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Abstract

It is common practice to examine empirical models in which one of the
regressors is constructed as the weighted average or sum of a set of series
that includes the dependent variable. Examples include models relating
money and wealth, consumption and income and regional and national
unemployment. In this paper we show that biased results are likely to be
generated by such models and that the identified bias is distinct from the
more familiar simultaneous equation bias. The theoretical arguments are
illustrated with simulation experiments and as a practical example we
consider the relationship between regional and national unemployment in
Australia.
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Misleading Regressions with Constructed Variables

1. Introduction

It is common practice to formulate empirical models that include a regressor
which is constructed as the weighted average or sum of a set of variables that includes
the chosen dependent variable. There are some cases in which the formulation is
suggested by theory, such as the relationship between consumption and income,
where income includes consumption, or the relationship between money and wealth,
where wealth includes money balances. In other cases, the formulation of the model is
chosen as much by convenience as by theory, such as models relating regional and
national unemployment, where the national unemployment rate is a weighted average
of the various regional unemployment rates. Whatever the motivation behind the
formulation of such models, in this paper we show that they are likely to generate
misleading results because of an inherent bias in the parameter estimates. The
estimation bias arises from the formulation of the model and is caused by the
inclusion of the dependent variable in the constructed regressor. In view of its origin,
and to distinguish it from the more familiar simultaneous equation bias, we refer to
the identified bias as “construction bias”. We argue that, where possible, the model
should be reformulated to remove any potential construction bias. To facilitate the
development of the theoretical arguments, we concentrate on just one of the examples
mentioned above, casting the analysis in terms of the relationship between regional
and national unemployment. We therefore begin by explaining why this relationship
is considered to be of interest.

An important issue in the analysis of regional unemployment is whether

movements in regional unemployment reflect the impact of region-specific shocks or



shocks affecting the entire economy. If the behaviour of regional unemployment is
largely explained by national factors, it suggests that policies to reduce unemployment
in the regions are indistinguishable from national macroeconomic policies designed to
affect general demand and supply conditions across the economy. In contrast, if there
are strong region-specific components explaining the behaviour of regional
unemployment, the case for region-specific employment policies is stronger.

Previous studies examining the above problem have been based almost
entirely on an examination of the relationship between each regional unemployment
rate and the corresponding national rate, where the national rate effectively acts a
proxy for the for the aggregate forces driving the economy. The view that insight can
be gained by regressing regional unemployment rates on the national rate was
developed by Thirlwall (1966) and by Brechling (1967) in a paper published in this
journal. Since then, the notion that the behaviour of regional unemployment is best
examined in relation to the national unemployment rate rather than the unemployment
rates of other regions has become widespread. Relevant examples include Byers
(1990), Chapman (1991), Groenewold (1991), Martin (1997) and Debelle and
Vickery (1998). The typical conclusion from such studies is that a large proportion of
the variation in regional unemployment is explained by the national unemployment
rate, suggesting that national rather than region-specific forces are dominant'. In
contrast, we argue that the procedure of comparing regional and national

unemployment rates can give rise to serious statistical problems and that the results

! For example, in a recent study of Australian unemployment, Debelle and Vickery (1998) report that
“at least three-quarters of the variation in a state's unemployment rate is attributable to variations in
national unemployment”. Based on this finding, they suggest that “movements in the national
unemployment rate explain most of the variation in state unemployment rates, suggesting that
aggregate, rather than state specific factors, are most important in understanding Australia's high
aggregate unemployment rate”



are likely to be biased towards the conclusion that national forces are dominant in
explaining movements in regional unemployment. More generally, we argue that
similar bias problems arise whenever the model incorporates regressors that are
constructed to include the dependent variable.

The plan of the paper is as follows. In the next section we consider the nature
of the statistical problems that arise when examining the regional-national
unemployment relationship and illustrate the more general importance of these
statistical problems via a series of monte carlo simulation experiments. Section 3
examines by way of example the behaviour of unemployment in the Australian states
and suggests appropriate procedures to determine the relative importance of national
and region-specific factors. The final section provides a brief summary and discussion

of the points raised in the paper.

2. Analytical and Simulation Results

Continuing with the theme of the introduction, in this section we examine the
nature of the construction bias problem in the context of a model that relates regional
and national unemployment rates. The question we are concerned with is whether
regional unemployment movements are explained by national factors, affecting the
entire economy, or factors that are essentially region-specific. The basic idea is that
time series movements in the rate of unemployment in each region may reflect the
response both to innovations affecting the entire economy and innovations affecting
only that region. This is summarised in equation (1)

U,=BN,+R, +e, (1)
where U, is a time series of the unemployment rate in region i, N, is some national

stochastic process affecting unemployment in all regions, with an associated regional



impact parameter f3,, R, is a stochastic process specific only to region i, and e, is

some additional noise process.

The processes generating movements in the regional unemployment rates
shown on equation (1) are of course not observed independently and the problem is to
determine their relative importance when the only information available is the time

series paths of the various U, series. As discussed earlier, the standard approach to

this problem is to take the national unemployment rate as a proxy for the national

process NV, and then to examine the relationship between U, and N, using correlation

or regression methods, with the importance of the national process assessed according

to the proportion of the variation in U, explained by N,. As we shall see, a model

which relates a component of an aggregate to the behaviour of the aggregate itself can
give rise to important statistical problems that go beyond the simultaneity problem

that most people would see as being potentially present in this situation.”

2.1 Correlation Analysis

In this section of the paper we demonstrate that it is quite possible to observe
an apparently significant correlation between the regional rates and the national rate,
even if the regional rates themselves are uncorrelated, leading to a situation in which a
researcher may falsely conclude that national shocks are present even when the only
innovations in the system are region-specific. This can be seen by considering the
standard correlation coefficient.

For the sake of argument, consider two time series U; and U, generated by

independent (uncorrelated) white noise processes with mean zero and with constant

? Johnston (1979) was one of the first to explore the difficulties which can arise when a component of a
spatial aggregate is regressed on the aggregate value and the sensitivity of the outcome to size.



