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Abstract

We consider the Sparre Andersen model modified by the inclusion of interest on the surplus.
Exponential type upper bounds for the ultimate ruin probability are derived by martingale
and recursive techniques. Applications of the results to the compound Poisson model are

given. Numerical comparisons of upper bounds derived by each technique are presented.
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1 Introduction

Consider the Sparre Andersen risk model. Let X;, X5, ..., denote the inter-claim times, and
let T, = ¥ r_, Xi denote the time of the nth claim, with Ty = 0. Let Y,, be the amount of
the nth claim.

We assume that {X,,n > 1} and {Y,,n > 1} are independent sequences of i.i.d. non-
negative random variables. {X,, n > 1} have a common distribution G(z) = Pr{X < z}
with G(0) = 0, and {Y,, n > 1} have a common distribution F(z) = Pr{Y < z} with
F(0) =0. Let F(z) =1 — F(x).

The number of claims up to time ¢ is denoted by N(¢) = sup{n : T,, < ¢}. Then the

aggregate claim amount up to time ¢ is
N(t)

Zt)=>_Y,.
n=1
If the insurer’s initial surplus is u > 0, then the Sparre Andersen model is given by
Ut)=u+ct—2Z(), t>0, (1.1)

where ¢ > 0 is the rate of premium income and U(0) = u. See, for example, Grandell (1991).
We assume that the positive net profit condition holds in this model, namely ¢ E(X) > E(Y).

In this paper, we consider the Sparre Andersen model modified by the inclusion of inter-
est. We assume that the insurer receives interest on its surplus at a constant continuously
compounded force of interest § > 0.

Let the time of ruin for this modified surplus process be 75 = inf{t : Us(t) < 0}, where
Us(t) is the surplus at time ¢ with Us(0) = u. We denote by 1s(u) the ultimate ruin
probability when the force of interest is §. Then

¥s(u) = Pr{rs < 0o} = Pr{Uyso (Us(t) < 0)}. (1.2)
Since ruin can occur only at the time of a claim, we have
ps(u) = Pr{Uzl, (Us(Tn) < 0)} = Pr{UgZ, (Ve(Tn) < 0)} (1.3)

where V5(T,) = Us(T,,)e T is the present value at time 0 of Us(T},).
We first consider expressions for Us(7},) and V5(7},). Recalling the notation for the present
and accumulated values of an annuity payable continuously, we denote

_(6) _ (1 —6_6t)/6, lf5>0,
I if6=0,




and Eg) = dgs) %, or, equivalently,

@ [ (=18 if6>0,
Sﬂ - . _
t, ifé6=0.

Since 6 > 0 is a constant, we have

Us(Th) = ue®™ + c(e?* —1)/6 - Y1,
Us(Tz) = Us(Th)ef*2 + c(e?*2 - 1) /6 - Yy
= yefX1+X2) o 6(65(X1+X2) -1)/6 - Vet — Y,

Us(Ty,) = Us(Tp_1)eb* 4 c(e?*» —1)/6 - Y, (1.4)
= ue’™ + c(e"™ ~ 1)/6 — Y Y exp {6 > Xi} , (1.5)
k=1 i=k+1

where we adopt the convention that Ef, = 0 when b < a. Thus,

Vs(T,) = Ug(Tn)e—éT" =u4c(l —e ) /6 - iYk exp {——6§:Xi} (1.6)

= u+c5f(1% —;Yke_”k (L.7)

with V5(Tp) = u.

In fact, {Us(T%), n > 0} is an embedded discrete surplus process of the Sparre Andersen
model modified by the inclusion of interest. A similar expression to (1.4) for Us(T;,) for the
compound Poisson model modified by the inclusion of interest has been given by Sundt and
Teugels (1995) and by Véazquez-Abad (2000).

Further, we define

¥s(u; n) = Pr{Ug_, (Us(Tk) < 0)} = Pr{U;_, (Vs(Tk) < 0)}. (1.8)
Then
Jim 9ps(u; n) = ths(u) . (1.9)

In fact, 1¥s(u; n) is the probability that ruin occurs no later than the nth claim.
Exact solutions for the ruin probability s(u) are difficult to find. In this paper, we
instead derive upper bounds for ¥s(u) by two different methods, which are martingale tech-

niques and recursive techniques, when suitable adjustment coefficients exist in the modified
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Sparre Andersen model. As applications of the results, upper bounds for the ruin probabil-
ity in the compound Poisson model are given, which are more amenable to calculation than
those given by Sundt and Teugels (1995, 1997). Numerical examples are given to illustrate

the applications of these upper bounds.

