZs * Fi(u) (3.4)

(c + 6u) Zs(u) = 6 /0 Zs(t)dt +
where
1 u 00
A =—/Atdt, =/ £)dt,
(W= ["and,  ma= [ 4w
and Zs x F} is the Stieltjes convolution of Zs and F.
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Thus, differentiating both sides of equation (3.4), we have

(c+ bu)dZs(u) + 6Zs(u) du = 6 Zs(u) du + (;mZA) dAy(u) — ApdFi(u) + ApdZs x Fy(u),
which gives
/\mA
(c+ bu)dZs(u) = dA;(u) — ApdFy(u) + ApdZs x Fy(u).

@5(0)
Taking Laplace transforms of both sides of equation (3.5) yields

d AmA
cs(s) =6 —-s(s) = 2,00) B(s) — A d(s) + A p(s) 7e(s),

where ¢ and ( are the Laplace transforms of F) and A; respectively, namely,

&(s) = /Ooo e dF(z) = %/Ooo e F(z)dx

or, if F'is a continuous distribution,

| e playdn =1 usg(s)

and

B(s) = /000 e *dA,(z) = m—lA- /Ooo e A(z)dz.

Equation (3.6) is equivalent to

=0 E%%(s) + Ps(s) v5(s) = Qs(s)

where
Ps(s) = c— Au¢(s)
and
)\mA
Qé(s) (1)6( ) (8) Alj' ¢(S)

When 6 > 0, we note that

% (75(3) exp (—%/Os P&(t)dt)) = —%Q«s( )eXP( 5/ P&(t)dt)

(3.8)



and using the arguments of Sundt and Teugels (1995), we get

vs(s) exp (—%— /Os Pg(t)dt) = % /Soo Qs(t) exp (——% /Ot P5(z)dz) dt
Hence, 75(0) = 1 gives
6 = /Ooo Qs(t) exp (—% /t Ps(z dz) dt

= %/Ooo B(t) exp( / Ps( z)dz) dt — )\,u/ o(t) exp (——/ Ps(z dz) dt

or, equivalently,

X J3° B(t) exp (=3 (ct — A fj ¢(s)ds) ) dt

85(0) =
O s e (=5 (et~ A fg 9(s)ds)) dt
_ i\:_”:ﬁ /0 ~ B(62) exp (——cz + /0 ) ¢(5s)ds> dz (3.9)

where equation (3.9) follows from the substitution ¢ = 6z, and we define

ks = 1+ /\u/ #(6z) exp ( cz + )\,u/ 6s)ds) dz
= c/ exp (—-cz + )\,u/ 6s)ds> dz (3.10)
0 0

using integration by parts.
Note that ks does not depend on the choice of A or w, but 8 does. We will illustrate the
applications of equations (2.6) and (3.9) by examples.

Similarly, if we define an auxiliary function of ®s4,(u) as

(I)g,a (0) bl q’é,a (u)

Zeal) = T 5,00)

and denote the Laplace transform of Zs, by

o0
Yal$) = [ e dZsa(c),

we get a differential equation for vs4(s), namely

C260(5) = 6 - 780(5) = @252 4 A B(5) — & = 21 g(6) + Mu(5) 260().

Unfortunately, we are unable to determine s 4(0) using the methods of this section. It
seems that the method of Gerber and Shiu (1998) does not apply either.
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Example 3.1 Let w(zy,z2) = 1. Then ®5(u) = ¥s(u), A(t) = F(t), ma = p, and B(s) =
#(s), and equation (2.6) gives

_cs(0)  Ap
¢6(u)—c+6u ot 6u Fi(u +/ ks(u,t)ys(t)dt (3.11)
Equivalently, as 1s(u) = 1 — ¢s(u),
¥s(u) Cz_b:(;) +/ ks(u (3.12)

which is equation (2) of Sundt and Teugels (1995). In addition, equations (3.9) and (3.10)
give
R§ — 1

Ks

Ys(0) = M Ooo $(6z) exp (—cz + Ap /Oz d)(és)ds) dz =

Ks
which is equivalent to equation (14) of Sundt and Teugels (1995). As 1/ks = 1s(0), the

general expression for ®5(0) in (3.9) becomes

&5(0) = Am4%s(0) /0 ” B(62) exp (—cz Yy /0 ; ¢(53)ds) dz. (3.13)
Example 3.2 Let w(z,22) = I(z; < z)I{z2 <y). Then ®5(u) = Hs(u,z,y) and

Alt) = /t T w(t,s — t)dF(s) = / Y I(t < 2)I(s —t < y)dF(s)
= I(t<72) / dF(s) = I(t < z)(F(t) — F(t +y)).