(and identical) variance o . Now consider a third series Z which is a weighted sum
of the two U series such that Z =aU, +(1-a)U,, with 0 <o <1. The correlation

between U, and Z is defined as

_ Cov{U,,Z} (2
“ \/Var{Ul}\/Var{Z}
Cov{U,,(aU, +(1-a)U,} 3)

- JVarUy\vari(aU, + (1-a)U,)}
The covariance of U, with itself is simply its variance and, given that U, and U,are
by assumption uncorrelated (zero covariance) and have a common variance o, , the

correlation coefficient in this case reduces to

7 . S— >o for O<a<l 4)

“ o J1=20+ 202

This shows that there is an inevitable correlation between any one of the series and
the weighted average (or aggregate) of the two and that the degree of correlation is
related to (and is actually higher than) the size of the & weighting. In cases where the
constructed aggregate variable is used, any judgement about the significance of
correlations between any one of the components of the aggregate and the aggregate
itself, would therefore have to allow for the correlation generated by the weighting
procedure used to construct the aggregate variable. For example, with « at say 0.3,
equation (4) tells us that the implied correlation is 0.3939 and any correlation below
this should certainly not be regarded as significant.

To illustrate the impact of the weighting procedure, we undertook a series of
monte carlo experiments, calculating the correlation between independently generated
white noise series and a third series constructed as a weighted average of the two.

Based on independent random draws from the standard normal distribution, we



constructed two uncorrelated series U, and U, for sample sizes ranging from 50 to
1000. The U series were then used to construct a third series Z =aU, +(1-a)U,,
with o varying from 0.0 to 0.9 in steps of 0.1. We then calculated the correlation
coefficient between U, and Z for each sample size. This process was repeated 5000

times for each sample size.” The results are summarised in Tables 1 and 2.
[TABLE 1 NEAR HERE]

Table 1 reports the mean realisation of the correlation coefficient for each sample
size, together with the theoretical correlation (shown as N=o) suggested by equation
(4). The mean realisations from each of the 5000 replications are very much in line
with the theoretical correlation, indicating that the weighting process induces a
correlation which is actually higher than the o weighting. The results are also
consistent across the various sample sizes.

In addition to the correlation induced by the weighting procedure, we need to
allow also for any chance correlation that might be present between the series.
Following a well-known result from Bartlett (1946), to rule out any chance correlation
at say the 5% significance level, for a sample size of N we would normally regard any

calculated correlation as significantly different from zero only if its absolute value

exceeded approximately 2/ VN . In the case of the constructed variable, the series are
related via the weighting procedure and it is necessary to add the chance correlation to
the correlation implied by the weighting before reaching any judgement about
significance. To identify the importance of the additional chance factor in the present

context, we used the full distribution of the simulation results to determine the

3 The outcome for N = 84 is included to cover the sample size of the empirical examples reported later.



appropriate 5% and 1% critical values for the correlation coefficient. The results are

reported in Table 2.

[TABLE 2 NEAR HERE)]

The critical values shown in Table 2 are measured as the cut-off points for the
5% and 1% tails of the empirical distributions of the correlations for each sample size.
In this case, as one would expect, the results do vary significantly with the sample
size and it is only in very large samples that the 5% and 1% critical values approach
the mean expected values of the correlation coefficient. Relating these results to our
discussion of regional unemployment, for a sample size of say 100, using the standard
formula, the 5% significance level would be approximately 0.2. In contrast, our
results suggest that for a region accounting for say 30% of the national labour force,
the correlation between the regional and national unemployment rates would have to
exceed 0.53 before it should be regarded as significantly different from zero at the 5%

significance level.

2.2 The Regression Model

An alternative way to examine the relationship between regional and national
unemployment is via the standard regression model. Let us suppose that
unemployment rates in the regions are driven by a common factor or process and that
the true relationship can be expressed in terms of the regression model shown in
equation (5)

U,=U,6B+e, (5)



where U, and U,, are column vectors, 8 is a constant system parameter and e, is a

column vector representing some noise process that might incorporate any region-

specific factors. The standard least squares solution for this model is

U0, UU,) =6 (©)
Now, for the sake of argument, let us suppose e, =0 so that we have a true error-free
model

u,=U,~06 (7)
In this case, € is a constant parameter and its value can easily be determined simply
by dividing any of the U, values by the corresponding U,, value. However, for the

sake of comparison with the regression model, it is helpful to solve for € in a slightly
roundabout way. Premultiplying both sides of (7) by the transpose of U,, and solving
by matrix inversion gives

ULU,) ULV, =6 ®)
Equation (8) is equivalent to the standard least squares solution for the regression
model, except that there is no error present and we have an exact solution for 6.

Now let us consider the case in which the model relates one of the U, series
(one of the regions) to the constructed variable Z,

Z,=oU,+(1-)U,, )
where Z,is equivalent to the national unemployment rate, constructed as a weighted

average of the regional rates (with the weightings given by « ). The regression model

relates the regional rate to the national rate, with some error term u,
U,=2ZpB+u, (10)

Again thinking of (10) for the moment as a model with no error term, we have



U,=27p (11)
And the solution for B can be expressed as

z/z)'(z/u,)=p (12)
which is again equivalent to the least squares solution with no error influence. Now,
the relationship between @ and [ can be seen if we re-write (12) more explicitly as

U,=laU,+(1-a)U,,18 (13)
Given the true relationship between U,, and U,, shown by equation (7), we can write
(13) as

U, =[{eb+(1-a)}U,, 18 (14)
And the solution for f is

U,U,) " (UU,)={ef +(1-a)} B (15)
We know from (8) that the left-hand side of (15) is the solution for € and hence

B=6/{c6+(1-)} (16)
Equation (16) shows that the model with the constructed Z, variable yields a solution
for [ which is a scaled version of 8, where the scaling depends on the size of the
o weighting used to construct Z,. For example, with @ at say 0.7, the values of S for

aat 0.2 and 0.5 would be 0.7447 and 0.8235 respectively. In practical terms, this
means that the inclusion of the constructed aggregate variable introduces a degree of
bias to the model solution, with the bias increasing the size of the model parameter by
some factor related to the size of the & weight. The special case in which =6 occurs
only at = 0, which is equivalent to the original model described by equation (7).