2 Upper bounds by martingales

Unlike the process {U(T,), n > 0} in the Sparre Andersen model of (1.1), the processes
{Us(T,), n > 0} given by (1.5) and {V5(T,), n > 0} given by (1.7) do not have stationary
and independent increments. Further, for any R > 0, the process {exp {—RVs(T.)} , n > 0}
is not a martingale. However, we can show that there exists a constant R; > 0 such that
{exp{—R1Vs(T,.)} , n > 0} is a super-martingale. Hence, using similar arguments to those
in the martingale proof of Lundberg’s inequality and the optional stopping theorem for
super-martingales, we can derive an exponential upper bound for ;. First, we recall a
modification of Proposition A.2.5 of Lamberton and Lapeyre (1996) concerning conditional

expectations.

Lemma 2.1 Let X and Y be two independent random vectors. For any non-negative (or
bounded) Borel function f,

E[f(X,Y)|o(X)] = g(X), a.s.
where the function g, defined by
9(z) = E[f(z,Y)],

is a Borel function. In other words, under the assumptions, we can compute E[f(X,Y)|o(X)]

as if X was a constant vector. ]

Throughout this section, and the next two, we assume that E(e'Y) exists for 0 < t < ¢,
and that lim,  E(e") = oo.

Lemma 2.2 There exists a unique positive number, Ry, such that

E [exp{—Rl(cd%) — Ye“‘sx)}] =1. (2.1)




Proof. This follows by considering the properties of the function
h(r)=FE [exp{——r(cdg—? - Ye_‘sx)}] )
Theorem 2.1 Let Ry be defined as in Lemma 2.2. Then, for any u > 0,
Ps(u) < e fv (2.2)
Proof. First, by (1.7), we have

Vs(Toy1) = Vis(Tn) +c (e*‘ST" - e“5T"+1) /6 — Yy 16Tt
= %(Tn) + 6_6Tn [Caé(%l—l —_ Yn+le—6xn+1] .

Let 7, = o{T1,...,T,}. Then, for any n > 0,

E [e—R1V5(Tn+1) I]:'n] — e—Rle(Tn)E

_Rle—sTn[c-(ﬁ) _ +le—6xn+1]
e ol T | Fu

—&T,

e n
—R [ca__.l'('s) -Y, 1e'6xn+l]
(C Xn+1 * | fn

e-RIVG(Tn) E

e—6Tn

—(5) = n
< e~ RiVs(Tn) (E P [C“-——HMI ~Yaire™?X +1] I,Fn}> (2.3)

e—%Tn

[ ~(8) —6X,,
e~ R1Vs(Tn) (E e—Rl [C Xntil “Yopre™¥ +1]]) (2.4)

= e RVeTn) (2.5)

which implies that {e~FYs(T») n > 0} is a super-martingale, where the inequality (2.3)

—6Tn

follows from 0 < e < 1, Lemma 2.1 and Jensen’s inequality for conditional expectations;

equality (2.4) holds since X, 11 and Y, are independent of F,,; and the equality (2.5) follows
from (2.1).

We know that 75 A n is a bounded stopping time since 75 is a stopping time. Thus, by

the optional stopping theorem for super-martingales, we get
Elexp{—R1Vs(Trsnn)}] < Elexp{-RiVs(To)}] = exp{—Riu}. (2.6)
However,
Elexp{ — RiVs(Tr;nn) }) = Elexp {—R1Vs(Trsnn)} I(75 < )]
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Efoxp {~ RyVs(Trg)} 1(rs < )

> E[I(1s < n)
= Ys(u; n). (2.7)
Hence equations (2.6) and (2.7) yield |
Ys(u; n) < e Py (2.8)
which gives (2.2) by letting n — oco. a

It can be checked that if 6 | 0 in (2.1), then R; reduces to the adjustment coefficient for
the Sparre Andersen model, which we denote by Ry. It is well known that R, satisfies

Elexp{—Ro(cX -Y)}|=1. (2.9)

Thus, Theorem 2.1 is a generalisation of Lundberg’s inequality for the Sparre Andersen
model.

