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Abstract

In recent years, several large Japanese life insurance companies have failed due to deficits on
interest earnings. These interest deficits were caused by actual investment returns falling below
interest rates used for premium calculations and have also been damaging the financial condition
of life insurance companies which have not failed. When a life insurance policy portfolio consists
of a large number of similar policies on independent lives, random fluctuations in mortality will
have a relatively minor overall effect in relation to the business in force. However, the same
interest rate risks apply to all policies and consequently interest rate risk is far more important than
random fluctuations in mortality. In the past, investment returns on the reserves of Japanese life
insurance policy portfolios have been closely linked to market interest rates which are volatile.
The projection of net asset values of a hypothetical Japanese life insurance policy portfolio were
therefore simulated using stochastic interest rate models. For this purpose, the Heath-Jarrow-
Morton approach was chosen, modified to accommodate the very low interest rate environment in
Japan. The results suggest that current premium bases may not be sustainable because
considerable initial capital or large profit margins in premiums will be required to provide a

reasonable level of protection against future insolvency.




1. Introduction

In March 2001, the Tokyo Mutual Life Company became insolvent and filed an application under
the Japanese Reorganization and Rehabilitation Act. It was the seventh successive life insurance
company failure during the current lingering stagnant economy in Japan. The data in Table 1.1
illustrate the magnitude of these failures. The total gross assets (or policyholders' funds) held by the
failed companies exceeded the Yen equivalent of AUD 200 billion.

Table 1.1 - Failed Japanese life insurance companies

Gross Asset 1
Company Failure Date Value (Yen an. ‘AfUD
Name ores billion)
trillion)
Tokyo Life March 2001 1.1 17
Kyoei Life October 2000 4.6 73
Chiyoda Life October 2000 3.5 56
Taisyo Life August 2000 0.2 3
Daihyaku Life May 2000 22 35
Toho Life June 1999 2.8 44
Nissan Life April 1997 Unavailable -

Source: the Financial Services Agency (FSA hereafter) (2001a)

The Japanese economy has been stagnant during the last decade after the stock market declined
sharply from its peak in 1989 — an event known as the “collapse of the bubble”. The failed
companies had been suffering from interest losses, which arise when the actual rates of return
achieved on policyholders' reserves are lower than the interest rate used to calculate premiums (the
“premium basis rate”).
The surviving Japanese life insurance companies are far from being in a healthy financial
condition. A recent investigation conducted by the FSA revealed that all life insurance companies
were still being affected by severe interest losses. In The Daily Mainichi (2001), it was reported
that:

“According to the summary by the FSA, the total interest loss of the whole life

insurance industry amounted to Yen 1.4-2.7 trillion (AUD 22-43 billion) between

the fiscal periods ending March 1998 and March 2000. However, that amount of

loss was fully covered by the expense profit and mortality profit. The net operating

profit amounted to Yen 1.2-2.2 trillion (AUD 19-35 billion).”

! Using the exchange rate 63 YEN/AUD




These figures clearly show that the industry has been exposed to severe interest rate risk.
Management of this risk is clearly an urgent task for the Japanese life insurance industry,

regardless of the formula for calculating regulatory reserves.

2. The nature of the risk profile of life insurance policy portfolios

Under normal social and economic circumstances the major risks confronting life insurance
companies are mortality, interest rates and expenses. We now consider the interest rate risk and
mortality risk when a life insurance company has a large number of policies in force which share
similar terms and conditions. In practice, Japanese life insurance companies have been marketing
standardized products such as whole-life-with-term assurances.

There are two aspects to mortality risk, the emergence of changes or events which affect the
underlying probabilities of mortality and random fluctuations. The risk of non-random changes to
mortality rates, or events which have widespread effects, is a problem that must be borne by
insurers. It cannot be eliminated by holding a large number of policies on independent lives, even
though life insurance companies may seek to transfer some or all of this risk to reinsurers.
However, insurers can usually mitigate this risk by building margins for adverse mortality into their
premium calculations. On the assumption that margins for adverse mortality are adequate, we do
not deal with this type of mortality risk in our study. We also ignore random fluctuations. This type
of mortality risk is small. When there are large numbers of similar policies on independent lives,
the observed mortality rate (or the number of deaths per unit of business in force) will be close to
the underlying mortality rate.

However, interest rate risk (per unit of business in force) cannot be reduced by increasing the
number of policies on issue since every policy has the same or similar investment risk.

When similar types of policy are held by large numbers of independent policyholders, interest rate
risk is far more important than the risk of random mortality fluctuation. Assuming an appropriate
mortality table, a portfolio of such policies can effectively be regarded as a fixed income portfolio
exposed to interest rate risk with random fluctuations in mortality ignored for the purpose of
practical risk investigation provided the number of policies is large and policies are independent

with respect to mortality risk.




3. Modelling framework

In April 1999, the FSA adopted a new rule® under which the premium basis rate is determined by
the yield on 10-year government bonds. We observe in Figure 3.1 that the premium basis rate?,
which is used as the discount rate in premium calculation, has been close to the market long-term

rate (10-year swap rate) for the period April 1991 to April 2000.