Thus, equation (2.6) gives

Hy(wz,y) = SO20) A ™ (R - By + o) ar

c+ bu ¢+ bu Jo
+ [ ks(u, ) Ho(t, 3, y)dt
0

cHs(0,z,y)  Ap
c+ bu c+ bu

+ /0 " ks(u, t) Hy(t, @, y)dt. (3.14)

[Fi(uAz) + Fi(y) — Fi(u Az +y)]

In addition,

BO) = o [ Als)ds = = [ e (P(s) — Fly +9))ds

ma

Hence, equation (3 9) gives

5(0,z,y) = p / / e %% (F(s) — F(y + s))ds exp( cz + )\,u/ @(6s) ds) dz. (3.15)

Thus, equations (3.14) and (3.15) give the main results of Yang and Zhang (2001a). Similarly,
letting x — oo in these equations we get equations (4) and (12) of Yang and Zhang (2001b).
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Example 3.3 For r > 0, let w(z1,z2) = e”™2. Then

®s(u) = E(e VI [Ty < 00)) = Wi(u, ),
the Laplace transform of the deficit at ruin when ruin occurs. Thus, when F' is a continuous
distribution,

Alt) = /toow(t,x—t)dF(ac)= /ooe_r(’”"t)f(a:)d:c,

t
and by equations (3.8) and (3.7), we have

Bt) = o [Te [T f(a)dody
o T fo's) —-rz __ ,—tx
= mLA/O e‘"f(:c)/o e~ Wdyde = %;/0 f(a:)—-————e t——: dz
_ (J‘_) tg(t) —ré(r)
ma t—r '

Thus, using equation (3.13) we get

Ws(0,7) = A\uths(0) /Ooo 62¢(6z) = r¢(r) exp (—cz + Ap /Oz ¢(63)ds> dz.

o0z —r
Therefore, given that Us(0) = 0 and ruin occurs, if the (n + 1)-th moment of F exists, we

get the n-th moment of the deficit at ruin, namely,

BV Ts < 00) = S (55901 o)

5(0)

% /0°° ( Eci’% 62¢>(§zz)——:¢(r) |T=O) exp (_cz npw /0 ’ ¢(6s)ds> dz.

In particular, when n = 1 we have

_ Aus(0) /°° 1 - ¢(62) ( / )
E(JU(Ts)||Ts < 00) = 56(0) Jo 5, oxp|-cz + Ap A d(6s)ds ) dz.
Similarly, we can let w(zy, zy) = e "(®1+%2) to find the Laplace transform of U(T~) + |U(T)|,

the amount of the claim causing ruin when ruin occurs, and hence its moments.

4 The distribution of the surplus prior to ruin

Throughout this section we assume that F' is a continuous distribution with density f. From

equation (3.15), we have

2 foe] z
8ij H5(0,z,y) = % flz+y) /0 exp{—(c+62)z + A /O $(6s)ds}dz, (4.1)

hs(0,z,y) =

10



and

F5(0,2) = hm n Hs(0,z,y) / / ’6SZF(s)dsexp( cz + )\,u/ d(6s) ds) dz
which gives
fs(0,z) = djz-Fg(O,a:) a:)/ exp( c+6x)z + /\,u/ #(6s) ds) (4.2)
Thus, equations (4.2) and (4.1) yield
_fz+y)
hs(0,2,y) = F o) f6(0, ). (4.3)

Equation (4.3) is a special case of a more general result, namely,

flz+y)

hs(u,z,y) = “F@) fs(u, z). (4.4)

Equation (4.4) is interesting because it shows that the joint distribution of the surplus
immediately prior to ruin and the deficit at ruin is determined by the individual claim
amount distribution and the distribution of the surplus immediately prior to ruin. The
intuition behind this is given in the proof of equation (2.40) of Gerber and Shiu (1998).
We also note that the proof of Gerber and Shiu’s equation still holds for equation (4.4).
However, we will give an alternative analytical proof of equation (4.4) using equations for
hs(u,z,y) and fs(u,x).

Due to equation (4.4), the study of the distribution of the surplus immediately prior to
ruin is important. Dickson (1992) has found the following formulae for fs_o(u,z), which

state that when u < z,

$(u)

fonolu,) = foo(0,2) =] (@5)
and when u > z,
Jo—o(u,z) = f«5=0(0,$)¢(u1—_x3/)(_0;p(w- (4.6)

Basically, formulae (4.5) and (4.6) show that the distribution of the surplus immediately prior
to ruin is a function of the ruin probability 1. Dickson (1992) also derived the corresponding
formulae for Fs—o(u,x). Gerber and Shiu (1998) have generalised Dickson’s formulae under
the definition of ruin probability given in their paper. Here we investigate whether Dickson’s

formulae hold when § > 0. We will discuss this issue later in this section.
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First, differentiating equation (3.14) with respect to =z and y successively, we get an
integral equation for hs(u,z,y).

For any u > 0,

chs(0,2,y)  M(u>z)f(z+y) +/

o 6u "y (u,t)hs(t, z,y)dt.  (4.7)

hs(u, z,y)

Letting y — oo in equation (3.14), we get an integral equation for Fs(u,z). For any u > 0,

cFs(0,z)  Ap 7
c+éu  c+obu

Fy(u, ) = (A )+ /0 * ksl t) Fa(t, 2)dt. (4.8)

Differentiating equation (4.8) with respect to z, we get an integral equation for fs(u,z). For
any u > 0,

cfs(0,z)  AM(u>=z)
c+ bu ¢+ bu

fs(u, 7) +/ ks(u, ) fs(t, 2)dt

Now let Ks(z, s) be the resolvent of the Volterra equation (2.6), namely, for z > s > 0,

= Z km,,s(fl) .S‘)
m=1

where
kms(,8) = / " ks(z, Okmors(t, S)dt, m=2,3,...,
with =
kis(z,s) = ks(z,s) = o+ i\i(;;x— S).
Then by equations (3.12) and (2.8), we know that
o) = SO o) [ Kbty

implying that

[ Kty B L

c+6t  cys(0) c+bu’ (4.9)

In particular, when 6 = 0

ko(z,s) = ks—o(z, s) = éF_’(:I: — ).
Thus, for z > s >0
Ko(z,s) = Ks—o(z,s) = D> _(Mc)"F*™(z — s) = Ko(z — s).
n=1

12



In fact, 0Ky(u)/(1 + ) is the density function of the compound geometric distribution

function
= 0 1 " *71
21406 <1+9) Fu),

which is the well-known Beckman convolution formula for ¥ (u).

