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Abstract. This note studies conditions under which sequences

of capital per head generated by stochastic optimal accumulation

models have law of large numbers and central limit properties. The

regularity condition used on the productivity shock is somewhat

di�erent to that of previous studies. In particular, no restrictions

are placed on its support. Instead, an \average contraction" prop-

erty is required on the law of motion. Journal of Economic Liter-

ature Classi�cation Numbers: C51, C62, O41.

1. Introduction

A discrete-time stochastic growth model is characterized by a sequence

of probability distributions ('t)t�0 on the state space, one for each point

in time. The entire sequence of these distributions can be calculated

ex ante from the hypothesized laws of motion, the distribution of the

disturbance term, and a given initial value x0 for the state. A trajectory

or time series for the model is a sequence (xt)t�0 on the state space

generated by a simultaneous draw from each of these distributions (xt

is drawn according to 't).

For Markovian models, calculation of the sequence of distributions ('t)

can be performed iteratively. In other words, 't+1 can be calculated

from knowledge of 't alone, rather than the entire history of the se-

quence prior to t. Equivalently, there exists an operator mapping the
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collection of all distributions on the state space into itself with the prop-

erty that the image of the current distribution 't is the next period

distribution 't+1. An equilibrium for the growth model, if it exists, is a

distribution �' that is invariant under this operation. The equilibrium

is globally stable if 't ! �' in some appropriate topology, regardless of

initial conditions.

Conditions for existence, uniqueness and stability of such equilibria

have been studied by many authors.1 If convergence to a limiting dis-

tribution does occur, it is reasonable to ask whether sample averages of

time series generated by the model converge to the mean of the limit-

ing distribution, and whether average deviations from this population

mean are eventually normally distributed. In other words, do law of

large numbers (LLN) and central limit theorem (CLT) results hold for

the stochastic process generated by the model?

If an LLN condition holds, then it is possible to test a given theoretical

model by comparing the mean of the limiting distribution with a sam-

ple average from a suÆciently large data set generated by the system

under study. Conversely, suppose that an expression is available for

the mean of the hypothetical model in terms of its parameters. Then

the implied equality of this expression and the sample mean calculated

from data provides another equation for identifying parameter values.

If, in addition, a CLT result is available, then inference can be drawn

as to the likelihood of various parameter values.

In the existing literature, a well-known LLN condition for correlated

processes on compact state space is given in Stokey et al. [14, Theo-

rem 14.7]. In the context of stochastic growth, compactness of the state

space implies that the support of the productivity shock is bounded.

1The seminal papers are Brock and Mirman [4], Mirman [8], [9] and Mirman and

Zilcha [10]. For more recent results and an introduction to the literature, see, e.g.,

Stachurski [12].
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Bhattacharya and Majumdar [2, Theorem 2.2] provide a \splitting con-

dition" under which CLT results hold for systems on a bounded inter-

val. Ergodicity in moments for the Solow-Swan model with a shock

that is unbounded above but cannot be arbitrarily small is investi-

gated in Binder and Pesaran [3]. Evstigneev and Fl�am [5] and Amir

and Evstigneev [1] give CLT results for the asymptotic distributions of

aggregate rewards accumulated along equilibrium and optimal paths

in a stochastic Polterovich setting.

In this note, results recently obtained by  Loskot and Rudnicki [7, The-

orem 1, Theorem 3] are applied to provide suÆcient conditions under

which stochastic growth models have LLN and CLT properties.2 The

application involves translating the models into a space isometrically

isomorphic to the real line, where the conditions of  Loskot and Rud-

nicki are all satis�ed. No restrictions are required on the support of

the disturbance term.

Section 2 formulates the problem for an abstract dynamic economy,

and states the conditions developed by  Loskot and Rudnicki. Section 3

applies this framework to growth systems and examines two cases that

satisfy the conditions.

2. The Model

In what follows, (
;F;P) is a probability space, (X; d) is a metric space

and B(X) denotes the Borel subsets of X.

2.1. Perturbed dynamic economies. Consider a dynamic economic

model evolving on X. Preferences, technology, market conditions and

other primitives of the model imply a transition rule T , and that the

2Previously, the techniques of  Loskot and Rudnicki have been applied to com-

putation of entropy for iterated function systems (Slomczynski, Kwapien and Zy-

czkowski [11]) and analysis of neurodynamics (Feng and Brown [6]).
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action of T on the state is perturbed at each transition by an X-valued

shock "t. That is,

(1) T : X �X 3 (xt; "t) 7! xt+1 2 X:

The uncorrelated sequence of shocks ("t) is drawn according toP. More

precisely, " : 
 3 ! 7! "(!) 2 X is an F-measurable function, and the

time t value "(!t) 2 X is realized by an independent draw from 
 by

P. As anticipated by the above notation, the realized value "(!t) is

often written simply as "t.

Analogous to the de�nition in Brock and Mirman [4, p. 492], an equi-

librium for the economy (1) is a probability measure �' : B(X) ! [0; 1]

such that

(2) �'(B) =

Z
X

�Z



1B[T (x; "(!))]P(d!)

�
�'(dx); 8B 2 B(X):

The intuition is as follows. Suppose that the current distribution for

the state variable x is �'. The inner integral gives the probability of

traveling from current state x into Borel set B, and the outer integral

sums across all x 2 X, weighted by the probability �'(dx) of x occurring

as the current state. Thus the right hand side is the probability of the

state being in B next period, given that the current distribution is �'.

