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Abstract

We propose a flexible parametric MIDAS model that allows for overshooting by draw-

ing on the literature for oscillating systems. Unlike exponential Almon or beta lags,

weights can change sign. The model is parsimonious, easy to estimate, and includes a

decay parameter that avoids endpoint restrictions. We establish consistency of model

selection for oscillation based on suitable information criteria, and simulations support

the approach in finite samples. The model is illustrated via out of sample forecasts of

monthly changes in US inflation with a daily commodity price index, and the growth

rate in US industrial production with the CBOE volatility index.
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1 Introduction

Since the seminal work of Ghysels et al. (2004), MIDAS models have become a popular

method to analyse mixed frequency data.1 Most applications employ exponential Almon

or beta lags which are flexible, parsimonious and easy to estimate without the need for lag

length optimisation. While they capture a variety of lag structures, the same sign is imposed

on all lag weights which may be an issue if they oscillate or change sign.

It is well documented that economic activity is subject to short, medium and long term

cycles (Ercolani, 2014). Continuous time macro-econometric systems (Bergstrom, 1966;

Bergstrom et al., 1992) demonstrate that oscillating variables do not necessarily result in

oscillating lag polynomials, as this requires second or higher order differential equations and

complex roots. Oscillating lag polynomials are also consistent with the Dornbusch over-

shooting model of exchange rates (Dornbusch, 1976) and its extension to commodity prices

(Frankel, 1986).

The need for this flexibility is well understood when estimating distributed lag models

(DLMs). The polynomial distributed lag (PDL) of Almon (1965) allows for sign changing

weights, however it requires choices regarding lag length and polynomial order. Hendry et al.

(1984) notes ”the effects of an incorrect choice of polynomial and lag order are complex”

and if either choice is incorrect estimates are biased and inconsistent.2 Even if the lag length

is known, a judgement regarding the trade off from a loss of efficiency (from too high a

polynomial order) with biasedness and inconsistency (from too low a polynomial order) may

be required (Godfrey and Poskitt, 1975). Further, PDL estimates do not guarantee damping

of the lag weights and end-point restrictions often cause substantial loss (Trivedi, 1970).3

DLMs may have other functional forms that allow for sign changing weights, like the

flexible fourier series (Hamlen and Hamlen Jr, 1978), splines (Corradi and Gambetta, 1976)

or smoothness priors (Shiller, 1973). Fourier series require a choice regarding the number of

harmonic terms. Similar issues exist with splines, which require selection of the number of

knots, and the smoothness priors (SP) approach which requires a regularisation parameter.

1See Ghysels (2013) and Andreou et al. (2011) for reviews.
2Amemiya and Morimune (1974) show that the optimal lag length and polynomial order depend on the

values of the data generating process (DGP), the number of lags, sample size, ratio of the error variance to
the dependent variable variance, and degree of autocorrelation in the dependent variable.

3Whilst statistical tests may be used, the lag and polynomial order are unknown and there are different
end point restrictions, so many tests are required.
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Estimates from all approaches may be sensitive to changes in lag length, so lag length

optimisation is required. There is also no guarantee that weights will damp.

MIDAS models have employed some of these flexible forms, however they suffer from sim-

ilar issues. Breitung and Roling (2015) employ the SP approach to estimate a non-parametric

(NP) MIDAS model. Even though estimation employs least squares, it is computationally

intensive and requires judgement. Estimation is required over a range of lag lengths, with

the smoothness parameter for each lag length determined via numerical optimisation of a

modified AIC. Limitations of the modified AIC are acknowledged by the authors noting that

”experimentation” is required. The PDL has also been applied to MIDAS (Ghysels, 2013;

Pettenuzzo et al., 2016), where choice of lag length, polynomial order and the possibility of

endpoint restrictions apply.

We propose a parametric MIDAS model that addresses these limitations, adopting a form

used for underdamped oscillation in the physics literature. The flexible form can capture

shapes associated with the exponential Almon and beta lags, but also allows the weights

to change sign. Unlike previous polynomials that allow for sign changing weights (fourier

series, spline, PDL or SP), little judgement, restriction testing or computational effort is

required. The specification is parsimonious (with four parameters plus a constant), and easy

to estimate. One of the parameters captures the rate of decay which helps avoid non-damping

lag weights and endpoint restrictions. Like the exponential Almon and beta polynomials,

the model determines the number of lags.

Asymptotic theory establishes consistency of the use of information criterion for model

selection between the proposed underdamped oscillation MIDAS model (UO-MIDAS), a

restricted version without oscillation, and no predictability. The approach is supported by

monte carlo simulation, which also supports the finite sample properties of the non-linear

least squares estimator and forecast performance relative to benchmarks. For illustrative

purposes we consider two data sets. The first forecasts US inflation using a daily commodity

price index, because commodity price overshooting sees the short term effect exceed the

long run effect (Bergstrom et al., 1992; Frankel, 1986). The second forecasts US industrial

production (IP) using the CBOE volatility index (VIX), given the overshooting of industrial

production in response to a rise in uncertainty (Bloom, 2009). For both data sets the PDL,

NP and UO MIDAS models capture overshooting, however UO MIDAS is much easier to
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implement and provides superior out of sample (OOS) forecasts.