Hence, equation (4.9) implies that for any u > 0,

u _ oY) L 9(0) -y
Therefore, for any u >z > 0,
/0 " Ko(u — t)dt = L ’: Koly)dy = ’”(“1“_"’3!)(_0;!’ () (4.10)

In addition, by equations (3.11), (2.8), and (4.9), we know that 1s(u) has the following

representation of solution

olw) = SO M gy g [ w1 (0%(0) Au F(t)) dt

c+oéu c+ bu +6t  c+ 6t
i

BB 3 e [ S
and hence

o [ gy g = PO _ ) - S ) (@11)
We can now give equations satisfied by Fs(u,x).
Theorem 4.1 When u < z,

Fu,) = i) = Tt} (4s(0) = Fil0,). (4.12)

When v > z,

Fi(w2) = (F(0,2) - 115 R()) 1—:3—((“0; o [ B (70 — Rear. (413
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Proof. By equations (4.8), (2.8), and (4.9), we have

Fg(u, .’1:)

cFs(0,z)  Au P
c+ éu c+oéu

cFs(0,z)  Ap
t
¢+ 6t +6tF1( M)
u K,s(’u,,t)
c+ 6t

(uAz) +/0uK5(u,t) [
cF5(0,2)

Ap
= F jo /
c+ bu c—l—é 1(uAz)+cFy(0,2) 0

Y /Ou I?(“ ) b A )t
(uAz)+cFs(0,2) [

v Ks(u,t)
—) / el St
N A Fi(t Az)dt

- Fﬁ(o,x)’giog Ci’; Fl(u/\:r:)—)\,ufou%ﬂ(t/\x)dt.

Thus, when u < , by equations (4.14) and (4.11), we have,
Fs(u,z) = F5(0,z ﬁiﬁﬁ - i‘;uFl (u) = A /O ’ %Fl(t)dt
-

— () P (0.
= Ys(w) = 75 (¥e(0) = Fu(0,2)),

which implies that equation (4.12) holds.
On the other hand, when u > z, by equations (4.14) and (4.9), we have,
z K&(’u t)

dt

ps(u) 1 ]
cs(0) ¢+ bu

Ap

= B, ) c+ou

— s(u) —

= F(0,2)

Fi(wa) = B )’”‘5(“3 2R - [

55(0
= F(0,)Y 205 (o) [ D

—F1(x)[ p [ B g /(f—-——f?i“(;;)dt]

_ Fa(o,xﬂ?"(“) Mg @) - /\ﬂF(r)[%() L ]

1/16(0) c+6 ps(0) ¢+ bu
- (F‘S(O’m)ﬁioF (@ )1—% o ] I?J(rua?(F - B®)dt,

14

Fi(u)

’ uK&('U,,t)
SO EPY /z L P (a)dt



which gives equation (4.13).
Therefore, differentiating the equations for Fs(u,z) in Theorem 4.1 with respect to z, we

get the following generalisation of Dickson’s formulae when § > 0.

Theorem 4.2 When u < z,

f6(ua1") = i_::i% fg(O,JJ).
When u > z,
folu,z) = [fé(o z) - % (z )} F%+)\F(x) [ I—ié%:—)dt. (4.15)

Remark 4.1 When 6 = 0, we have f5(0,z) = 2F(z) and Ks(u,t) = Ko(u —t). Thus, by
equation (4.10), we find for u > z,
K5 (u, t ¢(U —z) — P(u)
Ko(u —t)d :
/0 orotC / o(u (1 - 9(0))
Therefore Theorem 4.2 generalises Dickson’s formulae (4.5) and (4.6). However, we point
out that for u > z, we cannot express [5(Ks(u,t)/(c+ 6t))dt in terms of ¥s(u). In this sense,

Dickson’s formula holds when 6§ > 0 only when 2 > w. Dickson interpreted his formulae

using dual events, but the duality argument does not hold when § > 0.

Next, we give an analytical proof of equation (4.4) based on the representation of solution
for hs(u,z,y) and Theorem 4.2.