Figure 3.1 - Premium basis rates, actual returns and market rates
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We also observe that the actual return is close to the market interest rates. In other words, the net
asset value of a Japanese life insurance portfolio is exposed primarily to the risk of interest rate
fluctuations. Therefore, we will use a stochastic interest rate model as the tool to analyse the
variability of the net asset value of a Japanese life insurance portfolio.

We now introduce some notation which is common in financial economics. See, for example,
Neftci (2000, Chapter 18). In the following definitions, the time unit is always one year.

Let B(t,T) denote the price at time ¢ of a zero coupon bond, that is redeemable at time T with unit

redemption amount.

2 Ministry Of Finance Decree 48, article 4
3 The premium basis rate is determined by the FSA, according to Ministry Of Finance Decree 48.
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Let Y(¢,T) denote the continuously compounded spot yield at time ¢ for duration T —¢. It is given
by

—-log B(¢,T)

Y@,T)= T

3.1)

We use the word “yield” here in order to explicitly distinguish Y(¢,T) from the instantaneous spot
rate which is defined below.
For t<S8<T,let F(¢,5S,T) denote the continuously compounded forward rate at time ¢ for the

period [S,T]. It is given by

_ log B(¢,T)-log B(¢,S)

F@,S8,T)= T_s

Thus, F(¢,S,T) represents the yield of a zero coupon bond at time ¢, which will be issued at time
S and which will mature at time T .

Let f(¢,T) denote the instantaneous forward rate at time ¢ with maturity time T . It is given by
f@T)= }vinr}F(t,S,T) .
Let r, denote the instantaneous spot rate at time #, and be given by
r= lTim f@T).

—>t
Lastly, a set Z, whose elements are identified by non-negative real numbers denotes the yield
curve at time ¢, so that Z, ={Y(¢,T), T €[t,0)}.
We model all these quantities as random variables.

If we know forward rates, f(¢,u)for ¢ <u, then by definition, the zero coupon bond price is given

by
B(t,T) = exp [— f f(t,u)du] :

This formula tells us that forward rates are what is known as the force of interest in actuarial
circles. Alternatively, if we know both the current instantaneous spot rate, 7, , and all future random

instantaneous spot rates #, for # <u then in the risk-neutral world

B, T)= El:exp[— I‘T r;duﬂ .

See, for example, Neftci (2000, p391).
In general, the no arbitrage condition requires a variable called “the market price of risk”, which

represents the degree of compensation for taking the risk of interest rate fluctuations. We conduct




our study under the risk-neutral assumption, i.e. the market price of risk is assumed to always be

zero. This is the practical choice to deal with interest rate term structure in a variety of economic

environments. In addition, this assumption is consistent with the expectations theory of interest rate

term structure. See, for example, Hull (2000, p663).

Vasicek (1977) proposed one of the most fundamental models for the term structure of interest

rates. In this model, the instantaneous spot rate is modelled as a mean reverting process with
dr,=a(b-r)dt+cdW,,

where 7, is the instantaneous spot rate at time ¢, a, b and o are constants, and {W#,} is a standard

‘Wiener process.

It is well known (see, for example, Rolski et al (1998, p562)) that, for a given r,,
r,=b+(r,-be” +o J.(: e dw, .

It then follows that:

1 _ e-Zat

E[r]1=b+(r,-b)e™ and Var[r]=0c" >
a

and the volatility of the price of the zero coupon bond with duration ¢ is given by

1 — e-at

g

See Vasicek (1977).
Heath et al (1992) introduced what is commonly known as the Heath-Jarrow-Morton (HJM)
approach. This approach models forward rates as random variables that drive an arbitrage-free
stochastic development of yield curves, as opposed to classical approaches where instantaneous
spot rates are modelled. (See, for example, Neftci (2000, p435).) There are several ways to
represent the HIM approach. Hull (2000) starts his treatment of the HIM approach with

dB(t,T)/ B(t,T)=rdt +o(t,T,B({t,T))dW' " (32)
where {¥,"}is the standard Wiener process driving the bond maturing at time T and o(¢,T, B(t,T))
is the volatility of the price at time ¢ of a bond maturing at time 7 when the bond price is B(¢,T)
at time ¢.
In equation (3.2), the instantaneous spot rate is the drift coefﬁcient.‘ This choice is equivalent to
assuming risk neutrality, where all bonds share the same instantaneous risk-free return, regardless
of their maturities and associated price risks. It should also be noted that the Wiener process is
indexed by T . This means that, in principle, bonds with different maturities are allowed to be

influenced by different shocks.




In the HIM approach, the development of a yield curve starts from the known current yield curve.
There is therefore no initial fitting problem. Another advantage of this approach is that there is
great flexibility in specifying volatility parameters.

Cairns’ (1998) model will be used to describe a yield curve. The model is

ft,t+s)=b,+ ibi exp {—c,.s} (3.3)

where s>0 and, {5} and {c,}’ are constants.