The paper is structured as follows. Section 2 provides theoretical support for oscillat-

ing lag polynomials. Section 3 briefly discusses the MIDAS literature and introduces the

new model. Section 4 develops the asymptotic theory and section 5 assesses finite sample

performance. Section 6 is the empirical application. Concluding remarks follow.

2 Theoretical support for oscillating lag polynomials

Bergstrom (1966) uses first order differential equations to characterise a macro-econometric

system where variables adjust in response to deviations from a partial equilibrium level. De-

pendent variables respond to stimulus from other variables with exponentially decaying lags,

with subsequent work permitting richer forms of lag distribution via second order differential

equations (Bergstrom et al., 1992). Both models study the system near the equilibrium vec-

tor x∗ by linearising it around that equilibrium via A = ∂f(x)
∂x |x=x∗ , where A is the Jacobian

matrix, Dy = Ay where y is the vector of variables and D denotes the change. When the

initial state is close to x∗, if the eigenvalues of A have negative real parts, the system is

stable around x∗ and all trajectories approach x∗ as t→ ∞. If at least one eigenvalue has a

positive real part the system is unstable, while complex eigenvalues result in an oscillating

variable trajectory.4

Oscillating variables do not guarantee oscillating lag distributions as they require second

(or higher) order differential equations and complex roots. Most equations in Bergstrom

et al. (1992) have two speed of adjustment parameters (γ1 and γ2) that determine the lag

distribution. Most equations are expressed as D2yi = −γ1Dyi + γ2(x − yi), where yi is the

ith dependent variable and x is a function of other variables. If roots of the characteristic

equation z2+γ1z+γ2 = 0 are real, lag polynomials will not oscillate, but complex roots will

result in oscillation.

To see why, consider the general solution to a second order linear homogeneous differential

equation with characteristic equation z2 + γ1z + γ2 = 0 and complex roots z = l + αi and

z = l − αi. Derivation of the general solution is well understood (and is available in most

4Recent work often finds Hopf bifurcation boundaries with regular oscillation (Barnett et al., 2015).

4



undergraduate mathematics texts), with the solution equal to

y = elt[A cos(αt) +B sin(αt)] (1)

where y denotes the value of the series at time t. The derivation of equation 1 employs

Euler’s equation eiq = cos(q)+ isin(q) which establishes the link between complex roots and

oscillation in the series. Given the standard solution characterises the dynamics of the series

(y) over time, Bergstrom’s application to a lag polynomial replaces y with the polynomial

weight w(j) for lag j

w(j) = elj [A cos(αj) +B sin(αj)] (2)

In section 3.2 we will see this solution characterises the lag polynomial for our proposed

model.

Of the 14 equations in the system, only inflation and exchange rates overshoot which is

consistent with the Dornbusch model of exchange rates (Dornbusch, 1976) and its extension

to commodities (Frankel, 1986). Like exchange rates, commodity prices are flexible so the

commodity market over-reacts with short term effects greater than long run effects. These

results motivate our proposed model below.

3 MIDAS Models

Section 3.1 provides a brief overview of MIDAS, outlining some of the alternative specifica-

tions. We then introduce the proposed model in Section 3.2.

3.1 Previous literature

The MIDAS model for a single explanatory variable and h step ahead forecasting is

Yt = β0 + β1W (L1/m; θ)x
(m)
t−h + εt (3)

where W (L1/m; θ) = ΣK
j=1w(j; θ)L

(j−1)/m, K is the lag length and Ls/mx
(m)
t−1 = x

(m)
t−1−s/m.

Here t is the low frequency time unit (say monthly) and m is the higher sampling frequency

(say daily), where L1/m operates at the higher frequency. This has been extended to the p
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order autoregressive(AR)-MIDAS model

Yt = β0 +

p∑
i=1

λiYt−h−i+1 + β1W (L1/m; θ)x
(m)
t−h + εt (4)

as well as a common factor structure 5

Yt = β0 +

p∑
i=1

λiYt−h−i+1 + β1W (L1/m; θ)(1−
p∑

i=1

λiL
i)x

(m)
t−1 + εt. (5)

The most common polynomial is the exponential Almon lag (herein the Almon lag)

w(j; θ) =
exp(θ1j + θ2j

2)∑K
j=1 exp(θ1j + θ2j2)

. (6)

An alternative is the beta lag

w(j; θ) =
f( j

K , θ1; θ2)∑K
j=1 f(

j
K , θ1; θ2)

(7)

where f(x, a, b) = xa−1(1−x)b−1Γ(a+b)
Γ(a)Γ(b) and Γ(a) =

∫∞
0 e−xxa−1dx. Both polynomials impose

the same sign on all lag coefficients which may be unsuitable if there is overshooting. More

flexible approaches like the polynomial distributed lag (PDL) of Almon (1965) let the weights

change sign

w(j; θ) =
P∑

k=0

θkj
k (8)

however as mentioned above, there are significant costs if an incorrect polynomial order

(P ), lag length (K) or end-point restriction is imposed. Stepwise weights (Forsberg and

Ghysels, 2007) require determination of the number of steps and may not be parsimonious.

