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Abstract

In the context of the model of pension funding introduced by Dufresne in
1986, explicit expressions are found for the first two moments of fund level
and total contributions, when (1) actuarial gains and losses are amortized
over N years, and (2) arithmetic rates of return on assets form a moving
average process. The results are obtained via a Markovian representation for
the bilinear process obtained for the actuarial losses. One conclusion is that
the dependence between successive rates of return may have very significant
effects on the financial results obtained.

KEYWORDS: BILINEAR PROCESSES; MARKOVIAN REPRESENTATION; MOV-
ING AVERAGE PROCESS; PENSION FUNDING

1. Introduction

We consider the model for the evolution of the assets and liabilities of a defined
benefit pension plan studied by Dufresne (1986a). Its main features are that rates
of return are random, but the population and plan are stationary. Two methods of
determining total contributions were described: (i) proportional control, meaning
that the normal cost has an adjustment equal to a fixed fraction of the unfunded
liability, and (ii) amortization of gains and losses, which involves calculating each
year’s unexpected deviation from actuarial expected values, and liquidating each
such amount separately over a period of N years. Method (i) is a simplified view of
some of the practices of actuaries in the UK; method (ii), however, is part of the
actual rules imposed in Canada and the United States for the financing of defined
benefit plans. Both methods may be seen as controls applied to the pension funding
process (see Dufresne (1993) and (1994) for more on this subject).

Dufresne (1989) was able to calculate explicit expressions for the first moment
of fund level and contributions gains and losses are amortized, in the case where the
rates of return on assets are i.i.d.; the second moments were obtained only when,
moreover, the mean rate of return is equal to the valuation rate of interest. In this
paper, we generalize these results to the case where arithmetic rates of return form
a moving average (“MA” in the sequel) process of any order, with no restriction
on their expected value. This is done by showing that the process representing the
actuarial losses is a bilinear time series, and thus has Markovian representation
in higher dimension. (Observe that Markovian representations had been used by
Dufresne (1990), in a model where geometric rates of return are MA.) We also
investigate whether the processes obtained have stationary versions.

Other references on the same general pension funding model include:

— i.i.d. rates of returns: Dufresne (1986a, 1986b, 1988), Haberman (1993b),
Haberman and Zimbidis (1993);
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— autoregressive rates of return: Dufresne (1993), Haberman (1990a', 1990b',
19911, 1992, 1993a, 1994), Gerrard and Haberman (1996), Cairns and Parker
(1997).

Haberman and Wong (1997) obtain first and second moments when geometric
rates of return form a MA process of order 1 or 2, and proportional control is
applied. Bédard (1997) solves this problem in general, for MA(q) geometric rates
of return, ¢ an arbitrary positive integer. (The case of MA(q) arithmetic rates of
return with proportional control is mathematically simpler).

Section 2 gives the required background on bilinear processes, and then Section
3 shows how they are applied to pension funding. Section 4 presents and analyses
some numerical examples, Section 5 concludes the paper.

2. Bilinear processes

An early reference on bilinear processes is Granger and Andersen (1978). We
give other references as needed below.

Definition. A one-dimensional process X = {X,} is a bilinear process of orders
p, q, P, Q, denoted X ~ BL(p, q, P,Q), if it satisfies

p q Q P
Xi = Z apXi_k + Z bres—k + Z Z Bjker—j Xi—k + a, (1)
k—1 k=1

7=0 k=1
where {e.} is i.i.d., and {ar}, {br}, {Bjr}, @ are constants.

We do not assume the errors {e;} to be Gaussian, nor to have mean zero. Note
that many authors set Bor = 0 for all k.

Definition. The process X in (1) is said to have a bilinear Markovian repre-
sentation if it satisfies

Zt = A(et)Zt_l + H(et) (2(1)
X, = Ble)Zi—1 + K(ey), (2b)

where
— Z, s a column vector of dimension n;

— A(ey), H(ey), Bler), K(et) are matrices or vectors of polynomials of finite
degree in e; only, with respective dimensions n xn, nx1, 1 xn, and 1 x 1;

— e; and Z;_y, are independent for every k > 1.

Note that bilinear Markovian representations are not unique. Pham (1986)
shows that every bilinear process has a Markovian representation (2). We state the

! Tn those papers, some of the formulas for the moments of contributions and
fund levels in the case of autoregressive rates of return are incorrect.
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result in Theorem 1. His proof gives an explicit construction of the representation,
which we apply in Section 3.