Moreover, we note that the distribution of ¢ dﬂf% ~Y e in (2.1) is that of the discounted
value of the gain between two consecutive claims. However, the distribution of cs(6) Yis
that of the accumulated value of the gain between two consecutive claims. Hence, we expect
a different upper bound for s if we replace cw—] —~Ye %% in (2.1) by c3 ‘(6) —Y. Such an

upper bound, derived by a different method, is given in Section 3.

3 Upper bounds by recursive techniques

In this section, we derive a different upper bound to that of the previous section by recursive
techniques. Numerical comparisons between this upper bound and that in Theorem 2.1 are

given in Section 4.
Lemma 3.1 There exists a unique positive number, Ry, such that
[exp{ Ry( c.s-l - Y)}] =1. (3.1)

Proof. This follows by considering the properties of the function

h(r) = [exp{ Y)}]




Theorem 3.1 Let R, be defined as in Lemma 3.1. Then, for any u > 0,

Ys(u) < BE[exp{RsY}]E [exp {—R; (ue’® + 59 ) }] (3.2)
where
1 o e®¥dF (y)
07 = ar (33)

In particular, if F is NWUC (new worse than used in convex ordering), then for any u > 0,

Ys(u) < E[exp{ ~R; (ue6X+cs(6))}] . (3.4)

Proof. First, we condition on X; and Y; to obtain the following recursive equation for

Ys(u; n):

Yolws n+ 1) = B [usue™ +c52) — Y )]
= [T [T dstuet + 59 — y; m) dF ()G z)
ue6’+c_(6)

-k

Also, from the definition of 3 above we know that for any z > 0,

F(ue® + ¢39) + / Ys(ue®® + ¢4 —y; n)dF(y)| dG(z). (3.5)

Fla) < e [T emvap(y) (36)
< Be B (eRY) (3.7)

Thus, by equation (3.7), we have
Ys(u; 1) = Pr{¥; > ue® + ¢35}
. /o F(ue® + ¢3%) dG(r) (3.8)
RY\ [T _ bz (5)
< ﬂE(e 2 )/0 exp{ Rg(ue + ¢35 )} dG(z)
= (F (eR2Y) E [exp {—Rg (ue + c§9|) )}]
Under an inductive hypothesis, for some integer n > 1 we assume that
Ys(u; n) < BE (eRzY) E (exp {—Rg (ue +c3 'Qf )}) (3.9)
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Using equation (3.1) and the fact that eX > 1 we see that

Ys(u; n) < BE (eR2y) E (exp {—Rz (u +c5 "(—61) )}) Be Fav | (3.10)
Thus, by equations (3.5), (3.6) and (3.10), we have

vslint1) = [TBexp{-Ry(ue+es)} [0 e

ue6’+c (6)
/ / Bexp{ R, (ue6’ + cs — y)} dF (y)dG(z)
= ﬂ/o exp{—R ue’ +cs( ) }/ e dF (y)dG(z)
= PBE (eR2Y) E (exp {-—Rz (ue + 5% )}) .

Hence equation (3.9) holds for any n > 1. Thus, inequality (3.2) follows by letting n — oo

R
& 2 dF(y)dG(z)
3—1

in (3.9). In addition, inequality (3.4) follows from inequality (3.2) and the well known fact
that if F is NWUC, then 3 = [E (eRZ’Y)]—l. See, for example, Willmot and Lin (2000). O

The uppef bounds in Theorem 3.1 are different to that in Theorem 2.1. Also, since
[E (eRZy)]_I < B <1 and X > 1, we have the following simplified but weaker upper
bound for 5.

Corollary 3.1 Under the conditions of Theorem 8.1, for any u > 0, vs(u) < e %2,

Proof. From (3.2), we have

Ys(u) < BE (™) E (exp{~Ry (u+c59)})
= fBeFE (eR2Y) E (exp { Rsc 391) )
— ﬁe—Rzu S e—Rgu .