By straightforward integration

B(t,T) =exp |:—|:b0 (T-t)+ ibi (-exp{—c(T-0})/c, ﬂ i (34

The choice of (¢,,c,,c;,¢,)=(0.2,0.4,0.8,1.6) was found to be appropriate for the UK gilt market
for the period 1992 to 1996. See Cairns (1998) for details.

4. Yield curves in a very low interest rate environment
The Bank of Japan (BOJ) introduced a “zero rate policy” on 9 September 1998. Since then,
Japanese short-term interest rates have been hovering just above zero as illustrated Figure 4-1.

In reviewing the monetary policy framework of the BOJ , Oda and Okina (2001) applied a model

under which various factors determine long-term interest rates. They modelled R , the long-term

risk-free interest rate at time ¢, as
R =) a,E[SR,;]+6,
j=0
where 7 is the maximum maturity term, SR, is the short-term risk-free interest rate at time ¢, 6, is

the risk premium, and {a j} is a set of weights.

Under this model, long-term interest rates are determined as a weighted average of future expected
short-term interest rates and a risk premium. Analysing likely options for further monetary policy,
Oda and Okina (2001) concluded that the scope for any further reduction in expected short-term
interest rates and/or the risk premium is limited. Therefore, we assume that there is a lower bound

for long-term interest rates in a zero rate policy environment.




Figure 4.1 - Interest rates in Japan (September 1998 — September 2001)
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5. The interest rate models used in our study

5.1 Models adopted

Caimns’ model and the HIM approach were chosen for our study. Cairns’ model was used to
graduate the initial yield curve with the parameters (c,,c,,c;,¢,)=(0.2,0.4,0.8,1.6) in formulae
(3.3) and (3.4). The HIM approach (modified to handle zero interest rates) was used to obtain
developments of the initial term structure using Monte Carlo simulation. We formulated the
evolution of the initial term structure under the general one-factor HIM framework adapted to

discrete time intervals of length A¢. Here, we assume that the volatility of both a bond price and

the instantaneous spot rate remain constant during the period (¢, + Af) and that the fixed-income

market operates in a risk-neutral environment. Then

1 2
B(t+AL,T)= B(t,T)-exp{('} -Ea(t,T,B) )AHG(”T’B)AW'} (5.1)
= B(t,T)-exp|r,- At] &,

where AW, =W,,,, —W, and ¢, is a random error:

3 =exp[—-§-0'(t,T,B)2 -At+o-(t,T,B)-AW,]




Suppose that B(z,T) is given. Since AW, ~ N(0,At), E[¢,]=1. Then, taking expectation in (5.1),
the expected value of the random bond price and its yield are calculated as:
E[B(t+At,T)]= B(1,T)-exp|r,- At],
and
Y(¢+At,T)=—-1og(E[B(t + At, T)])/{T — (¢ + A1)}
={Y@t,T)-(T-t)-r,- A} /{T - (t + Ab)}.

In particular, the instantaneous spot rate can be written as:

r, =Y(t,t + At) =—log(B(t,t + At))/ At

by virtue of the assumption of a constant instantaneous spot rate for the period from ¢ to ¢+ A¢ .

Since B(t+ At,t+ At) is always 1, the price movement from time ¢ to time ¢+ At of the bond with

the maturity f+ Af is deterministic.

5.2 The volatility function
In our study, we used the following form of yield volatility function:

o, (y,1) =0, -(1 —exp{—ay}) (£ +0.01)? (1 —exp{—,Bt})/,Bt, (5.2)
where y is the yield to maturity, ¢ is the bond duration, o, is the maximum volatility, i.e.
0y (,0),and a and S are positive constants.
The term (l—exp{—,Bt})/ pt creates a pattern of decay of volatilities similar to that seen in the
Vasicek model. The term 1-exp{-ay} captures the feature that the yield volatility decreases
dramatically when the yield to maturity becomes low. The term (¢ +0.01)?, together with the
exponential term, creates the well known “humped” shape in the volatility curve observed in the
market (see Hull (2000, p603)).
Following Hull (2000, p536) we convert from yield volatility to price volatility, denoted by o,, by
multiplying &, by the bond duration. Thus

o,=0,tT,B)y=0,-(T-1).

5.3 Special treatment of very low interest rates

Once the entire yield curve becomes flat around zero (we refer to this as a “zero flat curve”), the
yield curve tends to keep this shape in developments thereafter. This shape of yield curve is
unlikely in practice, so we modified the general HIM approach in order to prevent the zero flat

curve from emerging.




First, we define a “very low interest environment” mathematically, using three threshold constants,
r, r, and . If all of the following three conditions are satisfied, the yield curve is defined to be in
a very low rate interest rate environment. The conditions are:

(1) The spot yield on any bond with any maturity is below 7.

(2) The difference between the spot yield on a bond wi\th a two-year duration and the spot yield on

a bond with a ten-year duration (we refer to this as 2-10 spread) is below 7, .

(3) The 10-20 spread is below 7, .

Figure 5.1 illustrates the yield curve expected at time ¢+ At , the 2-10 spread, the 10-20 spread, &
and T', where k, the lowest spot yield on the yield curve, is the yield of the bond with maturity

*

T.