The point to note at this stage is that the models with the constructed

Z variable (equations 10 and 11) contain no more information than the U, -U,,

10



models (equations 5 and 7). Since [ is a consistently biased estimate of 6, with the
degree of bias rising with the weighting factor ¢, it might appear that the value of the
true system parameter 8 could be recovered from fif the & value is known. While this
is true for the model with no errors, the presence of the error term makes it difficult to
determine the true value of the system parameter and we argue later that it is

preferable to concentrate on the U ,-U,, relationship directly. An additional reason

for avoiding the model with the constructed variable is that the weightings on the
regions (the o values) actually vary over time. Most of the system parameters in
economic models are probably time-varying and the assumption of constant
parameters is a simplification that hopefully does not distort the results. As a practical
matter it is preferable to avoid introducing unnecessary inaccuracies, which again
suggests that we should if possible avoid the model with the constructed variable.

The problem of determining the value of the system parameter 6 is more
complicated when the error term is present. Returning to equation (5)

U,=U,~0+e,
it can be shown that

6 =(ULU,) (ULU,)+WULU,) " Ule,) (17)
and E[]=6 so long as E[(UIU, )" (Ule,)] =0, which we assume is the case for
the model described by equation (5). Now consider the model with the constructed Z
variable. The assumed model, including the error term, is shown by equation (10).
Given the definition of Z in equation (9) and the true relationship described by (5) we
can see that equation (10) is equivalent to the implicit regression

U, ={a0U,, +oe, +(1-a)U,,} B+ (1-a)e, (18)

where in (10),

11



Z, ={a0U,, +oe, +(1-a)U,,} and u, =(1-w)e,
The least squares solution of (10) is given by

Z'z)'z/u)=5 (19)
and it can be shown that

B=z)" zIu )+ 2 Z2) " (2] u,) (20)
and taking expectations we have

E[B1= B+ENZ]Z)"(Z]u,)] 1)

The statistical properties of the least squares estimator B hinge on the relationship
between Z, and u, andB is an unbiased estimator of S only if E[ZtTu,] =0. Given

that (10) is equivalent to the implicit regression (18), the expectation of Zu, can be

written as

E[Z7u]=E[ abU,e (-a)+a(l-a)e +U,, (1-a)e (-a)] (22)

t=1
Given the assumption that there is no correlation between U,, and e, in the true
model given in equation (5), the first and third multiplicative terms on the right-hand

side of (22) are equal to zero and the expectation E[Z u,]reduces to
E[Z]u]=a(l-a)o’ (23)

where o is the variance of the error term in the true model. Using this result, the

expression for the least squares estimator ﬁ shown by equation (21) can be written as
E[f1= B+EZ]Z) el - a)ol}] (24)

and EJ B] = fonly if & =0, which means that the estimated model is equivalent to

the true model described by (5). Another way of putting this is to say that the

inclusion of a fraction of the dependent variable on the right-hand side of the model

12



induces a degree of correlation between the Z, regressor and the error term and the
resulting estimate of the system parameter is likely to be biased and inconsistent, with
the degree of bias related to the size of o The two points to note here are, first, that
the error-induced bias is in addition to the systematic model-bias discussed earlier
and, secondly, that (24) suggests that the error-induced bias is greatest in the region of
a=05.

The implication of our analysis is that the use of the constructed aggregate
variable generates a degree of bias in the parameter estimates which is directly related
to the weight that the dependent variable carries in the constructed regressor. In so far
as this “construction bias” arises partly from an induced correlation between the
regressor and the error term, it is similar to the more familiar simultaneous equation
bias present in reduced form models of consumption, money demand and the like.
The two forms of bias are however different. Simultaneous equation bias arises when
the variables are related in a stochastic behavioural system that implies a correlation
between the regressor and the error term. In contrast, the bias we have identified
arises because the variables are related by a construction process (via an identity) that
leads to a non-stochastic (deterministic) bias that is unrelated to the error-regressor
problem, and an additional degree of bias arising from the error-regressor correlation
induced by the construction of the regressor. The latter component of the construction
bias (arising form the error-regressor correlation) is equivalent to a form of
simultaneous equation bias, but it arises from a different source, while the former

component (the deterministic bias) is completely separate from any simultaneity bias®.

* Another way of putting this is to say that the deterministic component of construction bias is always
associated with something equivalent to simultaneous equation bias, but simultaneous equation bias
need not be associated with anything equivalent to the deterministic component of construction bias.
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We come back to this matter in the next section, when we discuss the implications of
the construction bias for cointegrations tests.

In cases where simultaneous equation bias is present, or there is a similar bias
induced by measurement error, the recommended procedure (to obtain consistent
parameter estimates) is to use instrumental variables. If this procedure were applied in
the present context, the obvious instrument for Z; would be the original U,, variable
(or variables). This suggests that instrumental variable estimation is in fact
unnecessary and that the whole problem can be avoided simply by estimating (5)
directly’ rather than the Z, model of equation (10). More generally, our analysis
suggests that the entire bias problem can be avoided by reformulating the model so as
to avoid the use of the dependent variable in the constructed regressor®.

To illustrate the impact of the weighting procedure in the regression model,
we consider two sets of simulations. In the first set we consider the impact of
including the constructed variable when the component parts are completely
uncorrelated. We first generated two independent (uncorrrelated) white noise series
U; and U,, based on random draws from the standard normal distribution and a
sample size of 100. We then constructed a third series as a weighted average of the

two, Z=0aU, +(1-a)U,, with o varying from 0.0 to 0.9 in steps of 0.1, and then
estimated the regression model U, = Z, 8 +u, for each « value. This procedure was
repeated 5000 times. The results are reported on Table 3. The first three columns of

the table show the mean realisation of B , together with the mean realisation of the

> An additional reason for avoiding the Z model variable is that the estimates derived from the
instrumental variable procedure are likely to remain biased in small samples even though they are
consistent.

% In the case of the consumption-income and money-wealth examples mentioned in the introduction,
our analysis would favour the use of models with the consumption/income and money/wealth ratios as
the dependent variables, in preference to the more usual formulations.
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associated ¢ statistic and the proportion of ¢ values that were in excess of the 5%
critical value (CV). The final two columns show respectively the mean realisation of

the R and the 5% critical value implied by the full distribution of R* values.

[TABLE 3 NEAR HERE]
The results for the uncorrelated series are quite straightforward, indicating that B and

the R? values rise in line with the o weighting, with a particularly pronounced
increase in the 0.2 - 0.5 range for « as suggested by equation (24).