Theorem 1. Every bilinear process has a bilinear Markovian representation.

The first and second moments of a bilinear process {X;;t > 0} can be found
recursively from any Markovian representation (2):

EXt = EB(et) EZi_l + EK(et)

EZt = EA(et) EZt—l + EH(et).
Here the independence of e; and Z;_; is seen to be essential, and it is of course
required that the first moments of A(e;), B(e:), K(e:), H(e¢), and the initial con-

ditions EXo,EX_1,... are all finite. In the sequel, we make frequent use of the
following matrix operations:

e vec M is the vector obtained from a matrix M by stacking its columns of a matrix
one on top of the other (the first column of M is at the top of vec M, and so on);

e M ® N is the Kronecker product of matrices M, x, and Npx,, defined as the
mp X ng matrix whose (i, j)th block is M;;N,1<i<m,1<j<n

We also use the property (Nicholls & Quinn, p.11) vec(MNP) = (P’ ® M)vec N.
To simplify the equations, let A = EA(e;), A® A = E[A(e;) ® A(et)], and so
on. Iterating the last equation above yields
EZ, = U+A+ A%+ A" YWH+ A'EZy = (I - A)"'(I — A"H + A'EZ,
provided I — A is invertible. If

p(A) = (maximum modulus of eigenvalues of A) <1,

then

lim EX, = B(I—-A)'H+K.

t—o0

The same can be done for second moments; provided AQ A, AQ H, H® A,
He H, BB, B® K, K® K are all finite,

EX? = B® BvecEZ;Z, +2B® KEZ, 1+ K® K
vecEZ,Z] = A® AvecEZy1Z{_ +( H® A+ A®H)EZ; 1 + HQH.

If, moreover, p(A) < 1 and p(A ® A) < 1, then

lim vecEZ,Z; = (I—A@A)‘l(H®A+A®H)tlim EZ.+H®H

t—o0

whence

Jim EX? = BB Jim vec EZ,Z,+2B K + K ® K.
— 00 — 00
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A less obvious question is whether stationary solutions of (2a) {Z;; t € Z}
exist and are unique, and under what conditions. This problem was considered
by Conlisk (1974), Nicholls and Quinn (1982), Pham (1985) and Guéguan (1987),
among others. We quote the following results from those papers.

Theorem 2. Suppose {e;; t € Z} isi.i.d., p(A) <1 and p(A® A) <1, andEH @ H
is finite. Then (2a) has a unique solution {Z;; t € Z}, given by

Z; = i (”‘ A(et_k)) H(ei_p), teZ.

n=0 \k=

The series on the right converges in L? and a.s., and the process is strictly station-
ary. The process {Xy; t € Z} in (2b) is then also strictly stationary, and has finite
second moments if B® B and EK} are finite.

Remark. The assumptions (i) {e;} Gaussian and (ii) E H(e;) = 0 made in Guéguan
(1987) are unnecessary. O

3. Amortization of gains and losses

The model is the same as in Dufresne (1986, 1989); we summarize the essen-
tial results required. An individual actuarial method (for example, Projected Unit
Credit, Entry Age Normal) is applied to a stationary population. The assumptions
are:

— there is no inflation on benefits nor on salaries, and the benefit formula is un-
changing over time;

— except for rates of return on assets, all actuarial assumptions are realized;
— the population is stationary;
— the valuation rate of interest is fixed throught time;

— the initial unfunded liability is nil.

The following notation is used.

a7 Value of m-year annuity-immediate at rate 4, equal to (1 — (1 +14)"N)/i
d7m Value of m-year annuity-due at rate i, equal to (1 — (1 +14)"V)(1 +14)/é
ADJ  Adjustment made to normal cost (control)

AL Actuarial liability, or reserve (constant)

BP Annual benefit payments (constant)

C Total annual contribution, equal to NC + ADJ
F Value of fund’s assets

~.