By estimating a coefficient for each lag, the unrestricted MIDAS model (Foroni et al., 2015)

requires a low m. The non-parametric model (NP-MIDAS) (Breitung and Roling, 2015)

overcomes this but requires a regularisation parameter. Further, all of these models require

a choice of lag length and none guarantee polynomial decay.6

5Clements and Galvão (2008) are critical of the basic AR(p)-MIDAS specification because it artificially

generates a periodic response of Yt to x
(m)
t .

6Many other extensions to the model have occurred, including specifications that employ machine learning
and textual data (Babii et al., 2022).
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3.2 The proposed MIDAS model

We propose a parametric form that draws on the physics literature for oscillating systems.

The model is parsimonious, easy to estimate, and includes a parameter that captures poly-

nomial decay. This latter feature lets the data determine the number of lags, and helps

avoid non-damping lag polynomials and endpoint restrictions. An autoregressive version of

the underdamped oscillation MIDAS model (UO-AR(p)-MIDAS) is

Yt = β0 +

p∑
i=1

λiYt−h−i+1 +

K∑
j=1

w(j; θ)x
(m)
t−1−(j−1)/m + εt (9)

where

w(j; θ) = e−
γ
2
j [A cos(αj) +B sin(αj)]. (10)

The common factor version of the model (UO-comfac-MIDAS) applies the polynomial (Equa-

tion (10)) to the common factor structure (Equation (5)). The model without auto-regressive

dynamics (UO-MIDAS) applies the same polynomial to Equation (3). UO MIDAS (no hy-

phen) denotes all versions of the model.

The UO polynomial has four parameters θ = (γ,A,B, α), where γ controls the rate of

geometric damping, A and B control the oscillation amplitude or signal strength, and α the

oscillation frequency. Figure 1 plots e−
γ
2
j by lag for γ values between 0.025 to 0.4. For

a lag length of one year γ may be ≈ 0.025 for daily data and ≈ 0.4 for monthly data.7

Unlike the Almon and Beta polynomials which normalise lag weights and summarise the

overall response via β1, the UO polynomial is not normalised. This is because even if the net

effect of x
(m)
t is zero, the oscillating polynomial may still be useful for forecasting. Instead, a

higher signal to noise ratio (SNR) is achieved by increasing A and B.8 The model’s flexibility

therefore comes at the cost of not being able to summarise the overall response of Yt to x
(m)
t−h.

(Insert Figure 1)

Table 1 reports parameter values for 8 DGPs, and Figure 2 plots their polynomials up to

lag 250. DGP1 is based on empirical estimates below, and is consistent with overshooting.

7In physics the damping ratio is γ = c/
√
km, where c is a friction coefficient, m the mass of the object and

k the elastic constant corresponding to Hooke’s law. Equation 10 applies the polynomial associated with the
standard solution i.e the real part of the complex root l = −γ/2 however l = −γ∗ could also be used (where
γ∗ = γ/2).

8Holding α and γ constant, an ”x” fold increase in A and B re-scales the y axis by a factor of ”x”, without
changing the polynomial shape.
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If α = 0, B is unidentified and there is no oscillation with geometric decay (DGP2). An

increase(decrease) in α, increases(decreases) oscillation (DGP3-4). The relative weights on

A and B move the location of the hump (DGP4) and an initial negative response occurs if

B < 0 (DGP5-6). A decrease in γ slows the rate of decay (DGP7) and γ increases dampen the

oscillation irrespective of α. Lags similar to empirical Almon and beta polynomial estimates

can also be generated (DGP8).

Table 1: UO-MIDAS model parameters

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8

β0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
γ 0.04 0.10 0.04 0.06 0.10 0.04 0.005 0.15
A 0.01 0.01 0.01 0.001 0.001 0.01 0.01 0.01
B 0.01 0.00 0.01 0.01 -0.01 -0.01 0.01 0.10
α 0.09 0.00 0.15 0.05 0.09 0.09 0.05 0.05

(Insert Figure 2)

The UO polynomial is similar to the flexible fourier form (FFF)

w(j; θ) =

Q∑
i=1

[
θ1,i sin

(
2ijπ

K

)
+ θ2,i cos

(
2ijπ

K

)]
(11)

which has been employed as a trend function in VARs (Enders and Jones, 2016), volatility

(Baillie and Morana, 2009), and unit root testing (Enders and Lee, 2012), as well as a lag

polynomial in DLMs (Hamlen and Hamlen Jr, 1978). Q may be determined via information

criteria (IC), however its order and shape can vary significantly depending on the IC used.

When modeling a trend, K is the number of observations and there is no need for damping.

When fitting a lag polynomial, weights are expected to damp and estimates can be very

sensitive to the lag length. Estimation therefore requires joint determination of Q, K and

the possibility of end-point restrictions.