The second set of experiments is designed to show the potential bias in the
parameter estimates and R* when there is a true relationship between the series used

to construct Z,. In this case, the true Model is U,, =c+6U,, +e, and the estimated
model is U, =c+ fZ, +u, where Z,=oU, +(1-a)U,, . The data for U, was
derived as discussed earlier and U,, was constructed with a € value of 0.7. We then
estimated the S parameter for the different values of ¢, with the procedure repeated
5000 times. Table 4 reports the B estimates for the range of « values, together with
the mean realisations of the R for each equation. The table also shows the difference

between the ,B estimates and the true (error-free) values of @and f. Note that for =0

the estimated model is equivalent to the true model and ﬁ is the same as 6.

[TABLE 4 NEAR HERE]

The simulation results show quite clearly the impact of the two forms of bias
discussed earlier. The first row, for o = 0, shows the results for the true model, with

an accurate estimate of 6 and, based on the chosen signal-noise ratio of the

15



simulations, an R? of 0.33. The results for the other & values show quite clearly the
impact of both the systematic model bias and the error-regressor correlation bias

generated by the use of the constructed Z, variable. The results also confirm what was

suggested earlier, by equation (24), that the error-induced bias is greatest in the region
of ¢=0.5.

Taken together, the simulation results suggest that regressions of regional
unemployment rates against the national rate are likely to generate biased results that
make it difficult to identify the true relationship between the regions and, in
particular, the extent to which they are driven by national or region-specific processes.
More generally, the results suggest that the identified bias is potentially significant in

any model that includes the dependent variable in the constructed regressor.

2.3 Cointegration Tests

The preceding analysis is implicitly based on the assumption that the variables
in question are stationary, or have been rendered stationary by an appropriate
transformation, so that the regression results do not suffer from any spurious
correlation problem of the kind discussed by Granger and Newbold (1974) and
Phillips (1986). For completeness, to cover the case of non-stationary variables, we
need to consider whether the inclusion of the constructed variable in the regression
model has any consequences for cointegration tests. In particular, what we need to
know is whether the inclusion of the constructed variable on the right-hand side leads
to any increase in the number of cases for which cointegration is incorrectly

suggested, when neither of the independent series are in fact cointegrated.

16



Let us suppose that the regional unemployment rates U, andU ,, are driven by

stochastic trend-generating processes 7, and 7,, and additional stationary processes

e, and e,,
U,=T, +e, T, =T, +v, 25)
Uy =T, +e, T, =T, +v,

where v,and v, are white noise innovations driving the (random walk) trend

processes. If the series are cointegrated, it means that they are driven by a common
trend and it should be possible to identify a linear combination of the series with no
identifiable trend component. In the case of the series described by (25), the linear

combination is

U,—-AU,, =T, —AT,, + e, — Ae,, (26)
The series are regarded as cointegrated if there is a common factor of proportionality
¢ in the trend such that

T,, =91, 27)
In this case, the linear combination (26) can be written as

U,—-AU,, =T, —A4T,, +e, — Ae,, (28)
and with 4 =1/¢ equation (28) reduces to the stationary series

U,-AU, =e, — e,
In contrast, if (27) does not hold, there is no value of A that removes the trend from
the linear combination (28). The test for cointegration is thus a test of whether there is
some cointegrating vector [1 A] for which a linear combination of the U, series is
stationary.

Our concern is whether the use of the constructed Z, is likely to introduce any

bias into the cointegration test described above. Noting the descriptions of U,, and

17



U,, given by (25) and using the definition of Z, given by equation (9) in place of U,
in equation (26), the linear combination of the series is

U,-AZ =T, - Aod,, —A(1-a)T,, +e, —oe, — A(1—-a)e,, (29)
If the trends are common as in (27) the linear combination in (29) can be written as

U,-AZ, =T, - MHa+(1-a)¢}T, +e, —oe, —A(1-a)e,, (30)
and with 4 =1/{a+ (1—a)¢} equation (30) reduces to the stationary series

U,-AZ, =(-a)e, —A(1-a)e,,

In contrast, if (27) does not hold, so that the trends are uncommon, there is again no
value of A that renders the series stationary.

The implication of the above is that the use of the constructed Z, series leads
to a re-scaling of the cointegrating vector, which depends on the size of the weighting
factor a. This is equivalent to the systematic bias discussed earlier in relation to
equation (16). While this re-scaling in itself should have no impact on the on the
direction of the cointegration test result, in practice we need to recognise that the
power of the test in any practical setting depends on the extent to which the trend
“signals” (the 7,and T7,terms) are overlain by any additional noise (the e, and
e, terms). Generally speaking, the lower the signal-noise ratio, the lesser is the power

of the test to determine whether or not the series share common trends (Cochrane,
1991).

In their original exposition of the cointegration test, Engle and Granger (1987)
demonstrate that the usual simultaneous equation bias problem should have no impact
on the results of the OLS cointegrating regression and that the parameter estimates
remain consistent and actually approach the true asymptotic values more rapidly than

in the normal case. We have already seen that the use of the constructed variable, as
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opposed to the independent series, leads to a re-scaling of the cointegrating vector.
What we are most concerned with, however, is whether the use of the constructed
variable has any impact on the power of the cointegration test’. Bearing in mind the
power problem discussed by Cochrane (1991), it seems likely that the use of the
constructed variable in the cointegration test, as opposed to the independent series,
will have no impact on the results so long as the signal-noise ratios are similar for the
two independent series, because the overall SNR of the model with the constructed
variable will then be similar to the SNR of the model with the two independent series.
If the SNRs of the two series are very different at the outset, however, the re-
weighting implied by the use of the constructed variable will alter the SNR of the
model and may consequently affect the result of the cointegration test.