Valuation rate of interest (constant)

h

Actuarial loss
N Amortization period (a constant positive integer)
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NC  Normal cost, or pure premium (constant)
R Rate of return on assets

r Average rate of return, equal to E R;

Uk = ax—m/tm

UL Unfunded actuarial liability, equal to AL — F
The evolution through time of assets and liabilities is described by:

Fy = (1+ R)(Fi-1+ Ci—1 — BP) 3)
AL = (1+1)(AL+ NC — BP). (4)

The actuarial loss L; is defined as the unexpected increase in the unfunded liability,
relative to actuarial assumptions:

L, = UL, —EAUL | Fi_1], (5)

where “E4” stands for “expectation according to actuarial assumptions,” and F;_1
is the o-field representing information up to (and including) time ¢t — 1. Observe
that losses may be negative. In our model the actuarial rate of interest is ¢, meaning
that

EAR | Feon] =4
The adjustment to the pure premium NC' is defined as
N-1

Li_
ADJt = Z ..t ka
k—o N

(6)

since L, /5 is the level amount required to amortize L, over N years, at rate of
interest 4. It is intuitively clear (and can be verified mathematically, see Dufresne
(1989, 1994)) that at any date ¢ the unfunded liability is equal to the unamortized
portion of past actuarial losses:

N-1g
UL, = Z i\l—k Li_g. (7)
k=0 N

Thus the total contribution and the fund level may be expressed as

N-1 I N-1 s
C, = NC+ kR o= ALY DR (8)
k=0 NI k=0 NI

From (3) and (4), we get

UL, = (1+ R)(AL— F,_y — ADJ, 1) — (R, —i)(AL + NC — BP)
— (1 4+ ) (UL — AJs_1) + (Ry — ))[ULi—1 — ADJ,—y — AL/(1 + i)},
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which, together with (5), (6) and (7), yields

Ly = (R, —4)[ULy_y — ADJ,—1 — AL/(1 + )]
N-1 a AL
= <Rt~i><§j WLH——Z.). (9)

Pt am 1+

At this point, we are ready to state our assumption regarding rates of return: if
{R;} ~MA(q), then

q
Rt = r+ Zdjet_j,
5=0

where {d;} are constants (do = 1, dg # 0), and {e;} are zero-mean i.i.d. random
variables (with an otherwise arbitrary distribution). Inserting this expression into
(9), we obtain

oy . AL
+ Zdj—.l.v'iet—th—k —(r—1) 113 (10)

and thus {L;} ~ BL(N —1,q,N —1,q), with (see Eq. (1))

a
a = (r—i)——, b = —d;{k,
a AL (11)
Bjk = dj ,[,v—k, (0% = —(T—i) T.
aw 1+

(To simplify the notation, in the sequel we let ux = a5 /dwn-) From Theorem 1,
there is a Markovian representation

Zy = Ale))Zi—1+ H(et) (12a)
Ly = B(e))Zi—1 + K(ep). (12b)

Once a Markovian representation for {L;} has been found, the moments of {F}}
and {C;} can be obtained from those of {L.}. For finite ¢ this is done recursively,
starting at t = 0. We only specify the limits of those moments as ¢ — oo. We assume
that the required moments of e; are finite, and to simplify the notation, we drop the
“limy_,00,” and write the moments of a stationary version of the processes. From
Section 2,

veeA = ([ -A®A) ' [(A®H+H®A)z+H® H|
¢ = EL, = BU-A)'H+K
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First,
EL? = E(BiZi-1+Ki)(Z,_, B, + K})
= EB,Z 17 _ B/ +EB, Z, 1K, +EK,Z,_, B, +EK, K|

= BoBvecA+2BR K2+ K® K.
Second, for n > 1,
EL Livy = EL (Bisin Ztin-1+ Kitn)
= BEL,Zy4n1+LK.
We find
EL Zyyn = AEL Ziyn 1 +LH
= () = A"EL Z+ (I +---+ A" )H,
EL Z, = E(A;Zi—1+ H)(Z,_1B, + K)
= EAZ_1Z_B,+EA Z, «K,+EH, Z, \Bi+EH K,
= BRAveeA+ (K@ A+BoH)z+HQK,

and thus
n—2
EL Livn = B|A" Y (B@AvecA+ (K@ A+BoH)z+HoK)+ > AMH| +(K.
k=0
Therefore:
B@BvecA+2BRKz+K®K—¥¢* n=0
I'(n) = Cov(Ly, Liyn) = 8 _ | - Inl-2 B
e B|AM=iM+ S AMA| 44K 2, n#0,
k=0
(13)

with M = B® AvecA+(K @ A+B ® H)z+H ® K. As a partial check, we calculate
E Lt Lt+1 = E (Bt+1 Zt + Kt+1)(Z£_1 B£ —+ K;)
= BEZ, Z _,B.+BEZ,K,+ K2 B +KK'
From Z, = A;Z;_1+ Hy, we get

EZt g-—l B; = EAtZt_l Zt,_le—f—EHt tl_lBg
= B AvecA+ B® H =z

EZ K = EAZ, K| +EH,K, = K@ Az+EH K,

and

(B@AveeAN+BRHz+K®Az+EH K))+ Kz B + KK’

(BRAveeA+BRH2+K®@A2+H®QK)+ K/

ELi L1 =

o o
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From (8) and (13), we immediately obtain

N a~—
E(Cy) = NC+5—£, E(F,) = AL—-() —(f:—]—
™ —o %M

Cov(Ct,Ciyn) = = I'(j—k+n)

Cov(Fy, Fiin) = 77— iy G LU —k+n).