Figure 5.1 - Illustration of £, T~ and spreads
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Second, we assume that yield curves move in parallel in a very low interest rate environment. The

minimum random spot yield, i.e. Y(¢+A¢t,T"), is assumed to follow a discrete stochastic movement

over the time period (2,7 + Af) , namely

k-0.5% with probability p
Y+AL,T )=k with probability 0.5
k-2.0% with probability 0.5-p

where 0< p<0.5.
The probability p that the spot yield goes down (bond price goes up) can be calculated by equating

expected bond prices:
exp{—k-0} = p-exp {—k -0.5% -0} +0.5-exp{—k-0}+(0.5— p)-exp {—k 2N -0}
where 8 =T" —(t+ Af).
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Now define Ad =k(0.5% -1), and Au=k(2* -1). These values represent the possible upside and

downside movement amounts of the yield curve. For bonds with maturity 7, other than maturity

H

T", the stochastic movements of the spot yields are described by:

Y(t +At,T)+Ad +&(t,T) with probability p
Y(t+At,T)={V(t+At, I) with probability 0.5
Y(t+AtT)+Au+&£(,T)  withprobability 0.5-p

where &(7,T;) is an adjustment term which allows a correct expected bond price to be obtained. The

adjustment term is also calculated by equating expected bond prices:

exp{—f’, -0,.} = p-exp{—[f,. +Ad+§(t,7})]-9,.}+0.5-exp{—fi -0,.} +(0.5—-p)-exp{—[f} +Au+§(t,Ti):|-0,}

where ¥, =Y(t+At,T) and 6, =T — (¢ + Af) so that
§(t,];)=—log[0.5/[p-exp{—Ad-0,.}+(0.5—p)-exp{—Au~0,.}]]/0,.

Note the probability p is independent of .

Once spot yields are given, bond prices can be calculated using formula (3.1).

6. Concepts for simulation

Our study is based on 1,000 simulations of the policy portfolio over time. We chose 1,000 as a
compromise between computer run time on a personal computer and a number large number to
produce meaningful results. We note that the HIM approach is computationally intensive. (See, for

example, Hull (2000, p607).) In this section, we outline some of the key aspects of our simulation

procedure.

6.1 Bonds
We simulated bond prices at times At,2At,3A¢,..., M At . We chose At =1/8 year. We can think of

this as two events occurring each quarter which influence interest rates. Consider bonds whose
maturity dates are T, = jAt, j=0,1,2,..,M, and let the bonds be denoted by BONDy, BOND;,...,
BONDys Let B(i;t,Tj.) denote the present value of bond BOND; at time ¢ in the i-th simulation.
We need to simulate values of B(i;¢,T,) for j=0,1,2,...M and t=ty,1,t,,....,t,,. At time 0, i.e.

t,, we know the prices of all bonds since the initial yield curve is given. Note that B(i;¢,,T,) =1,

11
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and in general B(i;¢;,T;) =1 since BOND; whose maturity date is T;(=¢,) is redeemable at par at
time ¢ .
Note that when j >k, B(i;¢;,T,) denotes the accumulated value of the bond with maturity time T,
at time ¢; in the i-th scenario. As BOND; is redeemable at par at time 7,, we assume that the
redemption money is always reinvested at instantaneous spot rates. For example, the accumulated
values of BOND; at times ¢, and ¢,, are respectively '

B(ist,,T,) = B(ist,, T,) - exp{r(i;t;)- At} = exp{[r (ist,) + r(i;1,)]- A}
and

B(it,,, T,) = exp{[r(i:t,) + r(i;t;) + ...+ r(ist,, )] At}

where r(i;t) is the realised sample instantaneous spot rate at time ¢ in the i-th simulation.

6.2 Rate of return and discount factors
Throughout we assume that all cashflows derived from our policy portfolio will be invested in a
single fund managed by the insurance company. We also assume that the expected rate of return on
the fund up to time ¢ is the sum of the then-prevailing spot yield for duration ¢ and a constant ¢,
which we refer to as the extra return. Then the discount factor for BOND, at time ¢, in the i-th
simulation, denoted by v(i;¢ j,iI;) , is obtained as

v(ist,,T,) = exp{~(¥ (st,, ) + 9XT, —1,)} = Bst,, Ty)-exp{=g(T; 1)} ©.1)
where

k-1

. 1 )
Y(z;t,,ﬂ):rZr(z;t,).

—_ 7 S=j
Further, we assume that the rate of return for the immediate future is realised as expected, i.e. the
rate of return from time ¢ to ¢+ At in the i-th simulation is 7(i;#)+¢. Under this assumption,

formula (6.1) is valid for accumulation, i.e. when j > k.