To check the above reasoning, we undertook a series of simulation

experiments based on two series U, and U, with a sample size of 100, generated by

independent (unrelated) random walks. We first examined models with no additive
noise, initially with stochastic trends of equal variance, and then with the variance of
T, approximately four times the variance of 7,. We then examined models as above,
but with added white noise (with noise variances broadly the same in each series). We
then examined two further models, with the U, and U, series constructed first with
similar trend variances and different noise variances and secondly with both different
noise variances and different trend variances. In all cases, the white noise components
were constructed with a zero mean. For the cases in which the trend and/or noise
variances differ, we structured the differences arbitrarily in the ratio of 4/1. In

summary, the simulation experiments are based on models of the following structure:

"It it does, it provides a further indication of the difference between construction bias and

simultaneous equation bias.
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1. Var(T))/Var(T,)=1/1, e, =e,, =0

2. Var(T))/Var(T,)=4/1, e, =e,, =0

‘
3. Var(T))/Var(T,)=1/1, Var(e,)/Var(e,) =1/1
4. Var(T))/Var(T,)=4/1, Var(e,)/Var(e,) =1/1
5. Var(T))!Var(T,)=1/1, Var(e))/Var(e,)=1/4
6. Var(T,)/Var(T,)=4/1, Var(e,)/Var(e,)=1/4
For each of the above models, we tested for cointegration between U,and U, using

the residual-based approach® of Engle and Granger (1987). We then constructed a

third series Z as a weighted average of U,and U, (with the o weights as before

ranging from 0.1 to 0.9 in steps of 0.1) and tested for cointegration between U, and

Z . This procedure was repeated 5000 times for each model. The null of no
cointegrating relationship is rejected or not rejected according to the value of the ¢
statistic derived from a unit root test on the residuals from an OLS regression, based
on the procedure suggested by Dickey and Fuller (1979), using the 5% critical value
reported by Davidson and Mackinnon (1993). From what we said earlier, the prior
expectation is that the cointegration results should be similar for the first two models
with no additive noise and the third model in which the series have similar trend
variances and similar noise strengths’. For the remaining three models, the use of the
constructed Z variable implies that the SNR will vary with the size of the « and this
may well influence the cointegration tests.

The results of the experiments are summarised on table 5. The first row of

each block of the table shows the o weights and the second row reports the mean

¥ We used the Engle-Granger approach rather than the more efficient VAR procedure of Johansen
(1995) on the grounds of computational simplicity.
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realisations (7) of the cointegration tests for each value of a. The third row of each
block shows the proportion of the full distribution of the ¢ statistics for which

cointegration 1s (incorrectly) suggested at the 5% significance level (¢ <t ).The first

column of each block (&=0.0) shows the results of the test for cointegration between
the underlying series U,and U, . The remaining columns report the results of the tests
for cointegration between U, and the constructed Z variable, over the range

o=0.1....0.9.

[TABLE 5 NEAR HERE]

For the models with no added noise (models 1 and 2) the results show quite clearly
that the cointegration test is extremely robust with respect to the change in model
specification, with little or no variation in the percentage of invalid rejections of the
null, even when the o weighting is as high as 0.9. In the case of model 3, the presence
of additive noise reduces the power of the test, in the sense that there is an increase in
the percentage of cases for which the null of cointegrating relationship is incorrectly
rejected at the conventional 5% significance level. However, the important point is
that the results are again invariant to the change in specification from the U,-U,
model to the various U, -Z models. This suggests that the cointegration test is robust
with respect to the change in model specification so long as the noise in the system is
evenly spread across the two underlying series, such that the change in specification

does not significantly alter the SNR. For the remaining models (4, 5 and 6) the

unequal trend and noise variances of the underlying series do imply significant

? These first three cases are the ones for which the overall SNR is unlikely to change significantly
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changes in the SNRs and in these cases the results are sensitive to the specification of
the model. In particular, it appears that the null of no cointegrating relationship is
more likely to be incorrectly rejected in the models with the constructed Z variable
and that the probability of an invalid rejection increases directly with the o weighting.
The implication is that the test for cointegration should where possible be conducted
in terms of the underlying series rather the constructed Z variable, particularly in

cases where significant differences in trend or noise variances are suspected.

3. The Case of Australian Regional Unemployment

To illustrate the arguments of the previous section, we consider the behaviour of
regional and national unemployment in the main states of the Australian
Commonwealth (AUS). The states are: New South Wales (NSW), Victoria (VIC),
Queensland (QLD), South Australia (SA), Western Australia (WA) and Tasmania
(TAS). Our approach is to apply correlation and regression methods to analyse the
relationship between the national unemployment rate and the unemployment rate of
each state. We discuss the problems in interpreting the results in the light of the
arguments of the previous section and then discuss appropriate procedures to
determine the relative importance of national and regional shocks. The series in
question are seasonally adjusted quarterly unemployment rates for persons covering
the period 1978Q2 to 1999Q1. The proportions of the national labour force accounted
for by each state vary over time and in 1988, the middle year of our study, they were:
NSW, 34.0%; VIC, 26.0%; QLD, 16.4%; SA, 8.5%; WA, 9.6%; TAS, 2.6%. There is

thus considerable variation in the weightings across the states.

between the U, -U, and U, -Z models.
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We begin by examining the contemporaneous correlations between the states
and between the states and the national rate. These are reported in Table 6. The
correlations are all relatively high, indicating significant positive co-movement in
unemployment across the states and in relation to the national unemployment rate.
The preliminary points to note are, first, that the correlations for each state with the
national unemployment rate are all higher than the cross-state correlations and,
secondly, that the magnitudes of the correlations follow the same order as the
weightings of the states with respect to the national unemployment rate, with the

highest and lowest correlations with AUS recorded for NSW and TAS.

[TABLE 6 NEAR HERE]

The problem with interpreting the information in Table 6 is that the
correlations are strictly meaningful only if the series are stationary. Previous studies
of Australian unemployment suggest that both the national and state series should for
practical purposes be regarded as following a unit root process, or at least a near-unit
root process.'’ Preliminary data testing using the Dickey-Fuller and Phillips-Perron
tests indicated the presence of unit roots in the series and we do therefore have the
possibility that the correlations in Table 6 are essentially spurious. This immediately
raises the question of whether the series are cointegrated and to determine this we
tested for common trends in the series, following the Engle-Granger procedure

discussed earlier.

"% Numerous studies of aggregate Australian unemployment suggest a unit root or near unit root
process (for example: Mitchell, 1993; Crosby and Olekans, 1998; Groenewold and Hagger, 1998;
Gruen, Pagan and Thompson, 1999) whilst Groenewold & Hagger (1995) and Debelle & Vickery
(1998 & 1999) and Dixon and Shepherd (2000) find that all state unemployment rates are non-
stationary.
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According to our analytical discussion in the previous section, and the
simulation results, the test for cointegration is robust with respect to whether the
model is cast in terms of the relationships between the states or between each of the
states and the national rate only if the change in specification does not significantly
alter the SNR of the model. While the SNR is not observable, prior examination of the
data indicated that the autoregressive parameters and variances of the individual series
(which measure their persistence and volatility characteristics) are similar, suggesting
that they have similar structures and that the change in specification may perhaps not
alter the SNRs dramatically. In any event, table 7 reports the results of a series of
bivariate cointegration tests for each state with respect to both the other individual

states and the national unemployment rate.