4 Model selection

An identification problem may arise in the UO-MIDAS model for certain coefficient values.

A leading example is that the coefficients w(j; θ) are monotonic in j if α = 0, in which case

B is not identified. A similar lack of identification of B occurs if α = π, albeit w(j; θ) are

not monotonic in this case. Another example is that A = B = 0 will result in w(j; θ) = 0 for

every j, implying Xt is not useful for forecasting Yt and γ and α are not identified. In this
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section we address these possible identification issues for UO-MIDAS using model selection

based on an information criterion. We propose the Schwarz (SIC) or Hannan-Quinn criterion

(HQIC) for model selection between UO-MIDAS, and versions with no oscillation (α = 0)

or no predictability (w(j; θ) = 0 for all j ∈ 1, 2, ...K). This is shown to provide consistent

selection of the correct model.9

To develop the approach, re-express the UO-MIDAS model as

Yt = X ′
t−1W (θ) + εt

where

Xt−1 =



xt−1

xt−1−1/m

...

xt−1−(K−1)/m


, W (θ) =



w(1; θ)

w(2; θ)

...

w(K; θ)


, θ =



γ

A

B

α


Denote the parameter space for θ by Θ = Γ × A × B × [−π, π]. The true parameter values

are denoted θ0 = (γ0, A0, B0, α0)
′. Additional regressors, such as intercept and lags of Yt,

are omitted from this representation but would be included in any estimation as required

without changing what follows. The range for α is restricted to [0, 2π− ε] for small ε > 0 for

identification purposes — the non-negativity is because the functions cos and sin are even

and odd respectively, and the upper limit of 2π is because cos and sin have periodicity of

2π. The relevant parameter configurations for the model selection step are as follows.

(a) The unrestricted parameter space is denoted Θa = Γ × A × B × [0, 2π − ε] with free

parameter count for the IC below given by pa = 5 (including intercept).

(b) If A = B = 0 then w(j; γ, 0, 0, α) = 0 for every j, implying that Xt−1 has no predictive

power for Yt, and γ and α are not identified. The restricted parameter space for this

9Physicists avoid these issues because the oscillating variable is typically observable. On measuring the
decay ratio ((height of the second peak)/(height of the first peak)) and period of oscillation (time between the
first and second peaks) UO parameters are calculated analytically. In the UO-MIDAS model, the oscillation
is a latent relation between variables, so these methods are not possible. An alternative more computationally
intensive approach would employ a Davies procedure (Davies, 1987; Hansen, 1996). If η denotes the parameters
under the null and ϕ the unidentified nuisance parameters, when ϕ is identified the test statistic is based on
the expected score ∂l(η, ϕ)/∂η only being equal to zero when η and ϕ are at their true values. When ϕ is
unidentified, the expected value of the score is zero when η is at its true value and ϕ is an arbitrary constant
(Davies, 1987). The score can be calculated over a range of values for ϕ and the maximum determined. Unlike
the regular test, the null is not χ2

1. It should be noted that in the Almon and beta MIDAS models β1 and θ
are not separately identified under the null: θ1 and θ2 are identified if β1 ̸= 0 and β1 is identified if the lag
weights sum to unity.
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situation is denoted Θb = {0} × {0} × {0} × {0} with free parameter count for the IC

given by pb = 1.

(c) If α = 0 then w(j; γ,A,B, 0) = e−
γ
2
jA, implying that B is not identified. In this

case Xt−1 has predictive power for Yt with monotonic non-oscillating weights. The

restricted parameter space is denoted Θc = Γ × A × {0} × {0} with free parameter

count for the IC given by pc = 3.

(d) If α = π then w(j; γ,A,B, π) = e−
γ
2
jA(−1)j , implying that B is not identified. In

this case Xt−1 has predictive power for Yt with oscillating weights. The restricted

parameter space is denoted Θd = Γ×A×{0}× {π} with free parameter count for the

IC given by pd = 3.

Hypothesis testing to select between cases (a)–(d) would be complicated by unidentified

nuisance parameters in (b)–(d). Nevertheless an approach based on a standard information

criteria can give consistent model selection between (a)–(d). The (quasi) Gaussian log-

likelihood for the model can be expressed

ℓn(θ) = −n
2
log(1 + 2π)− n

2
log σ̂2n(θ)

where σ̂2n(θ) is the usual variance

σ̂2n(θ) =
1

n

n∑
t=1

(Yt −X ′
t−1W (θ))2.

The IC has the penalised log-likelihood form

ξm = −2 max
θ∈Θm

ℓn(θ) + pmqn, m = a, b, c, d.

This is the Schwarz criterion if qn = log n, the Akaike criterion if qn = 2, and the HQ criterion

if qn = 2 log log n. The selected model from a, b, c, d is the one with the smallest value of ξm.

The following technical assumptions are made to prove Theorem 1, which gives the consis-

tency of model selection between cases (a)–(d).

Assumptions

(A) Θ is compact.
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(B) θ0 lies in the interior of Θ.

(C) (Xt, εt) is strictly stationary and ergodic with finite fourth moment.