Theorem 4.3 For any u > 0,

flz+y)

F(z)
Proof. By equations (4.7), (2.8) and (4.9), we have

hs(u, z,y) fs(u, ).

hs(u, z,y)
chs(0, z, Mu>zx u c .z, z
= 2(2 6uy) - c(+;u )f(”y”/o K‘S(“’t)[ hé(?réty) B Mc(t:& )f(“y)] dt
_ chs(0,z,y)  M(u>z) Ys(u) 1
T c+bu c+ bu f(z+y)+6h5(0xy)[¢5() c+6u]
—Af(z+y) A —(}-6:) (t > z)dt
_ Ps(u)  M(u> z) Ks(u,t)
= h,s(O,a:,y)d-)ﬁ(O) T n flz+y)—Af m+y)/ P I(t>x)dt. (4.16)
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Thus, when u < z, by equations (4.16), (4.3), and Theorem 4.2, we have

_ @@ _ oo @ty delw) . fl@ty)
Plw ) = ROz = DTG G T )
When u > z, by equations (4.16), (4.9), and (4.15), we have
hs(u,z,y) = hs(0,, y)gigi c—:\é flz+y) - Af :v+y)/ K6+u5z dt
= hs0,) P — 2@ y) - Afte+y) [
) [
= 0,0 P - A pa ) - M) [0 -
+Af(z+7) /0 ———Kéj_u(’s:)dt
A s(u) > Ka(u,t)
= [0 = 250+ 0)| e asae) [ EE
_ A — ts(u)
= (h&(O,-T,y) - Zf(a" + y)) 1— ’(,b&(O)
L o) - (100 - 370)) T4l
_ f=+y) .z . Flet+y) oo ) L= ¥s(u)
= LD w4 (0,9 - L p0,0)) 14
= f(x+y)f6( z)

F(z)

which completes the proof of Theorem 4.3.

In general, we can express ®;s as a function of ¥5 and K as follows.

Theorem 4.4 For any u > 0,

dy(u) = (<1>5(0)—%/0"A(s)d> 1_% +A/ (t)/ K(u d dt.  (4.17)
Proof. By equations (2.5) and (2.8), and (4.9) we have
b4(u)
_ C‘I)5(O) A u U Cq)g(()) A t
T ctbu c+6u/0 A(S)dH/o Ka(u, 1) <c+6t - c+(5t/0 A(s)ds> at
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= c®(0) A /u A(S)ds+c<1>5(0)/ Hslwt) t) /\/()u@,—t)/ot A(s)dsdt

c+ébu c+déulo c+(5t c+ 6t

_ ¢®4(0) A “ Vs(u) 1 v Kg(u,t) [t
= c—:éu — c+6u/ A(s)ds-i-c(I)s(O)( cBs(0) c+5u) —,\/0 W/o A(s)dsdt

A K5ut)
s)ds — / dsdt
c+5u/ A c+ 6t Jo Als)dsd

C—:\(Su/ (S)ds——)\/o AA(s)dsd(At%%ds>

)
)
)
)
_ ) A
N () 0) c+6u/ A(s)ds
(s)d
)
0)
A(

U

- %0%E

0

Bl
ol
= 2,(0)% E“
Bl
i

= 3,(0)% E“ - 3&1 / A(s)ds

((/ )ds (c%(:;) c+5u> / )£K“;s)ddt)
= (@) -2 [ A st

0o c+6s
which completes the proof of Theorem 4.4.

———=dsdt,

In particular, when é = 0, we can obtain an expression for ® = ®5_, the expected value

of the penalty function in the classical risk model, as a function of 9 as follows.

Corollary 4.1 For any u > 0,

O(u) = %(/uoo A(s)ds) 1

Yu) A e (u—t) —Plu)
0 +Z/0 ADS G e (4a8)

Proof. By equations (4.17), (3.2), and (4.10), we have

o(u) = (@(0) —%/OuA( )ds ) w(o / /Ot Ko(u — s)dsdt
= (S A= [ s 75— AT e

which gives equation (4.18).

Example 4.1 For r > 0, let w(z;, ;) = e "®+22), Then
®(u) = E(e"VIDHUDD [(T < 00)) = D(u,7),

17



the Laplace transform of the amount of the claim causing ruin when ruin occurs, where T

is the time of ruin when 6 = 0. Then

Alt) = /toow(t,x—t)dF(ac)z /tooe‘”dF(a:)

and Corollary 4.1 gives

Dlu ( / / e~ dF a:)dt) = EO; / < /tooe‘”dF(a:)) ¢(u1_—t1b?0;b(U)dt'

Thus, given that ruin occurs, if the (n + 1)-th moment of F' exists, we get the n-th moment

of the claim causing ruin, namely,

Y(u) \dr®
B cd})(\u) /uoo /too a"dF(c)dt 1 :¢ ) c1/1(u / / 2"dF(z ¢(u1_—t 1#;0;&(“) at.

Corollary 4.1 is a very important result because we can use it to obtain many well known

B(UT™) + U@ |T < o0) = T (i“ibm,rnmo)

results from the literature. These include expressions for the ruin probability 1, for the joint
and marginal (defective) distributions of the surplus prior to ruin and the deficit at ruin,
and for moments of these marginal distributions. For example, we can use Corollary 4.1 to
obtain formula (4.5) of Lin and Willmot (2000) for the moments of the deficit at ruin, given
that ruin occurs.

Finally, we can apply the methods of this section to the expected value of the discounted
penalty function of Gerber and Shiu (1998). We will derive a formula similar to that in

Corollary 4.1 in the next section.

5 GGerber and Shiu’s discounted penalty function re-
visited
Gerber and Shiu (1998) introduced the function
$a(u) = Psg,a(u) = E(wU(T7), [UT)|)e " I(T < 0)),

where 7' is as defined in Example 4.1. Through this function we can study the joint distri-
bution of surplus prior to ruin, the deficit at ruin and the time of ruin. They defined the

following ruin function:
T, (u) = E(e TV D [T < o))
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where p is the unique non-negative root of Lundberg’s fundamental equation for the classical

risk model, i.e.