[TABLE 7 NEAR HERE]

The first column of results shows the cointegration tests for each state in
relation to the national unemployment rate. These suggest that there are no
cointegrating relationships with the possible exception of the SA-AUS relationship,
which is near the test borderline. The interesting point to note is that the results for the
state-national tests are confirmed by the state-state tests, which show no cointegrating
relationships between the states, except (again) for some borderline results with
respect to South Australia. This suggests that long-run unemployment movements

have not followed a common trend path across the states'.

" We should perhaps emphasise that, strictly speaking, the results imply only that we can’t reject the
null of no cointegrating relationship. This does not rule out the possibility that the series are
cointegrated and that the failure to reject the null is a consequence of the relatively low power of the
test, particularly in small samples.
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Given the general absence of any cointegrating relationships across the states,
we do indeed have the possibility that the correlations in Table 6 are spurious and so
the appropriate procedure is to look instead at the relationships between the

(stationary) first difference of the series. These are reported in Table 8.

[TABLE 8 NEAR HERE]

The results suggest that changes in unemployment in the states are positively related
to changes in the national unemployment rate, with correlations that at first sight
appear highly significant. While this is probably the case, we should note that the
highest correlations are again recorded for the states which account for the largest
proportion of the national unemployment rate and, in view of the simulation results
reported earlier in Tables 1 and 2, it is by no means clear whether NSW, VIC and
QLD should be regarded as being more strongly driven by national forces than are SA
and WA. Looking at the results for the inter-state relationships, which do not suffer
from a weighting bias, the correlations suggest a much more even pattern of
unemployment movement, with the exception of TAS, which has generally lower
correlations than any other state.

Following the direction of our discussion in the last section, we consider next
the unemployment relationships in terms of the regression model. In view of the fact
that the series are non-stationary and are not cointegrated, the appropriate procedure is
to examine the relationships between the first differences of the series. Table 9 reports
the results of a series of regressions, equivalent to equation (10) of the last section, in
which changes in the unemployment rates for each state in turn are regressed on a

constant ¢ and changes in the national unemployment rate AZ,

AU, =c+ BAZ, +u,
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As we discussed in the first section of the paper, the idea is to determine whether or
not unemployment movements in the states are driven by national rather than region-
specific forces.

The second and third columns of Table 9 show the constants and the f3
parameters for each state, with ¢ statistics in parenthesis. The fourth and fifth columns
show respectively the conventional R? for each regression and the LM test for first-
order serial correlation in the residuals. We also tested for the significance of lags in
the regional and national rates, but none were significant, with the exception of a
marginally significant ¢ value on the lagged national unemployment rate in the VIC
equation. In all other cases there was no evidence to support the inclusion of a
dynamic structure in the model. This confirms the impression given by the serial

correlation tests.

[TABLE 9 NEAR HERE)]

At first sight the regression results suggest that changes in unemployment in all of the
states are driven partly by national forces, reflected in movements in the national
unemployment rate, but that the importance of national forces varies considerably
across the states. For example, changes in the national unemployment rate appear to
account for 73% of the variation in unemployment changes in NSW, compared to less
than 10% for TAS. In general, it appears that the larger states have the closest
association with the national unemployment rate and the parameter values and R*
figures are ranked in the same order as the weightings attached to the states in the
calculation of the national unemployment rate. While this may reflect the fact that the

larger states have a genuinely closer association with the national forces generating
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unemployment movements, it may also reflect in part the bias problems discussed in
previous sections of the paper.

Our earlier analysis suggests that the weighting procedure used to construct
the regressor leads to results that consistently over-estimate the strength of the
relationship between each state and the national rate and that the degree of bias rises
as the weighting increases and is particularly acute in the middle ranges. Given the
relatively large weights attached to NSW and VIC, and to a lesser extent QLD, it is
pertinent to ask whether the relatively high parameter and R* values for those states,
particularly in comparison with SA and WA, do indicate a closer relationship with the
national shocks affecting unemployment or whether they mainly reflect the bias
problems arising from the use of the constructed national unemployment variable. For
example, the o weightings for VIC and NSW in the middle of our sample period are
approximately 0.26 and 0.34 respectively and the simulation results reported in Tables
3 and 4 suggest that the upward bias in the R? for those states could be as high as 0.2
and 0.3 respectively. Figures such as these would suggest that the true relationship
between state unemployment movements and national forces is more even across the
states than Table 9 suggests.

The thrust of our argument is that the inclusion of the national unemployment
rate in the regression model leads to severe statistical problems and that it would be
preferable to adopt an estimation strategy that utilises available information about the
direct interactions between the states rather than their relationship with the
constructed national rate. One possibility would be to use instrumental variables
estimation, using the state unemployment rates as instruments for the national rate,
with the state on the left-hand side of the regression excluded from the instrument set.

While this would help to improve the accuracy of the parameter estimates and the
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associated R?, there would remain a potential small-sample bias problem and in the
present context there is no compelling reason for choosing the instrumental variables
procedure in preference to the obvious alternative, which is simply to estimate the
inter-state relationships directly, in the context of a series of single-equation
multivariate regression models or perhaps a vector autoregressive framework.

Table 10 reports the results of a series of single-equation regressions relating
unemployment changes in each state to unemployment changes in all of the others.
The rows of Table 10 show the parameter estimates and associated ¢ statistics (in
parenthesis) together with the overall R* for each regression. The final column shows
the LM test for first-order serial correlation in the residuals. The constants were
negligible and insignificant in each regression and are not reported. The high degree
of correlation across the states reported earlier suggests that some of the 7 values on
the regression parameters may be unreliable, but the presence of multicollinearity
shouldn’t affect the overall R? values of the regressions, which is what we are

interested in here'?.