O
Furthermore, it can be seen that if § | 0 in equation (3.1), then R, is reduced to Ry in
equation (2.9). Thus, Theorem 3.1 is also a generalisation of Lundberg’s inequality for
the Sparre Andersen model without interest. In the next section we give applications of
Theorem 3.1 to the ruin probability in the compound Poisson model modified by the inclusion
of interest, a model which has been studied by many authors: see, for example, Dickson
and Waters (1999), Sundt and Teugels (1995, 1997), Vézquez-Abad (2000), and references
therein. In addition, numerical examples in Section 4 show that the upper bounds in Theorem

3.1 appear to be better than that in Theorem 2.1.
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4 Applications to the compound Poisson model

An important special case of the Sparre Andersen model is the compound Poisson model,
in which G(z) =1 —¢e7*, 2 > 0, XA > 0. In this case, the positive net profit condition is
c> AE(Y). ,

We denote by 1;(u) the ruin probability in the compound Poisson model modified by
the inclusion of interest, and we denote the moment generating function of Y as My (t) =
E (ety). Then equation (2.1) is equivalent to

E [exp {—Rlca%) }My(Rle“sx)} =1. (4.1)

First, we apply Lemma 2.1 and Theorem 2.1 to the compound Poisson risk model modified

by interest.
Lemma 4.1 There exists a unique positive number, k1, such that
/06/6 e~V (1 — 8y/c)*~t My [k1(1 — by/c) dy = c/). (4.2)
Theorem 4.1 Let k; be as in Lemma 4.1. Then for any u > 0,
P5(u) < e . (4.3)

Proof. In the compound Poisson model, X is an exponential random variable with mean
1/A. Thus,

E [exp {—nlca%) } My(nle“sx)]
= /oo exp {—nlc(l - e“‘s’”)/(ﬁ} My (k175%) Ae ™ dz
0
A re/é
= 2 [T e (1= 8y/9)5 My (1 - 8y/0)) dy, (44)
where (4.4) follows from the substitution y = ¢(1 — e7%)/§. Hence, equation (4.2) implies
that equation (4.1) holds, and so equation (2.2) yields equation (4.3). O
Next, we apply Lemma 3.1 and Theorem 3.1 to the compound Poisson risk model modified

by interest.

Lemma 4.2 There exists a unique positive number, ko, such that

[E (exp {r2Y})] " = % /0°° T ;;;’ZA/MI dy. (4.5)




Theorem 4.2 Let k3 be as in Lemma 4.2. Then for any u > 0,

\ o g—rau(l+8u/0)
* * koYY 20 —kKou
"[)6(”) < /8 E(e 2 ) ¢ e 0 (1 +(5y/C)’\/6+1 dy7 (46)
where
1 _ o do €VdF(y)
(ﬁ ) - %gg eK’2tF(t) (4.7)
In particular, if F is NWUC, then for any u > 0,
A o k2 y(1+6u/c) g 48
*u) < Zere . .
"pé(u) - Ce /0 (1 + 6y/c))\/5+1 Y ( )
Proof. In this case, we have '
E (exp{ KaC s( ) ) = /0 exp {—ngc(e‘SJD — 1)/6} e dz
—K2y d (
= = 4.9
c /0 (1 + 6y/c))\/6+1 Y )
where equation (4.9) follows from the substitution
y=c(e®® -1)/6. (4.10)
Hence, for this model equation (3.1) can be expressed as (4.5). Moreover,
_ 59 _ [ _ bz bz _ Xz
E [exp{ Ko(ue )}] = /o exp{ K2 (ue + cfe 1)/6)} Ae " dz
]\ o g-rull+ou/c)
= —e d 4.11
c /0 (1 + by/c) o+ Y (4.11)

where equation (4.11) follows from the substitution given by equation (4.10).
Thus, equations (3.2) and (4.11) yield equation (4.6), and equations (3.4) and (4.11) lead
to equation (4.8). O

Remark 4.1 If the individual claim amount distribution belongs to the class of NWUC
distributions, which includes the class of DFR (decreasing failure rate) distributions, then
equation (4.8) applies. Otherwise, we can replace 8* by 1 in equation (4.6) for other cases
since [E (e'”y)]—l <p*< 1.