6.3 Expected cashflows

For our study we considered a life insurance policy portfolio comprising a large number of
identical policies, each of which combines a T year term assurance with a whole life assurance.
We assume that benefits are payable at the end of the year of death, that premiums are payable
annually in advance as long as the term assurance is in force, and that all policyholders are males
who were aged exactly x at issue. Let ST, SW, I, e and P denote the sum assured under the term

assurance, the sum assured under the whole-life assurance, the initial expenses, the renewal
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expenses and the gross annual premium per policy. Now define P(¢) and CF(t) to be the expected
premium income and the expected cashflow at time ¢ per policy issued. Then for integer ¢ >0,

P-1.,1/1 fort<T

x+t

P =
® {0 fort>T,

and

P-1, fort=0
-ST+8Sw)-,,,, -1l )L +P@t)- el /1, fort<T-1
=-SW-(l -1 )1 —el,/l, fort>T

0 ifx+t>w,

CF(t)=

where w is the maximum age in our mortality table. Since we have assumed a large number of

policies, we further assume that cashflows are realised as expected as time elapses.

6.4 Policy values
Let PVB(i;t) denote the expected present value of future cashflows at time ¢ in the i-th
simulation. Using the expected cashflows and the discount factors, we have

w—t

PVB(i;t) = v(i;t,t + j)-CF(t + j)

j=1
Note that under this definition, cashflows which occur at time ¢ are not included in PVB(;¢).
We define the net policy value of our policy portfolio as the expected present value of net future
benefits arising from the policies in force using the then prevailing yield curve. Let V (i;f) denote

the net policy value at time ¢ in the i-th simulation. Then

w=t
V(ist) ==Y wist,t+ j)-CF(t + j)— P(f) =—PVB(i;t) - P(2).
j=1
This is different from the conventional policy value in Japan, whose calculation is based on the
premium basis rate. These conventional policy values do not allow for any changes in interest rates

after a policy has been issued. In contrast, our net policy values always reflect the market

conditions at the date of calculation.

6.5 The surplus process
We define the surplus at time ¢ to be the accumulated realised cash amount arising from the policy

portfolio less the net policy value of the portfolio at time ¢. Let SUR(i;¢) and AC(;¢) denote the

surplus and the accumulated cash amount of the portfolio at time ¢ in the i-th simulation, so that

13




ACGit) =Y CFGi)W(ist, j) - P()

Jj=0
and
SUR(i;t) = AC@;t) -V (i3¢).

A simple calculation then gives
SUR(i;t) = Y CF(j)-v(ist, J) .
J=0

For the i-th simulation, SUR(;¢), t =0,1,2,...,0 - x, gives a stochastic development of the surplus
process. Repeating this process N times gives N simulated realisations of the surplus process.
We also consider a discounted surplus process. For the i-th simulation, we use DSUR(;t) to
denote the surplus at time ¢ discounted to time 0, and define
DSUR(i;t) = SUR(i, 1)/ v(i;t,0) .

For ¢> 0, the quantity v(i;¢,0) represents the accumulated value at time ¢ of a payment of 1 at
time 0 under the i-th simulation. Its inverse, 1/v(i;z,0), is thus the discount factor at time O for
duration ¢. It can be shown that the process {DSUR(i;#)} is a martingale. Therefore, the expected
value of the discounted surplus is always the initial surplus amount, i.e.

E[DSUR(;t)] = DSUR(i;0) = SUR(; 0) .
In particular, when the premium is set so that the initial surplus is zero, the expected value of the
discounted surplus is zero for any ¢.
We use the discounted surplus process as a measure to track the development of the surplus of the
policy portfolio. The discounted surplus is always expressed as a value at time 0, and this

standardisation enables us to track developments of the surplus process consistently.

6.6 Capital requirements

We now define initial capital as the amount of capital which should be injected into the portfolio at

time 0 to prevent the surplus from becoming negative at any stage over the lifetime of the portfolio

with some given (small) probability. If the surplus ever becomes negative, we say that “portfolio

ruin” has occurred. We assume that this capital earns interest as described above.

Let MLD(i) be defined as the minimum value of DSUR(;¢) in the i-th simulation, so that

|MLD(5)| is the maximum discounted loss. The set of simulated values of {MLD(i)} can be used to

create an empirical distribution for the minimum value of the discounted surplus. Let the random

variable MLD denote the maximum discounted loss for the portfolio, and let C be such that
Pr(MLD > -C)=Pt(MLD+C>0)=1-¢

14




where 0 < £ <1. Then the initial capital requirement under the given probability ¢ is C.

Now suppose that initial capital of C is required. Instead of injecting initial capital at time 0, we
may obtain a similar effect by levying profit margins on the gross premiums whose present value at
time 0 is C . However, in this case the cashflows change, and the distribution of the minimum value

of the discounted surplus with profit margins in the premiums is different to that of MLD .

7 Initial settings for simulation
7.1 Financial settings
For Cairns’ model, we obtained the parameters

(8,,...,b5) = (0.0283,0.0044,-0.1216,0.1386,—0.0525)
by numerically minimising the square error sum between model values and market observations
given in the Appendix.
For the volatility function given by (5.2), we chose a =45, and using the same minimisation
technique as for Cairns’ model, we obtained &, =1.53%, and £ =0.061.
To deal with the very low interest rate environment, we set 7, », and 7, to 0.25%, 0.95% and
0.80% respectively based on historical swap rates from February 1999 to September 2001. We
remark that in practice swap rates are par rates, and not yields on zero coupon bonds. However, we
can ignore this difference for practical purposes.