-a+C§+)\(/Oo°e_§"’f(x)d:v— 1) =0.

They showed that ¢,(u) and ¥, (u) satisfy the following integral equations:

¢alu) = h(w) + [ dala)g(u—2)ds

and
To(u) = /oo e—p(m—u)g(x)dm—l-/ou Uo(z)g(u — z)dz (5.1)
where
A [ o)
h(z) = = / e~Pt=2) A(t)dt
and
A [ g=pli-2)
g@) =2 [ eI (et

They also considered the following ruin function:
U, (u) = e’ — Uy (u). (5.2)

It is easy to verify from equations (5.1) and (5.2) that ¥, (u) satisfies the following integral

equation:

U, (u) = ¥, (0) + /Ou Uo(z)g(u — z)dz
where

Ual0) =1 —-T,(0)=1— /Ooo e P g(z)dx.
Thus, letting

Kolw) = 367 (@),
we have‘ by equations (2.7) to (2.9)
T (u) = €T, (0) + T (0) /0 " e K o(u — a)dz, (5.3)
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which is equation (4.12) of Gerber and Shiu (1997), an equation they obtained using Laplace
transforms.

Equation (5.3) implies that
u \T;a
Ko (u —t)eftdt = Talw)
0

or, equivalently,

e"’“\fla_(u) —¥,(0)
¥,(0)

Thus, using arguments similar to those in the previous section, we can easily obtain an

/" K. (y)e Pdy =
0

expression for ¢,(u) as follows.

Theorem 5.1 For any u > 0,

Ao e’ —Wo(u) A [ U, (u—t) — e PW,(u)
Balw) = = / O O /O A(t) ) dt.

Proof. We have by equations (2.7) to (2.9)
#aw) = h(w)+ [ Ko@)h(u—2)ds

— hu) + /0 " e h(u—z)d ( /0 ’ e_”tKa(t)dt)

= M) RO /ou e Ka(t)dt - % /ou e Alu — ) /0m e P Ko(t)dtdz
= h(u) + h(0) To(u) — e”Wa(0) A /Ou Al — ) T, (z) — epx\I,a(O)d

¥, (0) c ¥, (0)

_ e, (0) — Up(u) A fu eP* U, (0) — V()

= hw) +hO— _Z/o Al =) P

- % /u ” et At)dt + (% /0 "’ e"’tA(t)dt-i—% /u ~ e‘PtA(t)dt) e"“\I;aiozp:(gp)a(u)

A ope PO (0) — U, (u—t)
_2 / Alt i ) dt
_ . et — U, (u) u Uo(u—1t) — e PV, (u)
- —/ Ay —g = +C/0 At) ) dt.

The above result gives an expression for ¢,(u) as a function of the ruin probability
W, (u) defined by Gerber and Shiu (1998). In fact, Corollary 4.1 is a special case of this
result when o = 0. Also, Theorem 5.1 of Lin and Willmot (1999) can be obtained by taking
w(xy,z2) = I(z1 < z)I(z2 < y) in the above result.
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6 Concluding remarks

We have derived the following: an integral equation for ®s,(u); the Laplace transform of
an auxiliary function of ®4(u); an exact expression for ®5(0); and relationships between
ruin functions and the ultimate ruin probability. We have also generalised Dickson’s (1992)
formulae from the case when § = 0 to the case when § > 0. Ruin functions are very
complicated when 6 > 0. Although we have discussed some properties of ruin functions
when 6 > 0 we have been unable to find many explicit results. Further research in ruin
theory when 6 > 0 is clearly required. For example, it seems that we cannot apply both
the probability measure transform technique of Gerber and Shiu (1998) and the Laplace
transform technique of Sundt and Teugels (1995) to determine an expression for ®s,(0)

when 6 > 0 and a > 0. We leave this as an open question.

References

[1] Dickson, D. C. M. (1992) On the distribution of the surplus prior to ruin. Insurance:
Math. Econom. 11, 191-207.

[2] Dufresne, F. and Gerber, H.U. (1988) The surpluses immediately before and at ruin,

and the amount of the claim causing ruin. Insurance: Math. Econom. 7, 193-199.

[3] Gerber, H.U., Goovaerts, M.J. and Kaas, R. (1987) On the probability and severity of
ruin. Astin Bulletin 17, 151-163.

[4] Gerber, H.U. and Shiu, E.S.W. (1997) The joint distribution of the time of ruin, the
surplus immediately before ruin, and the deficit at ruin. Insurance: Math. Econom. 21,
129-137.

[5] Gerber, H.U. and Shiu, E.S.W. (1998) On the time value of ruin. North American
Actuarial Journal 2: 48-78.

[6] Lin, X. and Willmot, G.E. (1999) Analysis of a defective renewal equation arising in
ruin theory. Insurance: Math. Econom. 25, 63-84.

[7] Lin, X. and Willmot, G.E. (2000) The moments of the time of ruin, the surplus before

ruin, and the deficit at ruin. Insurance: Math. Econom. 27, 19-44.

21



[8] Mikhlin, S.G. (1957) Integral Equations. Pergamon Press, London.

[9] Sundt, B. and Teugels, J. L. (1995) Ruin estimates under interest force. Insurance:
Math. Econom. 16, 7-22.