(D) εt is a stationary martingale difference sequence with E(ε2t ) = σ20 and finite fourth

moment

(E) E(XtX
′
t) = ΣXX exists and is non-singular.

The compactness of Θ can be imposed by placing bounds on the parameters, for example

γ ∈ Γ = [0, γ], A ∈ A = [A,A], α ∈ [0, 2π − ε], B ∈ B = [B,B]. For restricted estimation

imposing α = 0, define the restricted parameter space Θα = Γ×A× B × {0}.

Theorem Under Assumptions (A)–(E), qn → ∞ and n−1qn → 0

(a) If (A0, B0) ̸= (0, 0) and α0 ̸= 0 or π then P (ξa < ξb, ξc, ξd) → 1.

(b) If A0 = B0 = 0 then P (ξb < ξa, ξc, ξd) → 1.

(c) If (A0, B0) ̸= (0, 0) and α0 = 0 then P (ξc < ξa, ξb, ξd) → 1.

(d) If (A0, B0) ̸= (0, 0) and α0 = π then P (ξd < ξa, ξb, ξc) → 1.

The proof is provided in the Appendix. The implication is that the SIC (cn = log n) or

HQIC (cn = 2 log log n) can be used to consistently select between cases (a)–(d). The AIC

(cn = 2) is not covered by the theorem, as it does not provide consistent model selection.

5 Finite sample properties of the UO-MIDAS model

First we examine the non-linear least squares (NLLS) estimator when the model is correctly

specified. Section 5.2 then examines use of the SIC and HQIC when selecting between UO-

MIDAS, UO-MIDAS with α = 0, and no predictability (w(j; θ) = 0 for all j ∈ {1, ..,K}).

Section 5.3 considers polynomial fit and OOS forecasts relative to MIDAS benchmarks (Al-

mon, NP, PDL). We employ a similar setup to Andreou et al. (2010) where the DGP is

Yt = β0 +W (L1/m; θ)x
(m)
t + εt (12)

11



εt ∼ N.i.i.d (0,0.125), the sample size is T = 100, 200, 500, and x
(m)
t is sampled m times

between t−1 and t with a sample size ofmT . Each DGP hasm = 3, 40, 100; low, medium and

high signal to noise ratios (SNRs); and three different specifications for x
(m)
t i) x

(m)
t ∼ N.i.i.d

(0,1); ii) x
(m)
t = σ

(m)
t e

(m)
t where (σ

(m)
t )2 = 0.05+0.1(x

(m)
t−1)

2+0.85(σ
(m)
t−1)

2 and e
(m)
t ∼ N.i.i.d

(0,1); and iii) x
(m)
t = 0.5+ς1x

(m)
t−1+e

(m)
t , where e

(m)
t ∼ N.i.i.d (0,1). For most DGPs ς1 = 0.9,

but we also consider x
(m)
t = 0.5+ ς1x

(m)
t−1+ ς2x

(m)
t−2+ e

(m)
t , where ς1 = 0.5 and ς2 = −0.3. Each

simulation performs 500 replications.10

Table 2 summarises the five UO-MIDAS DGPs considered. Low SNRs correspond to the

first five DGPs in Table 1. Medium (high) SNRs increase A and B by a factor of 5(10).11

True is the true lag and max, min and steps are discussed in section 5.3.

Table 2: Monte carlo: UO-MIDAS model parameters

DGP1 DGP2 DGP3 DGP4 DGP5

Parameters
β0 0.50 0.50 0.50 0.50 0.50
γ 0.04 0.10 0.04 0.06 0.10
α 0.09 0.00 0.15 0.05 0.09
Low signal
A 0.01 0.01 0.01 0.001 0.001
B 0.01 0.00 0.01 0.01 -0.01
Medium signal
A 0.05 0.05 0.05 0.005 0.005
B 0.05 0.00 0.05 0.05 -0.05
High signal
A 0.10 0.10 0.10 0.01 0.01
B 0.10 0.00 0.10 0.10 -0.10
Lags

True 130 90 130 120 80
Max 180 140 180 170 130
Min 80 40 80 70 30
Steps 10 10 10 10 10

The graphs in Figure 2 represent the parameters for the weak SNR. True is the number of lags used for
data generation. In section 5.3, max represents the lag for the UO-MIDAS and Almon-MIDAS models. The
NP-MIDAS and PDL-MIDAS models estimate an optimal lag, by considering lags between max and min with
increments equal to the step size.

Findings are largely insensitive to m and x
(m)
t so we focus on m = 40 and x

(m)
t ∼ i.i.d.

The exception is when x
(m)
t ∼ AR(1) in a limited number of circumstances, which will be

discussed below. Given the large number of experiments, illustrative examples are reported

with more details available on request.12

10We don’t consider UO-MIDAS models with more than one x
(m)
t , as most studies with > 1 predictor either

regress Yt against a principle component or employ forecast combinations e.g Andreou et al. (2013).
11A and B are set to approximate the strength of the low, medium and high SNRs in Andreou et al. (2010).