Finally, we set the extra return, ¢, introduced in Section 6.2, as 1.5%.

7.2 Mortality basis
We applied the 1999 male mortality table published by the Ministry of Health, Labor and Welfare
in Japan. In this table, the last published mortality rate is at age 100, so we set a limiting age of 105

and extrapolated assuming Gompertz’s Law.

7.3 Policy terms

According to statistics published by the Life Insurance Association of Japan (2000), whole-life with
term assurance products account for 63% of the total amount of in force life products for
individuals. Based on product illustrations in that publication, we have selected a whole-life with
term assurance policy with the following terms.

A policy is issued to a male aged exactly 27 with a 30-year term assurance with sum assured Yen

35,000,000, and a whole-life assurance with sum assured of Yen 5,000,000. The benefits are paid at
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the end of the year of death and premiums are paid in advance for 30 years. We assume that initial
expenses are 1% of the sum assured for the term assurance and 3% of the sum assured for the
whole-life assurance, and that renewal expenses are 0.01% of the sum assured for the term
assurance, 0.01% of the sum assured for the whole-life assurance and 3% of annual net premium.

These renewal expenses are incurred at the start of each policy year, excluding the first.

7.4 Premium calculation

Using formula (6.1), we can calculate all discount factors at time 0, and hence expected present
values of premium income and benefit outgo. By the principle of equivalence, i.e. by equating the
expected present value of the premium income with that of benefits, we obtained a net annual

premium, IT, of Yen 103,963. The expected present values of expenses are shown in Table 7.1.

Table 7.1 - Expected present values of expenses

Initial Term Assurance -350
Whole-Life Assurance  _q50

Ongoing  Term Assurance -66
Whole-Life Assurance  _qo

Premium Income 59

Total 637

We next define the margin ratio m(u) such that we earn a profit whose expected present value is u
at time 0 by levying the margin, whose amount is m(x) muitiplied by the net annual premium, on
top of annual net premiums. The expected present value of margin income is calculated as:

I-mu -4, 5.
In order to calculate the margin ratio to cover expenses, we set # =0 in the above, then equate this
with the expected present value of expenses. This yields a margin ratio of 32%, i.e. the gross
premium is 1.32IT or Yen 137,596.
Figure 7.1 shows expected cashflows per policy issued including expected benefits, expenses and
gross premiums. For policy years 2 to 22, the expected cashflows are positive due to low mortality
rates. The first expected cashflow is negative due to initial expenses, while the pattern of negative

expected cashflows changes after the 30th policy year due to the cessation of term assurance

benefits.
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Figure 7.1 - Expected cashflows
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8 Simulation results

8.1 Individual realisations

Figures 8.1 to 8.5 illustrate the outcomes of five of the 1,000 simulations, which we label as
Simulations A to E.

In Simulation A, interest rates fluctuate considerably. It can be seen that the surplus process
evolves largely in line with the development of short rates in the early years of the policy portfolio.
The low interest rates that occurred from 30 to 40 years caused the final surplus to be negative.

In Simulation B, the yield curves stayed at low levels for the entire lifetime of the policy portfolio.
As a result, realised short rates were low (less than 0.80%) throughout. These low interest rates
resulted in negative levels of surplus over virtually the entire lifetime of the policy portfolio.

In the case of Simulation C, interest rates started to rise after a 45-year period of low rates due to
random fluctuations even though the yield curve at time 40 years did not suggest any future
increase of interest rates. The level of the discounted surplus process therefore started to increase
after 45 years. However, after that time, the surplus did not rise above zero to a level of profit.
Simulation D has some similarities with Simulation C. However, the low interest rate period ends
before 40 years in this case. The discounted surplus process recovers around time 35 years, and as a
result of this earlier end to the low interest rate period, the final discounted surplus (loss) turned out

to be half of the loss in Simulation C.
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Figure 8.1 - Simulation A

Figure A - Half-year forward rates
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Figure 8.2 - Simulation B

Figure A - Half-year forward rates
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Figure 8.3 — Simulation C
Figure A - Half-year forward rates

JO.Q0K =or-s+=sesee e
BLOOK L-vresmerensni e e
B.00% F--e-rermemenane s T
R
2.00% e e g e _—— e
0.00% * :

0 10 20 30 40 50 60 70 80
|— =0 ——¢=20 - £=40 =—1=60 |

L g

Figure B - Realized Short Rates

15.00%
10.00%

5.00%

0.00%

Figure C - Accumulated Surplus (in Yen 1,000)

20




Figure 8.4 — Simulation D

Figure A - Half-year forward rates
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Figure 8.5 — Simulation E
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Interest rates were more than 4% during most of the portfolio’s lifetime in Simulation E. The yield
curve at time 20 years suggests such a future development. These higher interest rates result in the

surplus process always being positive.
8.2 Distributions

Figure 8.6 shows a histogram of the surplus after 78 years discounted to time 0, while Table 8.1

shows some summary statistics in units of Yen 1,000.