The left hand side is the probability of being in B this period. If (2)

holds for all B 2 B(X), then the probabilistic laws that govern the

current state do not change from period to period.

2.2. Asymptotic distributions. A real function g on X is called a

Lipshitz function on X if there exists a constant K such that jg(x)�
g(x0)j � Kd(x; x0) for any x; x0 2 X. The map T in (1) is called an

average contraction on X if there exists a measurable function � : X !
R such that E(�) =

R


�["(!)]P(d!) < 1 and

d(T (x; z); T (x0; z)) � �(z)d(x; x0) 8x; x0; z 2 X:

It is shown in  Loskot and Rudnicki [7, Theorem 1] that if X is complete

and separable, T is an average contraction on X, an initial point x0 2 X
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is given, and there exists at least one point �x 2 X such that

(3)

Z



d(�x; T [�x; "(!)])P(d!) <1;

then a unique equilibrium distribution �' exists. Moreover, the sequence

of state variables (xt) satis�es

1

N

N�1X
t=0

g(xt) !
Z
X

g(x) �'(dx) a.s.; N !1;

for any Lipschitz function g : X ! R.

If, in addition, E(�2) < 1 and

(4)

Z



[d(�x; T (�x; "(!)))]2P(d!) <1

also holds, then the sequence (1=
p
N)
P

N�1
t=0 g(xt) converges in dis-

tribution to a normal random variable with mean
R
X
g(x) �'(dx) and

variance �2 � 0 ( Loskot and Rudnicki [7, Theorem 3]).

3. Applications

The average contraction condition stated above is rather strong. For

stochastic growth models, the condition fails in the standard Euclidean

metric whenever Inada restrictions hold. However, there exists a com-

plete separable metric space in which a number of models satisfy the

condition. This proves suÆcient to obtain LLN and CLT results.

Let the state space X be the positive real numbers. Consider the one-

sector optimal growth problem

max E

"
1X
t=0

�tu(ct)

#
(5)

s:t: kt+1 = f(kt; "t)� ct(6)

where ct 2 X is consumption, kt 2 X is capital per head, � 2 (0; 1) is a

discount factor, and f : X�X ! X and u : X ! R are the production

and utility functions respectively.3 The utility function u is assumed to

3For background on the optimal growth problem see, e.g., Stokey et al. [14].
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satisfy u0(0) = 1, which assures interiority of solutions, and therefore

eliminates the possibility of zero savings or consumption. The shocks

"t 2 X are independent draws from P as before.

The solution to the planning problem, if it exists, is an optimal policy

g : X ! X, which associates realized output f(kt; "t) with optimal

current consumption ct. Optimal consumption g(f(kt; "t)) can then be

substituted into (6) to obtain the closed loop law of motion for the

system, which is in the form of (1).

Using this framework, the techniques of  Loskot and Rudnicki are now

applied to establish LLN and CLT results for two well-known parame-

terizations.

Example 3.1. Consider �rst the unit-elastic model, where u(c) =

log c, f(k; ") = Ak�", � 2 (0; 1). The productivity parameter A is

strictly positive. For such a speci�cation, the optimal policy consumes

a fraction 1� �� of realized output Ak�", implying the law of motion

(7) kt+1 = ��Ak�
t
"t:

De�ne a binary � on X � X by �(x; y) = j log(x=y)j. Evidently � is

a distance on X in the metric sense. Moreover, the space (X; �) is

isometrically isomorphic to R under the mapping x 7! log x when the

latter space is endowed with its usual Euclidean metric. Hence (X; �)

is a complete, separable metric space.

It is straightforward to show that (7) is an average contraction on X

for the metric �, with �(z) � �. If Ej log "j is �nite, then condition

(3) holds for �x = 1, implying the existence of a unique equilibrium

�' : B(X) ! [0; 1], and the LLN result

(8)
1

N

N�1X
n=0

g(kn) !
Z 1

0

g(k) �'(dk) a.s.
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for the process (kt), where k0 2 X is any strictly positive initial condi-

tion and g is any Lipschitz function on X.4

Evidently E(�2) < 1 also holds. If, in addition, E[(log ")2] is also �nite,

then (4) is satis�ed, and (1=
p
N)
P

N�1
t=0 g(kt) is asymptotically normal

with mean
R1
0
g(k) �'(dk).

Remark 3.1. The conditions Ej log "j < 1 and E[(log ")2] < 1 can

be viewed as restrictions on the left- and right-hand tails of the distri-

bution. See the discussion in Stachurski [13, Remark 4.1].

Example 3.2. The second example is from Mirman and Zilcha [10,

Example A, p. 333]. The state space X, the shock ", the discount

factor �, the productivity parameter A and utility u(c) = log c are as

before. Let � be a Borel function from X into (0; 1). The production

function is (k; ") 7! Ak�("). For such a speci�cation, the law of motion

is

(9) kt+1 = ���Ak
�("t)
t ; �� =

Z



�["(!)]P(d!):

Once again, the system is an average contraction on X under the metric

�, this time using �(z) = �(z). (Evidently E(�) = �� < 1). Note that

in this case (3) holds for any shock " when �x = 1. Hence for any strictly

positive initial condition k0, a unique equilibrium distribution �' exists

and (8) holds for arbitrary Lipschitz function g.

Moreover, E(�2) < 1, and (4) holds for any shock " when �x = 1,

implying that (1=
p
N)
P

N�1
t=0 g(kt) is asymptotically normal with meanR1

0
g(x) �'(dx).
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