[TABLE 10 NEAR HERE]

The results for the inter-state regressions provide strong confirmation that the

previously reported R” values from the state-national regressions (Table 9) are biased

upwards for the larger states, over-emphasising the importance of national as opposed

"> The muticollinearity problem would also be present in a VAR model. One way to overcome the
problem is to estimate the model using principal component-common factor methods. As a check on
our results we estimated a series of models in which each state was in turn regressed on the principal
components extracted from the data set. This method avoids the muticollinearity problem since the
principal components are by construction orthogonal to each other (see for example Jackson, 1991).
The principal component regressions confirmed the results of the standard multivariate regressions
discussed in the text, suggesting that, with the exception of Tasmania, national as opposed to regional
forces explain somewhere between 40% and 50% of the changes in state unemployment.
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to region-specific shocks. It is interesting to note that the differences between the R
values from the state-national and state-state regressions for NSW, VIC and QLD are
almost exactly equal to the mean (spurious) R? values suggested for those states by
table 3. For example, the difference between the state-national and state-state R’
values for NSW is 0.2, which is approximately equal to the spurious R suggested by
interpolation for a state with a weighting of 0.34, based on the results reported in table
3. In contrast, the weights attached to SA, WA and TAS in the national
unemployment rate are relatively small and, as expected, the R* values from the state-
national regressions are similar to those reported in Table 10. Overall, the R? results
from the state-state regressions suggest that, if there is a national force affecting state
unemployment movements, it is associated with not much more than 50% of the
unemployment variation in the larger states and somewhere in the region of 40% in
the smaller states. The exception is Tasmania, which does not appear to be closely

related to the behaviour of the other states.

4. Summary and Conclusion

In this paper we have argued that there are significant statistical problems
connected with the estimation of models which include regressors that are constructed
as the weighted average or sum of a set of variables that includes the chosen
dependent variable. Our theoretical analysis shows that the parameter estimates of
such models are likely to be affected by a deterministic bias and a stochastic bias,
both of which arise from the procedure used to construct the regressor. In view of
their origin, we have referred to these two forms of bias collectively as “construction
bias”. The stochastic component of the construction bias is equivalent to a form of

simultaneous equation bias, but arises form a different source, while the deterministic
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component is independent of any stochastic simultaneity problem. Furthermore, our
analysis suggests that the identified bias problem is of significance in the
interpretation of cointegration tests as well as models of stationary series.

To illustrate the nature of the statistical problems, we framed our discussion in
terms of an analysis of whether movements in regional unemployment rates reflect the
impact of national or region-specific shocks. Previous studies have examined this
problem by considering how the various regional rates move in relation to the national
unemployment rate, where the national rate is constructed as a weighted average of
the regional rates. Our theoretical analysis and simulation results suggest that the
parameter estimates of such models are prone to construction bias and that the results
may be misleading in that they are likely to over-estimate the impact of national as
opposed to region-specific forces. As a practical example of the potential importance
of the construction bias problem, we examined the behaviour of Australian national
and state unemployment. The empirical results confirm that correlation and regression
models relating state and national unemployment rates are indeed likely to over-state
the importance of national as opposed to region-specific forces. We have argued that
the issue is best considered via a direct examination of the inter-state relationships,
rather than indirectly via the national unemployment rate. Based on this approach, our
results suggest that the degree of integration between the Australian states is
considerably less than the state-national regressions would imply and that the
potential scope for regional unemployment policy is consequently greater than the
state-national unemployment analysis would suggest.

Finally, we would emphasise again that the bias problem we have identified is
quite general and is likely to be present in any model that incorporates a regressor

which includes all or part of the dependent variable by construction. In such cases, the
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regression and correlation parameters are likely to be biased and, to avoid any
misleading conclusions, we would suggest that the model should where possible be
re-formulated so as to remove the influence of the dependent variable from the

regressor set.
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Table 1 Empirical Correlation Coefficients: Mean Realisations

A

A

A

Weight (@) r N=o t N=50 t N=84  N=100 f N=1000
0.0 0.0000 0.1153 0.0880 0.0802 0.0251
0.1 0.1104 0.1475 0.1287 0.1245 0.1099
0.2 0.2450 0.2462 0.2423 0.2414 0.2419
0.3 0.3939 0.3913 0.3920 0.3917 0.3933
0.4 0.5547 0.5514 0.5526 0.5522 0.5542
0.5 0.7071 0.7104 0.7052 0.7049 0.7067
0.6 0.8321 0.8299 0.8307 0.8305 0.8318
0.7 0.9191 0.9179 0.9184 0.9183 0.9190
0.8 0.9701 0.9696 0.9699 0.9698 0.9701
0.9 0.9939 0.9938 0.9938 0.9938 0.9939

Table 2 Correlation Coefficient:

Empirical Critical Values

Weight  Critical Values Critical Values Critical Values Critical Values
N=50 N=84 N=100 N=1000

o 1% 5% 1% 5% 1% 5% 1% 5%
0.0 0.3652  0.2854 0.2856  0.2120 0.2596 0.1956  0.0824  0.0628
0.1 0.4297 0.3448 03574 0.2905 0.3334 0.2728 0.1818  0.1613
0.2 0.5375 0.4560 0.4699 0.4085 0.4533 03933  0.3095 0.2906
0.3 0.6478  0.5802  0.5887 0.5401 0.5754 0.5260 0.4544  0.4370
0.4 0.7535 0.7028 0.7069  0.6734  0.6992 0.6601  0.6031  0.5902
0.5 0.8451 0.8101 0.8156  0.7907 0.8067 0.7818  0.7415  0.7326
0.6 09136 0.8943 0.8974 0.8825 0.8925 0.8772 0.8534 0.8474
0.7 0.9596  0.9499 09518 0.9440 09492 0.9419 0.9300 0.9268
0.8 0.9852  0.9818 09823 0.9794 09813 09788 0.9742 0.9731
0.9 0.9970  0.9963 0.9964 0.9958 0.9962 0.9957 0.9947  0.9945
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Table 3 Parameter Estimates and ¢ Statistics for Unrelated Random Processes

a Mean ﬁ Mean ¢ Proportion = Mean R’ R
statistic t> t0.05 5% C. V.