[10] Yang, H. and Zhang, L. (2001a) The joint distribution of surplus immediately before
ruin and the deficit at ruin under interest force. Research Reports, No. 288, Department

of Statistics and Actuarial Science, The University of Hong Kong.

[11] Yang, H. and Zhang, L. (2001b) On the distribution of the surplus immediately after

ruin under interest force. Insurance: Math. Econom. 29, 247-256.

22



No.

10

11

12

13

14

Date

MAR 1993

APR 1993

APR 1993

AUG 1993

SEP 1993

SEP 1993

OCT 1993

JAN 1994

MAR 1994

FEB 1994

JUNE 1994

JUNE 1994

JUNE 1994

SEPT 1994

RESEARCH PAPER SERIES

Subject

AUSTRALIAN SUPERANNUATION:
THE FACTS, THE FICTION, THE FUTURE

AN EXPONENTIAL BOUND FOR RUIN
PROBABILITIES

SOME COMMENTS ON THE COMPOUND
BINOMIAL MODEL

RUIN PROBLEMS AND DUAL EVENTS

CONTEMPORARY ISSUES IN AUSTRALIAN
SUPERANNUATION -
A CONFERENCE SUMMARY

AN ANALYSIS OF THE EQUITY INVESTMENTS
OF AUSTRALIAN SUPERANNUATION FUNDS

A CRITIQUE OF DEFINED CONTRIBUTION USING
A SIMULATION APPROACH

REINSURANCE AND RUIN

LIFETIME INSURANCE, TAXATION, EXPENDITURE
AND SUPERANNUATION (LITES):
A LIFE-CYCLE SIMULATION MODEL

SUPERANNUATION FUNDS AND THE
PROVISION OF DEVELOPMENT/VENTURE
CAPITAL:

THE PERFECT MATCH? YES OR NO

RUIN PROBLEMS: SIMULATION OR
CALCULATION?

THE RELATIONSHIP BETWEEN THE AGE PENSION
AND SUPERANNUATION BENEFITS,
PARTICULARLY FOR WOMEN

THE COST AND EQUITY IMPLICATIONS OF
THE INSTITUTE OF ACTUARIES OF AUSTRALIA
PROPOSED RETIREMENT INCOMES SRATEGY

PROBLEMS AND PROSPECTS FOR THE LIFE
INSURANCE AND PENSIONS SECTOR IN
INDONESIA

Author

David M Knox

David C M Dickson

David C M Dickson

David C M Dickson
Alfredo D Egidio dos
Reis

David M Knox

John Piggott

David M Knox
David M Knox
David C M Dickson
Howard R Waters
Margaret E Atkinson
John Creedy

David M Knox

David M Knox

David C M Dickson
Howard R Waters

David M Knox

Margaret E Atkinson
John Creedy

David M Knox
Chris Haberecht

Catherine Prime
David M Knox



15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Date

OCT 1994

DEC 19%4

JAN 1995

FEB 1995

MAY 1995

JUNE 1995

JUNE 1995

JUNE 1995

SEP 1995

OCT 1995

DEC 1995

FEB 1996

FEB 1996

FEB 1996

MAR 1996

Subject

PRESENT PROBLEMS AND PROSPECTIVE
PRESSURES IN AUSTRALIA’S SUPERANNUATION
SYSTEM

PLANNING RETIREMENT INCOME IN AUSTRALIA:
ROUTES THROUGH THE MAZE

ON THE DISTRIBUTION OF THE DURATION OF
NEGATIVE SURPLUS

OUTSTANDING CLAIM LIABILITIES:
ARE THEY PREDICTABLE?

SOME STABLE ALGORITHMS IN RUIN THEORY
AND THEIR APPLICATIONS

SOME FINANCIAL CONSEQUENCES OF THE SIZE
OF AUSTRALIA’S SUPERANNUATION INDUSTRY
IN THE NEXT THREE DECADES

MODELLING OPTIMAL RETIREMENT IN
DECISIONS IN AUSTRALIA

AN EQUITY ANALYSIS OF SOME RADICAL
SUGGESTIONS FOR AUSTRALIA’S RETIREMENT
INCOME SYSTEM

EARLY RETIREMENT AND THE OPTIMAL
RETIREMENT AGE :

APPROXIMATE CALCULATIONS OF MOMENTS OF
RUIN RELATED DISTRIBUTIONS

CONTEMPORARY ISSUES IN THE ONGOING
REFORM OF THE AUSTRALIAN RETIREMENT
INCOME SYSTEM

THE CHOICE OF EARLY RETIREMENT AGE AND
THE AUSTRALIAN SUPERANNUATION SYSTEM

PREDICTIVE AGGREGATE CLAIMS
DISTRIBUTIONS

THE AUSTRALIAN GOVERNMENT
SUPERANNUATION CO-CONTRIBUTIONS:
ANALYSIS AND COMPARISON

A SURVEY OF VALUATION ASSUMPTIONS AND
FUNDING METHODS USED BY AUSTRALIAN
ACTUARIES IN DEFINED BENEFIT
SUPERANNUATION FUND VALUATIONS