We have thus shown the following:

Theorem 3. Suppose a pension fund operates according to Egqs. (3) and (8), with
the assumptions made above regarding the population and rates of return. Then

(a) the process {L:} has a Markovian representation (12);
(b) if p(A) < 1 and p(A® A) < 1, then {L;}, {C:} and {F;} have strictly

stationary versions for t € N or t € Z (all three processes realized over the same
probability space;

(c) if, moreover, B® B and EK? are finite, then {L.}, {C;} and {F}} have

finite second moments.

We now give three specific Markovian representations for { L; }, when rates rates
of return assumed to be moving average of order 0, 1 and 2.

Case {R; — r} ~ MA(0)

Here the Markovian representation is obvious:

Zy = (Lt—(N-Z),"'7Lt)/7 H(et) :(07---7oaget+a)l7

0 1 0 0
0 0 1 O 0
A(et) = . . :
0 0 1
(r—i+e)un_1 - o (r—iteur (r—ite)ur/ (voyxv-1)

B, = (r—i+e)(un—1,---,u1), K(ey) = —(r—i+e)AL/(1+1).

Case {R; —r} ~ MA(1)

From Eqs.(10) and (11), we get:
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Li_(n-2) \
Li_ (n-3)
Zt = Lt,—l )
L,
N-1
\ (akLi—k+1 + etBrkLi—k+1) + bree
k—1
0 1 0 0 ( 0 0\
0 0 1 0 0
Alee) =1 ('). oo | e
0 -0 1 0 ()
0 anv-a Tt Gz a1 \'U'N—lﬁll cee e ugfB wfir 0
0 0
+ : - (2
0 0 0 0
UN -1 e - Uy Uy 0
ajun_1 @ un-2+PBiN-1 - auz+ Pz arur + Bz B

; \

H(e;) = : ;
0
boet + o
(a1b0 + b1 -+ ﬁua)et + ﬂubo E? + ala/
B(et) = (UN—letauN—2et7 s, U2€6t, ULEy, 1)7 K(et) =ges+ o

Case {R; — r} ~ MA(2)

In this case, Eq.(10) becomes
N-1 N-1 N-1 N-1
L, = Z apLi_r + e Z ug Lk + €11 Z BikLi—k +er—2 Z BarkLi—k
k=1 k=1 k=1 k=1

2
+> bk, (14)
k=0
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where ay = (r — i)uk, b; = —d;AL/(1 + i), Pix = diug, Box = doug and o =
—(r —4)AL/(1 + 7).

Following the procedure given by Pham (1986), we set

ﬁllk = Bl,k-}-la k:Oala""N_27
/B;k: = ﬂ2,k+27 k=0717'-'1N—37

Bi1 = P21
and rewrite (14) as
N- N- N-2 2
= Y axLix+e Yy upLi g+ > Brjer—kLi—jk + Birer—2Li—
k=1 k=1 §=0 k=1

2
+ Z brey 1 + a.

k=0
The Markovian representation obtained is as follows:
z0 AO(e)  KO(e) DO(e) BO)(e,)
Zt = Zt(O)et = A(O) (et)et K(O) (et)et D(O)(et)et Zt——l -+ B(O) (€t)€t
€t 01><(2N+3) €t
Ly = (un-16€, -+, ugeq, ure, 1, 0,---, 0)1x2n+3)Zt—1 + boer +
where

7O = A0 ()2 + BO(e,) + (KO (e)) 2%, + D©(e;))er-1,

( Li_(n_2
Li_(n-3)
Ly
ZEO) = Lt ,
N-1 N-2
akLe—k1+ Z (b + Y BijLe—j—k+1)ecr1—k + Brec—1Ly
k=1 k=1 7j=0
N-1 N-2
\ arLi_gi2 + boey + Z ;B;th—jet
k=2 j=0
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01 0 0 0 0