0.0 0.0011 0.7981 0.0522 0.01 0.04
0.1 0.1230 1.2497 0.1984 0.02 0.07
0.2 0.2949 2.5110 0.6964 0.07 0.15
0.3 0.5174 4.2919 0.9870 0.16 0.27
0.4 0.7687 6.6710 1.0000 0.31 0.44
0.5 0.9989 10.0020 1.0000 0.50 0.61
0.6 1.1527 14.9982 1.0000 0.69 0.77
0.7 1.2061 23.3253 1.0000 0.84 0.89
0.8 1.1761 39.9795 1.0000 0.94 0.96
0.9 1.0974 89.9421 1.0000 0.99 0.99

Table 4 Mean Experimental Realisations: True and Estimated parameters

o 6 b B p-p  B-o K
0.0 0.7 0.7000 0.7007 0.007 0.007 0.33
0.1 0.7 0.7216 0.8208 0.0992 0.1208 0.43
0.2 0.7 0.7447 0.9302 0.1855 0.2302 0.53
0.3 0.7 0.7692 1.0213 0.2521 0.3213 0.64
0.4 0.7 0.7955 1.0877 0.2922 0.3877 0.74
0.5 0.7 0.8235 1.1260 0.3025 0.4260 0.83
0.6 0.7 0.8537 1.1371 0.2834 0.4371 0.89
0.7 0.7 0.8861 1.1245 0.2384 0.4245 0.94
0.8 0.7 0.9211 1.0938 0.1727 0.3938 0.98
0.9 0.7 0.9589 1.0506 0.0917 0.3506 0.99
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Table 5. Cointegration Tests for Independently Generated Random Walks

1. Var(T)/Var(T,)=1/1, e, =e,, =0

o 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-2.04 -2.05 -2.05 205 -206 -2.05 -2.05 -2.04 -204 -2.04

~|

1<t
%91 0.054 0054 0.055 0.055 0.056 0053 0051 0.051 0.053 0.052

2. Var(T))/Var(T,)=4/1, ¢, =e,, =0

o 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-2.04  -2.05 -2.05 -2.05 -2.06 -2.05 -2.04 -2.04 -2.04 -2.04

~ I

1<t
*%10.053  0.056 0.055 0.0056 0.055 0.055 0054 0054 0053 0.055

3. Var(T))/Var(T,)=1/1, Var(e,)/Var(e,) =1/1

o 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t -2.47 246 246 246 245 246 246 246 247 247
1<ts

' 0.158 0.157 0.157 0.158 0.155 0.158 0.161 0.158 0.172 0.172

4. Var(T,)!Var(T,)=4/1, Var(e,)/Var(e,) =1/1

o 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-2.21 -2.23 -2.25 -2.29 -234 237 -2.40 241 -2.42 -2.43

~I

1<t
%91 0.093 0097 0.103 0.117 0129 0.139 0.151 0.154 0.155 0.153
5. Var(1,)/Var(T,) =1/1, Var(e,)/Var(e,)=1/4
o 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
t -2.61 -2.62 -2.64 -2.69 -2.77 -2.89 -3.02 -3.12 -3.19 -3.32
1<t
0910213 0216 0219 0235 0271 0304 0351 0389 0419 0432

6. Var(T))/Var(T,)=4/1, Var(e,)/Var(e,)=1/4

o 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-2.35 231 -233 246 -2.64  -2.81 -295 305 311 -3.16

~I

1<t
®%1 0.144 0128 0138 0.181 0230 0297 0344 0374 0400 0.416

Note: Residual Cointegration Test 5% Critical Value = -3.34
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Table 6 Correlation Matrix: State Unemployment Rates

AUS NSW VIC QLD SA WA

AUS 1.00
NSW 0.95 1.00

VIC 0.92 0.79 1.00
QLD 0.91 0.90 0.75 1.00

SA 0.94 0.87 0.92 0.82 1.00

WA 0.87 0.83 0.73 0.76 0.76 1.00
TAS 0.84 0.79 0.80 0.78 0.83 0.61

Table 7 Residual Cointegration Tests for Unemployment Rates

AUS NSW VIC QLD SA WA
AUS *
NSW -2.06 *
VIC -1.64 -2.71 *
QLD -2.34 -2.54 -2.37 *
SA -3.37 -2.92 -3.80 -2.59 *
WA -2.02 -1.41 -1.35 -1.35 -3.35 *
TAS -2.88 -2.61 -2.65 -2.62 -3.20 -2.01

Residual Unit Root Test 1% and 5% Critical Values = -3.90 and —3.34

Table 8 Correlation Matrix: First Differences of Unemployment Rates

AAUS ANSW AVIC AQLD ASA AWA

AAUS 1.00
ANSW 0.85 1.00

AVIC 0.81 0.63 1.00
AQLD 0.72 0.63 0.60 1.00

ASA 0.66 0.56 0.59 0.54 1.00

AWA 0.64 0.56 0.57 0.48 0.36 1.00
ATAS 0.30 0.30 0.33 0.27 0.19 0.25
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Table 9 State-National Unemployment Regressions

Regional AU Constant National AU R’ LM()
(t value) (t value)
NSW -0.010 1.08 0.73 0.00
(-0.41) (14.76)
VIC 0.004 1.03 0.66 0.89
(0.14) (12.48)
QLD -0.005 0.89 0.52 1.02
(-0.16) (9.42)
SA 0.016 0.77 0.44 0.45
(0.45) (8.00)
WA -0.004 0.74 0.41 0.10
(-0.11) (7.57)
TAS 0.425 0.48 0.09 1.77
(0.69) (2.86)
Table 10 State-State Unemployment Rate Regressions
State NSW VIC QLD SA WA TAS R’ LM(@)
NSW * 0.212 0.206 0.257 0.277 0.037 0.53 0.14
(1.84)  (201) (238  (2.38)  (0.56)
VIC 0.198 * 0.188 0.314 0.274 0.080 0.57 1.91
(1.84) (1.89)  (3.08)  (2.67)  (1.25)
QLD 0.242 0.236 * 0.157 0.107 0.076 0.43 0.12
(2.01) (1.89) (1.31)  (0.90)  (1.06)
SA 0.267 0.349 0.139 * -0.080 -0.031 0.42 0.55
(2.38)  (3.08)  (1.31) (-0.71)  (-0.45)
WA 0.293 0.310 0.097 -0.081 * 0.021 0.40 4.27
2.61) (2.67) 0.90)  (-0.71) (0.30)
TAS 0.110 0.250 0.191 -0.086 0.058 * 0.13 1.25
(0.56) (1.25) (1.06)  (-0.45)  (0.30)
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