il

Author

David M Knox

Margaret E Atkinson
John Creedy
David M Knox

David C M Dickson
Alfredo D Egidio dos
Reis

Ben Zehnwirth
David C M Dickson
Alfredo D Egidio dos
Reis

Howard R Waters

David M Knox

Margaret E Atkinson
John Creedy

Margaret E Atkinson
John Creedy
David M Knox

Angela Ryan

David C M Dickson

David M Knox

Margaret E Atkinson
John Creedy

David C M Dickson
Ben Zehnwirth

Margaret E Atkinson

Des Welch
Shauna Ferris



30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Date

MAR 1996

MAR 1996
AUG 1996

AUG 1996

AUG 1996
SEPT 1996
OCT 1996
OCT 1996
OCT 1996

OCT 1996

OCT 1996
NOV 1996
DEC 1996

DEC 1996

JAN 1997
JUL 1997
AUG 1997

NOV 1997

Subject

THE EFFECT OF INTEREST ON NEGATIVE
SURPLUS

RESERVING CONSECUTIVE LAYERS OF INWARDS
EXCESS-OFF-LOSS REINSURANCE

EFFECTIVE AND ETHICAL INSTITUTIONAL
INVESTMENT

STOCHASTIC INVESTMENT MODELS: UNIT
ROOTS, COINTEGRATION, STATE SPACE AND
GARCH MODELS FOR AUSTRALIA

THREE POWERFUL DIAGNOSTIC MODELS FOR
LOSS RESERVING

KALMAN FILTERS WITH APPLICATIONS TO LOSS
RESERVING

RELATIVE REINSURANCE RETENTION LEVELS
SMOOTHNESS CRITERIA FOR MULTI-
DIMENSIONAL WHITTAKER GRADUATION

GEOGRAPHIC PREMIUM RATING BY WHITTAKER
SPATIAL SMOOTHING

RISK, CAPITAL AND PROFIT IN INSURANCE

SETTING A BONUS-MALUS SCALE IN THE
PRESENCE OF OTHER RATING FACTORS

CALCULATIONS AND DIAGNOSTICS FOR LINK
RATION TECHNIQUES

VIDEO-CONFERENCING IN ACTUARIAL STUDIES —
A THREE YEAR CASE STUDY

ALTERNATIVE RETIREMENT INCOME
ARRANGEMENTS AND LIFETIME INCOME
INEQUALITY: LESSONS FROM AUSTRALIA

AN ANALYSIS OF PENSIONER MORTALITY BY
PRE-RETIREMENT INCOME

TECHNICAL ASPECTS OF DOMESTIC LINES
PRICING

RUIN PROBABILITIES WITH COMPOUNDING
ASSETS

ON NUMERICAL EVALUATION OF FINITE TIME
RUIN PROBABILITIES

ii

Author

David C M Dickson
Alfredo D Egidio dos
Reis

Greg Taylor

Anthony Asher

Michael Sherris
Leanna Tedesco
Ben Zehnwirth

Ben Zehnwirth
Ben Zehnwirth
David C M Dickson

Howard R Waters

Greg Taylor

Greg Taylor

Greg Taylor

Greg Taylor

Ben Zehnwirth

Glen Barnett

David M Knox
Margaret E Atkinson
John Creedy

David M Knox

David M Knox
Andrew Tomlin

Greg Taylor

David C M Dickson
Howard R Waters

David C M Dickson



48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Date

NOV 1997

JAN 1998

JAN 1998

MAR 1998

MAR 1998

MAR 1998

APR 1998

APR 1998

APR 1998

MAY 1998

MAY 1998

MAY 1998

JUNE 1998

JUNE 1998

JUNE 1998

JUNE 1998

AUG 1998

AUG 1998

Subject
ON THE MOMENTS OF RUIN AND RECOVERY
TIMES

A DECOMPOSITION OF ACTUARIAL SURPLUS AND
APPLICATIONS

PARTICIPATION PROFILES OF AUSTRALIAN
WOMEN

PRICING THE STOCHASTIC VOLATILITY PUT
OPTION OF BANKS’ CREDIT LINE COMMITMENTS

ON ROBUST ESTIMATION IN BUHLMANN
STRAUB'’S CREDIBILITY MODEL

AN ANALYSIS OF THE EQUITY IMPLICATIONS OF
RECENT TAXATION CHANGES TO AUSTRALIAN
SUPERANNUATION

TAX REFORM AND SUPERANNUATION - AN
OPPORTUNITY TO BE GRASPED.