Figure 8.6 - Histogram of the surplus after 78 years discounted to time 0
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Table 8.1 - Summary statistics for Figure 8.6

Mean Median Minimum  Maximum Standard Deviation
-22.4 177.4 -1,371.0 790.5 565.7

In each simulation, the policy portfolio has a surplus of 0 at time 0. Hence the expected value of the
discounted surplus is zilso zero (see Section 6.5). Indeed we see that the sample mean is almost
zero. The distribution is positively skewed with a median of 177.4. This means that we are more
likely to obtain a positive surplus at time 78 years than a negative one. However, when negative
discounted surpluses occur, they are larger than positive discounted surpluses in absolute value.
This can be inferred from the minimum discounted surplus of —1,371, whose absolute amount is

larger than the maximum of 790.5.
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Figure 8.7 shows a histogram of the 1,000 simulated values of MLD , and summary statistics in are
shown in Table 8.2 in units of Yen 1,000.

Figure 8.7 - Histogram of simulated values of MLD

0.005

0.004 |

0.003 |

0.002

0.001

0.000 i - : -
-1371.036 -1096.829 -822.621 -548.414 -274.207 0.000

Table 8.2 — Summary statistics for Figure 8.7

Mean Median Minimum  Maximum  Standard Deviation
-454.7 -340.8 -1,371.0 0 407.7

The empirical distribution of MLD has a probability mass of 0.147 at 0. As each simulation starts
from a surplus of 0, the simulated value of MLD is 0 when the surplus is positive over the whole
lifetime of the policy portfolio. In other words, with probability 0.853, the surplus falls below 0 at
some point during the lifetime of the policy portfolio. Mainly due to the probability mass at 0, the
empirical distribution is positively skewed with a median of —340.8, which is larger than the mean
of —454.7. This mean indicates that the portfolio is in deficit at some stage during the lifetime of the
policy portfolio by 454.7 on average, an amount which is 3.3 times the annual gross premium. The

maximum simulated value of |MLD| of 1,371 is approximately 10 times the annual gross premium.

8.3 Distribution of the time when the discounted minimum surplus occurs
Figure 8.8 shows a histogram of the times when the minimum values of the discounted surplus

process occur.
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Figure 8.8 - Histogram of the times when the minimum discounted surplus occurs
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As our empirical probability of a minimum surplus of 0 is 0.147, the empirical probability that the
time of the minimum discounted surplus is 0 is also 0.147. We see from Figure 8.8 that the
discounted surplus is more likely to reach its minimum value in the early stages of the lifetime of
the policy portfolio. Figure 8.8 also illustrates that the minimum can occur at any time, although the
probabilities associated with later times are much smaller than those associated with earlier times.
In Figure 8.9, the relationship between the simulated values of MLD and the time when the
discounted surplus reached its minimum is shown.

Generally, the later the discounted surplus reached its minimum, the larger the expected present
value of the loss. This result conforms with the fact that the fund is exposed to a greater interest rate
risk as time passes and premium income is accumulated. In addition, the more time elapses, the

greater the chance that actual returns will differ from those initially expected.

8.4 Initial capital and margins

In Section 6.6, we defined initial capital as the amount which should be injected at time 0 to

prevent the surplus of the policy portfolio from becoming negative over its lifetime with some
* given probability. Now let us choose that probability to be 0.01, i.e. we are setting a portfolio ruin

probability of 1%. In our simulations, 990 of our 1,000 simula;ted values of MLD are more than

—1,351. Thus, an initial capital injection of 1,351, which is almost ten times the gross annual

premium, shifts the distribution to the right so that 1% of our simulated values of MLD are less
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than 0. In other words, an initial capital requirement of 1,351 is required to achieve a 1% portfolio

ruin probability according to the empirical distribution.

Figure 8.9 — Times and amounts of minimum discounted surplus
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The estimated initial capital requirements for different levels of portfolio ruin probability are shown

in Table 8.3 as amounts and as multiples of the annual gross premium.

Table 8.3 - Empirical ruin probability, required capital and gross premiums

Empirical ruin ~ Estimated required Required Capital /
probability capital Annual Gross Premium
1% 1,351 9.8
5% 1,246 9.1
10% 1,105 8.0

Let us now consider profit margins, in particular the situation corresponding to an initial capital

injection of 1,105. A similar effect to this initial capital injection may be obtained by imposing a

profit margin whose expected present value is 1,105 at time 0. In Section 7.4 we defined a margin
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ratio m(u) as the amount that is paid on top of the net premium which gives an expected present
value of u at time 0. Given u, m(u)is calculated by the formula:
m(u) =(u+E)/(I18,, - )

where E is the expected present value of expenses at time 0. Setting » =1,105 in the above
formula gives m(u)=88% . This margin ratio includes the portion allocated to expenses, which is
32%. Thus, the margin ratio to provide a profit whose expected present value is 1,105 is 56% of the
net premium or 42% of the gross premium.