The remaining DGPs in Table 1 are not considered as DGP 6 has a similar shape to DGPs 1, 3, 4 and 5,
DGP 7 damps too slowly for economic applications, and DGP 8 is similar to the Almon lag.

12We also consider the effects of an incorrect lag. Like the exponential Almon and beta polynomials,
parameters adjust so the polynomial and forecasts are insensitive to overstating the lag length.
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5.1 Finite sample properties of NLLS estimator

UO-MIDAS is generally well estimated via NLLS. Table 3 presents results for DGP 1 which

show that when x
(m)
t ∼ i.i.d and x

(m)
t ∼ AR(2), estimates have a small bias and appear

√
T

consistent. When x
(m)
t ∼ AR(1) : ς = 0.9 and the SNR low or medium, the small bias and

√
T consistency remains. The decrease in RMSE (relative to x

(m)
t ∼ i.i.d and x

(m)
t ∼ AR(2)),

suggests persistence in x
(m)
t helps with identification. This also applies when the SNR is high

and T = 100, however when T ≥ 200 increases in T increase bias and RMSE.

Table 3: Finite sample properties of UO-MIDAS model: DGP 1

DGP Bias RMSE

SNR m T β0 A B α γ β0 A B α γ

x
(m)
t ∼ i.i.d

low 40 100 0.0005 −0.0021 0.0685 0.0024 0.0150 0.1132 0.0970 0.7893 0.1676 0.2873
200 0.0007 −0.0004 0.0004 0.0003 0.0041 0.0949 0.0720 0.0978 0.1166 0.1846
500 0.0002 0.0000 0.0001 −0.0002 0.0006 0.0758 0.0496 0.0540 0.0778 0.1020

med 40 100 0.0003 0.0000 −0.0005 −0.0002 −0.0001 0.1128 0.0750 0.0800 0.0511 0.0657
200 0.0007 0.0001 −0.0003 −0.0001 0.0000 0.0949 0.0634 0.0664 0.0429 0.0542
500 0.0002 0.0000 0.0001 0.0000 0.0001 0.0757 0.0489 0.0520 0.0336 0.0427

high 40 100 0.0003 0.0000 −0.0004 −0.0001 −0.0001 0.1128 0.0749 0.0794 0.0358 0.0462
200 0.0007 0.0001 −0.0002 0.0000 0.0000 0.0949 0.0633 0.0663 0.0303 0.0383
500 0.0002 0.0000 0.0001 0.0000 0.0000 0.0757 0.0489 0.0520 0.0238 0.0301

x
(m)
t ∼ AR(1): ς1 = 0.9

low 40 100 0.0026 0.0000 0.0000 −0.0001 −0.0001 0.1991 0.0304 0.0289 0.0438 0.0518
200 0.0020 0.0000 0.0000 0.0000 0.0000 0.1650 0.0259 0.0244 0.0369 0.0437
500 −0.0007 0.0000 0.0000 0.0000 0.0000 0.1328 0.0199 0.0194 0.0293 0.0338

med 40 100 0.0024 0.0000 0.0000 0.0000 0.0000 0.1988 0.0305 0.0288 0.0196 0.0232
200 0.0019 0.0000 0.0000 0.0000 0.0000 0.1648 0.0259 0.0243 0.0164 0.0195
500 −0.0008 0.0000 0.0000 0.0000 0.0000 0.1328 0.0199 0.0193 0.0131 0.0151

high 40 100 0.0023 0.0000 0.0000 0.0000 0.0000 0.1988 0.0305 0.0288 0.0138 0.0164
200 0.0334 −0.0004 −0.0003 0.0001 −0.0002 0.5977 0.0708 0.0626 0.0311 0.0467
500 1.4297 −0.0007 −0.0205 0.0015 −0.0038 1.6232 0.1005 0.1956 0.0559 0.0858

x
(m)
t ∼ AR(2): ς1 = 0.5, ς2 = −0.3.

low 40 100 0.0014 −0.0013 0.0108 0.0029 0.0102 0.1943 0.0851 0.4518 0.1472 0.2391
200 0.0015 −0.0002 0.0003 0.0002 0.0025 0.1553 0.0607 0.0804 0.0981 0.1636
500 −0.0004 0.0000 0.0001 −0.0001 0.0003 0.1233 0.0438 0.0473 0.0678 0.0884

med 40 100 0.0022 0.0001 −0.0004 −0.0001 −0.0001 0.1852 0.0663 0.0710 0.0452 0.0585
200 0.0017 0.0001 −0.0002 −0.0001 0.0000 0.1526 0.0560 0.0591 0.0380 0.0483
500 −0.0004 0.0000 0.0001 0.0000 0.0000 0.1224 0.0435 0.0464 0.0299 0.0380

high 40 100 0.0022 0.0001 −0.0004 −0.0001 0.0000 0.1850 0.0662 0.0707 0.0318 0.0412
200 0.0016 0.0001 −0.0002 0.0000 0.0000 0.1526 0.0559 0.0590 0.0268 0.0342
500 −0.0005 0.0000 0.0001 0.0000 0.0000 0.1225 0.0435 0.0464 0.0212 0.0268