0 O 1 0 0\ (

0 0 1 (O} e “
0 0 1 0 0 0

0 0 a; 1 uN—l/BiO ulﬁio 0 0

0 0 any-1 -+ a3 a2z O \uN—IIBQO oufyy 000

(') 0 €,
uN—l U’N—2 . e PRI ul 0 O
a1uN-1 Q1uUN-2 + Bi,N—Z coeaquz + Bl ajur + B B O
GaUN-1 QUN-2 T 5571\/_2 - aguz + Py apur + 85 By 0
( 0 \
B(O) (et) — 0 3
o + bpey
ajx + (a1b0 + bl + aﬁio)et + ﬂioboe?
aza + (azbo + ba + afhg)er + ﬁéoboef
[ ;
K(O)(et) = y
0 0
UN—lBuet u2ﬂ11et ,611 +Ulﬁ11et 0 O
\ 0 cee e 0 0 0 O

DO(e,) = :
O ’
B0+ Biiboes )

\ 0
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4. Numerical examples

In the numerical examples given below, R; = r + e; + d1e¢—1, where e; has a
Beta(2,2) distribution over (—b,b), that is, a density equal to

4_;’;_5(,)2 — 2%)1(pp)(2).

Here b is adjusted according to the given values of Var R; and d;. In all cases
P(Re>-1)=1, p(A) <1, p(A® A) < 1, and B® B, H® H and E K} are finite.
Of course this choice of distribution for the errors is only a matter of computational
convenience, and other choices are possible. Computations show that the moments
of contributions and fund levels approach their limiting values very rapidly. This is
because the fund already starts at a level equal to AL; hence Var L; converges very
fast as t increases; typically, for instance, Var L; is very close to its limit value after
just a few iterations. This in turn means that after N years or so Var F; and Var C;
are also very close to their limits.

The examples chosen show the dependence of the moments of contributions
and fund levels on N, and on the assumptions regarding the rates of return R;.
The assumptions are comparable to the ones in Dufresne (1989); they are made for
illustrative purposes only.

Population English Life Table No. 13 (Males), stationary,
constant salaries

Entry Age 30 (only)

Retirement age 65

Benefits Straight life annuity (2/3 of salary)

Valuation method Entry Age Normal

Valuation rate of interest 1= .01

Actuarial liability AL = 451% of payroll

Normal cost NC = 14.5% of payroll

(N.B. We imagine here that monetary amounts have initially been deflated by
the index for the increase of salaries, so that the limits as time goes to infinity of
contributions and reserves are finite. Thus, the valuation rate of interest is net of
the rate of increase of salaries, which is why i it is set at such a low level.)

The limits of the standard deviations of F; and C; as t — oo are shown in
Tables 1 to 4. As in Section 3, we drop the “lim; .o ” in front of E F}, etc., in effect
dealing with stationary versions of the processes.

Example 1

First, suppose rates of return are i.i.d., and E R; = i. Then it is possible to find
the first and second moments of F; and C; without a state-space representation.
Taking expectations on both sides of (9), we find EL, = 0, and so EC; = NC
and EF, = AL (this is legitimate if it is known that p(A) < 1 and p(A® A) < 1,
and thus that a second-order stationary solution exists). Next, multiplying by L; ,

12 20-11-1998
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n>1, weget EL, Ly_, =0. Thus
o2 AL?/(1 +1)?

21 2

N-1 i N\ 2
VarF, = Z (Lj-l) Var L,

Var Lt =

=0 oy
N
Var Ct = (T"TQ‘VQI' Lt.
N1

Table 1 shows the results when 2 = .01 and o, the standard deviation of Ry, is either
5 % or 10 %. The variability of contributions decreases with N increasing, while
the variablility of the fund level increases; this is the usual trade-off effect, noted in
Dufresne (1986a).

Table 1
Ezxzample 1. {R; —r} ~ MA(0), r =4 = .01

m oc=.05 o=.10

EF vVVarF EC +VarC EF VarF EC v/VarC
AL AL NC NC AL AL NC NC

) 100.0%  7.4% 100.0% 70.3% 100.0% 14.8% 100.0% 141.3%

10 100.0 9.9 100.0 51.1 100.0 19.9 100.0 103.3
15 100.0 11.9 100.0 42.8 100.0 24.2 100.0 87.2
20 100.0 13.7 100.0 38.1 100.0  28.0 100.0 78.1
Example 2

The second example illustrates what happens when the rates of return are i.i.d.
but E Ry # i. All moments of contributions and fund levels are affected. The first
moments may be obtained without a state-space representation; from Eq. (9),

N-1
EL, = (r—i) Y ukELi g — (r—i)AL/(1 +1)
k=1
_ (r—49)AL/(1 +31)

1—(r— i) n

13 20-11-1998
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which yields the first moments of C and F. Table 2 shows that the first moments of
F and C are very significantly affected by the change from E R; = .01 to ER; = .03
(the fund is on average larger, and the contributions lower). Variances are also
greatly affected. The variances in Table 2 are all larger than the corresponding
ones in Table 1. Note that the matrices in the Markovian representation involve
polynomials of degree 1 in e;, and so the first two moments of L, depend on Ee;

and E e? only.