An initial capital injection of 1,105 gives a 10% empirical portfolio ruin probability. Thus, we
might expect that an 88% margin ratio would also result in a 10% empirical ruin probability.
However, if we include this margin with premium income and re-run our simulations, the result is
only a 1% portfolio ruin probability. Unlike the case when capital is injected at time 0, the addition
of the profit margin alters the shape of cashflows in a way in which interest rate risk is reduced.
The benefit payment amounts increase during the la;ter stages of the lifetime of the portfolio.
Therefore, overall cashflows level off more when the margin is added as an annuity stream than

when the initial capital is injected. Having more level cashflows reduces the interest rate risk.

We re-created our simulations for various values of m(u), in order to estimate portfolio ruin
probabilities associated with new cashflows redefined by m(u). Table 8.4 shows empirical
portfolio ruin probabilities for a range of values of m(u), where the monetary unit is again Yen
1,000.

In Table 8.4, profit margin is defined as the margin ratio levied on top of the gross premium as a
percentage of gross premium. Comparing Tables 8.3 and 8.4, we see that the same empirical ruin
probability can be obtained by choosing a profit margin that results in an expected present value of
profit smaller than the initial capital injection. For example, we can achieve a 10% empirical ruin
probability by levying a profit margin of 36% or by an initial capital injection of 1,105. However,
the profit margin of 36% results in an expected present value of profit of 938.

We can estimate the profit margin required to achieve a given portfolio ruin probability by locating
the probability in the last column in Table 8.4. Table 8.5 shows the required profit margin for each
probability.
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Table 8.4 - Profit margins and empirical ruin probabilities

Profit Empirical Ruin
- m(u) u Margin Probability
70% 741 31% 20%
80% 938 36% 10%
84% 1,017 39% 8%
86% 1,056 41% 4%
88% 1,105 42% 1%
90% 1,135 44% 0%

Table 8.5 - Required ruin probabilities and estimated profit margins

Ruin Probability Prl::)i':f;/;l;:gin
10% 36%
5% 40%
1% 42%

9 Concluding remarks

According to the empirical distribution we obtained, without any profit margin, the initial capital
required for a 10% probability of ruin is approximately eight times the annual gross premium.
Setting a 1% portfolio ruin probability requires initial capital approximately ten times as much as
the annual gross premium. When a 36% profit margin is added to the gross premium, the empirical
ruin probability is also 10%. The empirical ruin probability became 1% by charging a profit margin
of 42%.

Note that the introduction of a margin or an initial capital requirement is to deal with interest rate
risk only. In practice, further margins may be needed for asset price fluctuation not attributable to
interest rate fluctuations, mortality experience different from the mortality basis used for premium
calculations, and fluctuations in expenses. Then there may be the additional question of dividend
payments by the insurer.

In a competitive environment where information about financial products and valuation tools is
publicly available, high profit margins may not be sustainable. Therefore, interest rate risks need to
be correctly measured, managed and then reduced. There may be many ways to achieve this,

including asset-liability matching, shortening policy durations, linking premiums to interest rates,
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or linking policy values to asset values. These measures are especially important as a country’s
entire life insurance industry shares the same interest rate risk, i.e. low interest rates would damage
portfolios of all life insurance companies. This is an important problem for Japan in general,
because the soundness of the Japanese life insurance industry has social implications that extend

well beyond the financial status of individual companies.
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APPENDIX

Market observations
Table A — Interest rate market quotations (1 May 2001)
Term Deposit Rates Swap Rates Government
Bid Offer Bid Offer Bond Yield
3 (Months) | 0.035% 0.05% 0.028%
6 0.031%
2 (Years) 0.14% 0.18%
3 0.24% 0.28%
4 0.39% 0.43%
5 0.57% 0.61%
7 0.95% 0.99%
10 1.40% 1.44% 1.361%
20 1.970%

Source: Reuter, Tokyo Market Summary dated 1 May 2001, and Bloomberg.co.jp

Table B - Base yields obtained from the data in Table A

Term Base Yield

6 (Months) 0.04%
2 (Years) 0.16%
3

0.26%
4 0.41%
5 0.59%
7 0.97%
10 1.42%
20 2.03%

Table C - Lowest 2-10 spreads observed in the market (for the period 1.2 February 1999 to 11

September 2001)
| 2-year rate | 10-year rate | 20-year 2-10 10-20
: . N L rate spread spread
22 March 2001 0.17% 1.29% 2.16% 1.11% 0.87%
27 June 2001 0.13% 1.19% 2.44% 1.06% 1.24%

The 20-year rate was estimated by Cairns’ model.
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Table D - Volatility market quotations (19 April 2001)

) 2Year | 5Year | 10 Year | 20 Year

Strike Rate 0.22% | 075% | 1.60% | 2.35%
Market Quotation® 0.16% | 045% | 0.65% | 0.71%
Model Volatility® 0.14% | 043% | 0.68% | 0.69%

4 At-the-money volatility for options whose maturities are 3 months.

& For reference purpose, using estimated parameters
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