Sundt and Teugels (1995, 1997) give a Lundberg type upper bound for 1}(u) in terms
of an adjustment coeflicient function £5(u); see equation (7) of Sundt and Teugels (1997).
However, £5(u) itself is the solution of a differential equation for the Laplace transform of an

auxiliary function of v} (u). Hence &5(u) is not calculable since 1} (u) is not available.
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Since

oo e—h2y(1+ud/c) o (1600
) A+ oy/o e W < | ey = 1/ko(1+ 6u/e),

by Theorem 4.2 we have the following simplified upper bounds for ¢§(u), which imply that
the upper bounds in Theorem 4.2 go to zero much more quickly than the exponential upper

bound e™*2* does.

Corollary 4.1 Under the conditions of Theorem 4.2, for any u > 0,

A eTh
* < k K.2Y - . .
v < E(eY) = (412)
In particular, if F is NWUC, then for any u > 0,
A ehev
x < —— 4.1
Yilu) < cka 1+ 6u/c (4.13)
(]

We note, however, that for small values of u, the bounds in Corollary 4.1 can easily
exceed 1.
We now give some numerical examples to illustrate the application of the bounds in The-

orems 4.1 and 4.2.

Example 4.1 Let Y have an exponential distribution with
Flyy=1—e¥* y>0, p>0.

In this case, an explicit formula for ¥§(u) is available, namely

o r(3 &+2)
Y5 (u) = T (%’ ﬁ) N gu(:\c;)lj\/se-c/éu

(4.14)

where I'(a,z) = [Py*le ¥dy,a > 0,z > 0 is the incomplete gamma function. See, for
example, Gerber (1979).
We set ¢ = 110, A = 100 and g = 1 so that E(Y) = Var(Y) = 1. We consider three

different values of 6: 0.01, 0.05 and 0.1. We first calculate the adjustment coefficients x; and

K9, shown in Table 1, then compare upper bounds with exact values in Tables 2-4, where
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‘Exact’ means exact value calculated from (4.14), ‘Recursion’ means the upper bound (4.8)
derived by the recursive method, ‘Martingale’ means the upper bound (4.3) derived by the
martingale method, and ‘Lundberg’ means Lundberg’s upper bound e~%*  where & is the

adjustment coefficient in the compound Poisson risk model (without interest), which satisfies
E[exp {—ko(cX - Y)}]=1.

It is easily verified that ko = 1/11. It can been seen from Tables 2-4 that the upper bounds
derived by the recursive method are tighter than both those derived by the martingale
method and by Lundberg’s upper bound, and are fairly close to the exact values for the
two smaller values of 6. In each case, a simple upper bound is ¥§(u) = (1 — Ko)e "¢,
i.e. the ultimate ruin probability when é = 0. This gives much tighter bounds than those
derived by the martingale method, but these bounds are not as tight as those derived by

the recursive method, and the difference between these two bounds increases as é increases.Ol

Example 4.2 Let Y have the gamma density

o, a—1
fly) = W—P?(id)—e‘w, y>0, (4.15)

where v > 0 and 0 < a < 1, so that the distribution has a DFR. In this case,

My(t) = (37?)& t< . (4.16)

We set 6 = 0.1, a =y = 0.75, c = 110, and A = 100. We note that E(Y) = a/y =1 as is
the case in Example 4.1, but Var(Y) = a/y? = 4/3 is greater than that in Example 4.1.
Thus, we expect that the ruin probabilities, and hence the upper bounds, in this example
will be greater than those in Example 4.1. An explicit formula for 1}(u) is not available in
this case. However, we find that ko = 0.07757, k; = 0.07764, and ko = 0.07828, and Table

5 shows that the upper bounds in this case are greater than those in Table 4. m]

Example 4.3 Let Y have the gamma density of (4.15), but with a > 1, so that the distri-
bution has an increasing failure rate. We set § = 0.1, o = v = 1.25, ¢ = 110, and X = 100.
Then E(Y) = a/y = 1 as is the case in Examples 4.1 and 4.2, but Var(Y) = a/7* = 0.8
is smaller than in Examples 4.1 and 4.2. Thus, we expect that the ruin probabilities, and

hence the upper bounds, in this example will be less than in Examples 4.1 and 4.2. In this