SUPER BENEFITS? ESTIMATES OF THE
RETIREMENT INCOMES THAT AUSTRALIAN
WOMEN WILL RECEIVE FROM SUPERANNUATION

A UNIFIED APPROACH TO THE STUDY OF TAIL
PROBABILITIES OF COMPOUND DISTRIBUTIONS

THE DE PRIL TRANSFORM OF A COMPOUND Ry
DISTRIBUTION

ON MULTIVARIATE PANJER RECURSIONS
THE MULTIVARIATE DE PRIL TRANSFORM

ON ERROR BOUNDS FOR MULTIVARIATE
DISTRIBUTIONS

THE EQUITY IMPLICATIONS OF CHANGING THE
TAX BASIS FOR PENSION FUNDS

ACCELERATED SIMULATION FOR PRICING ASIAN
OPTIONS

AN AFFINE PROPERTY OF THE RECIPROCAL
ASIAN OPTION PROCESS

RUIN PROBLEMS FOR PHASE-TYPE(2) RISK
PROCESSES

COMPARISON OF METHODS FOR EVALUATION OF

THE »-FOLD CONVOLUTION OF AN ARITHMETIC
DISTRIBUTION

iv

Author
Alfredo G Egidio dos
Reis
Daniel Dufresne
M. E. Atkinson
Roslyn Cornish

J.P. Chateau
Daniel Dufresne

José Garrido
Georgios Pitselis

David M Knox
M. E. Atkinson
Susan Donath

David M Knox

Susan Donath

Jun Cai
José Garrido

Bjgrn Sundt
Okechukwu Ekuma

Bjgrn Sundt
Bjgrn Sundt
Bjgrn Sundt
M E Atkinson
John Creedy

David Knox

Felisa J Vazquez-Abad
Daniel Dufresne

Daniel Dufresne
David C M Dickson
Christian Hipp

Bjgrn Sundt
David C M Dickson



No.

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

Date

NOV 1998

NOV 1998

DEC 1998

FEB 1999

MAR 1999

APR 1999

NOV 1999

NOV 1999

DEC 1999

DEC 1999

MAR 2000

MAR 2000

JULY 2000

JULY 2000

NOV 2000

NOV 2000

Subject

COMPARISON OF METHODS FOR EVALUATION OF
THE CONVOLUTION OF TWO COMPOUND Ry
DISTRIBUTIONS

PENSION FUNDING WITH MOVING AVERAGE
RATES OF RETURN

MULTI-PERIOD AGGREGATE LOSS
DISTRIBUTIONS FOR A LIFE PORTFOLIO

LAGUERRE SERIES FOR ASIAN AND OTHER
OPTIONS

THE DEVELOPMENT OF SOME CHARACTERISTICS
FOR EQUITABLE NATIONAL RETIREMENT
INCOME SYSTEMS

A PROPOSAL FOR INTEGRATING AUSTRALIA’S
RETIREMENT INCOME POLICY

THE STATISTICAL DISTRIBUTION OF INCURRED
LOSSES AND ITS EVOLUTION OVER TIME I: NON-
PARAMETRIC MODELS

THE STATISTICAL DISTRIBUTION OF INCURRED
LOSSES AND ITS EVOLUTION OVER TIME II:
PARAMETRIC MODELS

ON THE VANDERMONDE MATRIX AND ITS ROLE
IN MATHEMATICAL FINANCE

A MARKOV CHAIN FINANCIAL MARKET

STOCHASTIC PROCESSES: LEARNING THE
LANGUAGE

ON THE TIME TO RUIN FOR ERLANG(2) RISK
PROCESSES

RISK AND DISCOUNTED LOSS RESERVES
STOCHASTIC CONTROL OF FUNDING SYSTEMS
MEASURING THE EFFECTS OF REINSURANCE BY
THE ADJUSTMENT COEFFICIENT IN THE SPARRE
ANDERSON MODEL

THE STATISTICAL DISTRIBUTION OF INCURRED

LOSSES AND ITS EVOLUTION OVER TIME
III: DYNAMIC MODELS

Author

David C M Dickson
Bjgrn Sundt

Diane Bédard
Daniel Dufresne

David C M Dickson
Howard R Waters

Daniel Dufresne

David Knox
Roslyn Cornish

David Knox

Greg Taylor

Greg Taylor

Ragnar Norberg

Ragnar Norberg
A J G Cairns

D C M Dickson
A S Macdonald
H R Waters

M Willder

David C M Dickson

Greg Taylor
Greg Taylor
Maria de Lourdes

Centeno

Greg Taylor



No.

82

83

84

85

86

87

88

89

90

91

Date

DEC 2000

DEC 2000

FEB 2001

FEB 2001

JUNE 2001

SEPTEMBER 2001

NOVEMBER 2001

NOVEMBER 2001

NOVEMBER 2001

NOVEMBER 2001

Subject

OPTIMAL INVESTMENT FOR INVESTORS WITH
STATE DEPENDENT INCOME, AND FOR INSURERS

HEDGING IN INCOMPLETE MARKETS AND
OPTIMAL CONTROL

DISCRETE TIME RISK MODELS UNDER
STOCHASTIC FORCES OF INTEREST

MODERN LANDMARKS IN ACTUARIAL SCIENCE
Inaugural Professorial Address

LUNDBERG INEQUALITIES FOR RENEWAL
EQUATIONS

VOLATILITY, BETA AND RETURN
WAS THERE EVER A MEANINGFUL
RELATIONSHIP?

EXPLICIT, FINITE TIME RUIN PROBABILITIES FOR
DISCRETE, DEPENDENT CLAIMS

ON THE DISTRIBUTION OF THE DEFICIT AT RUIN
WHEN CLAIMS ARE PHASE-TYPE

THE INTEGRATED SQUARE-ROOT PROCESS
ON THE EXPECTED DISCOUNTED PENALTY

FUNCTION AT RUIN OF A SURPLUS PROCESS
WITH INTEREST

vi

Author

Christian Hipp

Christian Hipp
Michael Taksar

Jun Cai

David C M Dickson

Gordon E Willmot
Jnun Cai
X Sheldon Lin

Richard Fitzherbert

Zvetan G Ignatov
Vladimir K Kaishev
Rossen S Krachunov

Steve Drekic

David C M Dickson
David A Stanford
Gordon E Willmot

Daniel Dufresne

Jun Cai
David C M Dickson