Table 2
Example 2. {R, —r} ~ MA(0), r = .03,7 = .01

m c=.05 o=.10

EF VVarF EC +VarC EF vVarF EC +vVarC
AL AL NC NC AL AL NC NC

) 106.2% 7.9 34.6% 75.1% 106.2% 15.8% 34.6% 150.9%

10 112.2 11.4 29.2 59.7 112.2 23.1 29.2  120.8
15 118.9 15.1 23.1 55.1 118.9 30.7 23.1 1125
20 126.6 19.1 16.1 54.4 126.6 39.4 16.1  112.2
Example 3

In this example, R; =1+ e; + e;_1, so that
1
Corr(R;, Ri—1) = +§.

Table 3 shows that this not affect expected values much, but that variances are
significantly different than in Example 1, where Corr(R;, R;—1) = 0. The variances
of both contributions and fund levels are higher, in all cases, in the presence of de-
pendence between successive rates of return. The explanation is that the losses {L;}
are positively correlated. Note that the matrices in the Markovian representation
involve polynomials of degree 2 in e;, and so the first two moments of L; depend on
Eef for 1 < k < 4. Tt was noted that Corr(Ly, Ly41) is very close to .5 (for all V),
but that Corr(L¢, Li4x) was very close to 0 for all £ > 0.
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Table 3

Ezample 3. {R; —r} ~MA(1),r=.01,i=.01,d; =1

m o =.05 o =.10
EF vVarF EC +VarC EF vVarF EC +VarC
AL AL NC NC AL AL NC NC
5 100.3% 9.7%  96.9% 94.7% 101.2% 19.8% 87.4% 192.5%
10 100.6 13.6 96.4 71.2 102.5 28.3 85.3 148.8
15 101.0 16.7 96.1 60.7 103.9 35.9 84.2  130.8
20 101.3 19.5 96.0 54.6 105.3 43.2 83.3 121.8
Example 4
In this example, Ry = + e¢; — €41, so that
1
Corr(Ry, Ri—1) = —5

As in Example 3, it is seen (Table 4) that expected values are not much different from
the case of i.i.d. rates of return, but that variances are significantly affected. The
variances of both contributions and fund levels are lower, in all cases, in the presence
of dependence between successive rates of return. It was noted that Corr(Ly, Ly41)
is very close to -.5, but that, as in Example 3, correlations at larger lags were very

close to 0.
Table 4
Ezxample 4. {R; —r} ~MA(1), 7 =.01,i = .01, d; = —1

m c=.05 o =.10

EF +VarF EC vVVarC EF +VarF EC vVarC

AL AL NC NC AL AL NC NC

5 99.7% 3.8% 103.1% 31.4% 98.8% 7.7% 112.4% 63.0%
10 99.4 3.7 103.6 16.1 97.6 7.3 114.1 32.3
15 99.1 3.6 103.8 11.0 96.4 7.2 114.8 22.0
20 98.7 3.6 104.0 8.5 95.2 7.1 115.3 16.9
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5. Conclusion

We have shown how to calculate the moments of contributions and fund levels
in a simple pension model, when rates of return are a moving average process
of order up to 2. The same principles apply for higher order MA processes, with
Markovian representations in higher dimensions. Even though each actuarial loss
is separately amortized in full, it is seen the method of amortization of losses is
unable to keep average contributions and fund levels equal to the normal cost and
the actuarial liablilty, respectively, when rates of return are on average different
from the valuation rate of interest (Example 2). We saw that the variances of C
and F are significantly affected by the dependence between successive rates of return
(Examples 3 and 4).

These considerations may be important when choosing actuarial assumptions, or
when actuarial funding legislation is put into place. In particular, requiring the use
of a valuation rate of interest lower than average rates of return does not imply
that that fund levels would on average equal the actuarial liability computed at the
valuation rate.
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