Despite this, when ς = 0.9, m = 40 and T = 500, the median estimate of all parameters

for DGP1 is close to the true value (in brackets): B0 = 0.5006(0.5), A = 0.1000(0.1),

B = 0.0998(0.1), γ = 0.0900(0.9), α = 0.0399(0.04). Importantly the increase in bias

and RMSE as T increases, was only observed in DGP 1 and 2 for the high SNR when

x
(m)
t ∼ AR(1) : ς = 0.9. DGPs 3-5 have a small bias and appear

√
T consistent for all

experiments. Results suggest if the SNR is high and x
(m)
t persistent, NLLS may have difficulty
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identifying the intercept (β0) from the polynomial (in particular B). Section 5.3 however

will show this doesn’t adversely affect polynomial fit and OOS forecasts.13

Table 4 reports the bias and RMSE for DGP2 where α = 0. B has a large positive bias

and RMSE, and α also has a positive though much smaller bias. For a given SNR and x
(m)
t ,

an increase in T decreases bias and RMSE for all parameters. When x
(m)
t ∼ i.i.d, increasing

the SNR decreases bias and RMSE and estimates appear
√
T consistent. However when

ζ1 = 0.9, an increase in the SNR increases bias and RMSE of B which is consistent with

DGP1 (Table 3). The effect of a large positive bias in B is minimal though as α→ 0, because

sin(α) and therefore B sin(α) → 0. This is reflected in Table 5 that reports the number of

replications where −0.001 ≤ α ≤ 0.001. The significant pile up around zero means (like

DGP1), there is no adverse affect on polynomial fit and OOS forecasts in section 5.3.

Table 4: Finite sample properties of UO-MIDAS model: DGP 2

DGP Bias RMSE

SNR m T β0 A B α γ β0 A B α γ

x
(m)
t ∼ i.i.d

low 40 100 −0.0002 −0.0243 0.3310 0.0578 0.0471 0.1099 0.6712 1.5509 0.3282 0.5929
200 −0.0001 −0.0025 0.2009 0.0434 0.0551 0.0939 0.1569 0.8928 0.3109 0.5636
500 0.0004 −0.0017 0.1453 0.0191 0.0220 0.0742 0.0670 0.7343 0.1962 0.3046

med 40 100 −0.0002 −0.0025 0.3388 0.0074 0.0092 0.1098 0.0912 1.1027 0.1223 0.2077
200 −0.0001 −0.0019 0.2155 0.0065 0.0068 0.0941 0.0737 0.9303 0.1109 0.1827
500 0.0004 −0.0010 0.0960 0.0056 0.0034 0.0742 0.0566 0.6997 0.0991 0.1477

high 40 100 −0.0002 −0.0021 0.2331 0.0047 0.0033 0.1099 0.0881 1.1230 0.0943 0.1609
200 −0.0001 −0.0016 0.1510 0.0045 0.0027 0.0940 0.0718 1.0028 0.0898 0.1392
500 0.0003 −0.0009 0.0424 0.0044 0.0007 0.0742 0.0555 0.7229 0.0858 0.1108

x
(m)
t ∼ AR(1): ς1 = 0.9

low 40 100 0.0036 −0.0005 0.0188 0.0080 0.0149 0.2441 0.0365 0.1498 0.1135 0.1627
200 0.0053 −0.0004 0.0173 0.0063 0.0124 0.2085 0.0302 0.1414 0.1017 0.1462
500 0.0038 −0.0002 0.0166 0.0052 0.0113 0.1642 0.0237 0.1296 0.0909 0.1336

med 40 100 0.0149 −0.2007 0.5950 0.0072 0.0261 0.4206 1.7792 1.6774 0.2727 0.5463
200 0.0065 −0.0004 0.4243 0.0022 0.0059 0.2200 0.0374 1.6185 0.0604 0.1039
500 0.0055 −0.0003 0.2466 0.0019 0.0055 0.1905 0.0412 1.2165 0.0554 0.1039

high 40 100 0.0175 −0.0721 0.6691 0.0032 0.0127 0.5145 1.2649 1.9925 0.1659 0.4178
200 0.0122 −0.0006 0.3314 0.0016 0.0045 0.3633 0.0724 1.3918 0.0509 0.1067
500 0.0175 −0.0007 0.1873 0.0018 0.0038 0.6532 0.0976 1.1338 0.0662 0.1164

5.2 HQIC and SIC for model selection

We now consider the HQIC and SIC for model selection between: Model 1 UO-MIDAS,

Model 2 UO-MIDAS with α = 0 and Model 3 w(j; θ) = 0 for j ∈ {1, ...,K}. We employ

13High persistence in x
(m)
t means highly correlated regressors, so our findings are consistent with forecasts

not being compromised when RHS variables suffer from multi-collinearity. We also consider first differencing
x
(m)
t when estimating UO-MIDAS with ς = 0.9. The experiment is otherwise identical to section 5.3, where