12



example, equations (4.3) and (4.6) apply to v¥}(u) with 8* = 1 in equation (4.6). We find
that ko = 0.10137, k; = 0.10146, and ko = 0.10228, and the values in Table 6 confirm the
above comments. O

We again observe in Examples 4.2 and 4.3 that the upper bounds obtained by the mar-
tingale method are not a great improvement on the Lundberg bound. Indeed, in each case
the values of k¢ and &, are very similar. In each of Examples 4.2 and 4.3, we also calculated
a tight numerical upper bound for 1%(u). This is shown under “Numerical” in Tables 5 and
6. These values were calculated using the algorithm described as “Method 1” in Dickson
et al (1995, Section 3.1), with a scaling factor of 100, a value which gives tight numerical
bounds. We observe that in Table 5, the numerical bound is tighter for lower values of u,
whereas in Table 6, the recursive method gives the tightest bounds. In general, the tightest
upper bound will not always be given by the recursive method. We note that in each of
Examples 4.1-4.3 the value of k, is greater than the value of k3. It can be shown that this is
always the case, and in the more general Sparre Andersen model R, is always greater than
Ry.

In conclusion, the results in this paper give analytical upper bounds for the ruin proba-
bility in the Sparre Andersen model with interest, and yield applications to the compound
Poisson model. All of our numerical investigations showed that upper bounds derived by the

recursive method are tighter than those derived by the martingale method.
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Table 1: Adjustment coefficients in Example 4.1

6 K1 Ko
0.01 { 0.09092 | 0.09100
0.05 | 0.09096 | 0.09133
0.10 | 0.09100 | 0.09174

Table 2: Upper bounds in Example 4.1 when é = 0.01

Exact | Recursion | Martingale | Lundberg
0 109082 | 0.9090 1.0000 1.0000
10 | 0.3609 | 0.3659 0.4028 0.4029
20 | 0.1422 | 0.1473 0.1623 0.1623
30 [ 0.0556 | 0.0593 0.0654 0.0654
40 | 0.0216 | 0.0239 0.0263 0.0263
50 | 0.0083 | 0.0096 0.0106 0.0106

Table 3: Upper bounds in Example 4.1 when 6 = 0.05

Exact | Recursion Martingale | Lundberg
0 [0.9049 | 0.9087 1.0000 1.0000
10 ] 0.3415 | 0.3644 0.4027 0.4029
20 [ 0.1239 | 0.1461 0.1622 0.1623
30 | 0.0433 | 0.0586 0.0653 0.0654
40 [ 0.0145 | 0.0235 0.0263 0.0263
50 | 0.0047 | 0.0094 0.0106 0.0106
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Table 4: Upper bounds in Example 4.1 when § = 0.1

u | Exact | Recursion | Martingale | Lundberg
0 109014 | 0.9083 1.0000 1.0000
10 | 0.3209 | 0.3626 0.4025 0.4029
20 | 0.1060 | 0.1448 0.1620 0.1623
30 | 0.0325 [ 0.0578 0.0652 0.0654
40 | 0.0092 | 0.0231 0.0263 0.0263
50 | 0.0024 | 0.0092 0.0106 0.0106

Table 5: Upper bounds in Example 4.2 when 6 = 0.1

Recursion | Martingale | Lundberg | Numerical
0 0.9207 1.0000 1.0000 0.9091
10} 0.4205 | 0.4601 0.4604 0.4178
20 | 0.1921 0.2117 0.2120 0.1929
30| 0.0878 0.0974 0.0976 0.0891
40 | 0.0401 0.0448 0.0449 0.0411
50 | 0.0183 0.0206 0.0207 0.0190

Table 6: Upper bounds in Example 4.3 when 6§ = 0.1

Recursion | Martingale | Lundberg | Numerical
0 0.8988 1.0000 1.0000 0.9091
10| 0.3229 0.3626 0.3629 0.3328
20 | 0.1160 0.1314 0.1317 0.1214
30 | 0.0417 0.0477 0.0478 0.0443
40 { 0.0150 0.0173 0.0173 0.0162
50 | 0.0054 0.0063 0.0063 0.0059
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