Almon, NP and PDL MIDAS models do not difference x
(m)
t . Differencing significantly worsens UO-MIDAS

polynomial fit and OOS MSE, with NP-MIDAS clearly dominant.
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Table 5: No of replications with α ≈ 0 UO-MIDAS model: DGP 2

Low SNR Medium SNR High SNR

m T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500

iid 3 104 147 200 258 266 281 273 283 297
40 139 176 223 275 281 281 304 307 284
100 128 160 183 253 254 267 290 281 265

AR(1) 3 249 242 244 303 291 305 277 277 253
ς1 = 0.9 40 244 255 243 282 283 271 279 280 259

100 245 235 233 295 279 266 273 262 260

Reports the number of replications (out of 500), where −0.001 ≤ α ≤ 0.001.

the 5 UO-MIDAS DGPs and compare OOS forecasts from UO-MIDAS to approaches that

use the HQIC or SIC to select model 1, 2 or 3. For each of the 500 replications, OOS MSE

is calculated by fixing the estimated parameters and conditionally updating one step ahead

forecasts over 100 OOS observations. The 500×1 vectors of losses are used to determine the

model confidence set (MCS) (Hansen et al., 2011).14

The HQIC and SIC select the true model ≈ 100% of the time for most experiments. With

the exception of DGP2 (where model 2 is the DGP), there was no statistically significant

difference between forecasts. For DGP2, the HQIC and SIC generally select model 2 98%

to 100% of the time. OOS forecasts using the SIC slightly dominated those based on the

HQIC, with both clearly dominating a strategy that only used model 1. Results therefore

support model selection using either criterion.

We therefore only report the minority of exceptions where IC selected the true model

< 95% of the time. We report results for T = 100 which are similar to T = 200, 500. Table

6 reports the percentage of times the HQIC and SIC selected each model. The final three

columns report OOS MSE for three strategies: UO only employs model 1 and HQIC and

SIC choose between models 1, 2 and 3. Most exceptions occur when the SNR is low, except

DGP1 with a high SNR and ζ1 = 0.9 (consistent with section 5.1). Even though the HQIC

selects the true model more often than the SIC, this doesn’t necessarily improve forecasts.

Approximately 50% of the time, model selection using IC performs as well or better than

only using model 1. So if forecasting with a weak SNR, it may be optimal to employ a

mis-specified, more parsimonious model.

14We also calculate OOS MAE and polynomial fit via the sum of squared and absolute deviations between
the fitted and actual polynomial. Unreported MCS results are similar.
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Table 6: Model selection when HQIC/SIC correct < 95% of replications T = 100

% reps model selected MSE

DGP SNR x t m Model HQIC SIC UO HQIC SIC

1 low iid 40 M1 87% 71% 0.0166∗∗∗ 0.0169 0.0173
M2 9% 18%
M3 4% 11%

high AR(1) 40 M1 94% 94% 0.0163∗∗∗ 0.0163∗∗∗ 0.0163∗∗∗

M2 6% 6%
M3 0% 0%

2 low iid 40 M1 4% 1% 0.0167 0.0167∗∗∗ 0.0167
M2 78% 63%
M3 18% 36%

3 low iid 40 M1 92% 80% 0.0167∗∗∗ 0.0170 0.0174
M2 4% 5%
M3 4% 15%

4 low iid 40 M1 26% 6% 0.0167∗ 0.0167∗ 0.0166∗∗∗

M2 40% 29%
M3 34% 65%

5 low iid 40 M1 13% 3% 0.0166 0.0163 0.0161∗∗∗

M2 20% 8%
M3 67% 89%

Columns 6 and 7 report the percentage of times the HQIC and SIC select M1 = UO-MIDAS (unconstrained),
M2 = UO-MIDAS (α = 0), M3 = no predictability. M1 is the true model for all DGPs except for DGP2 which
is M2. AR(1) parameter ζ1 = 0.9. The last three columns report OOS MSE using three strategies: UO employs
M1 every replication, HQIC and SIC use information criteria to select between M1, M2 and M3. ***,**,* denotes
inclusion in the MCS at the 25% (M∗

0.25), 10% (M∗
0.10) and 5% (M∗

0.10) levels respectively. For all other DGPs,
the HQIC and SIC generally select the correct model ≈ 100% of the time and there is no difference in MSE.

5.3 UO-MIDAS model performance relative to benchmarks

The performance of the UO-MIDAS model is now evaluated relative to the Almon-MIDAS,

NP-MIDAS and PDL-MIDAS models. Section 5.3.1 considers the five UO-MIDAS DGPs

and section 5.3.2 considers four Almon-MIDAS DGPs.

5.3.1 UO-MIDAS DGP

For the 5 UO-MIDAS DGPs, we estimate the UO-MIDAS model and its benchmarks (Almon,

NP, PDL).15 We evaluate polynomial fit and OOS forecast performance in the same way as

section 5.2, and determine which of the four models is in the MCS.

Table 7 presents squared deviations by SNR for T = 100 when x
(m)
t ∼ i.i.d and x

(m)
t ∼

15Unreported results show that UO-MIDAS performance is robust to overstating the lag length, so UO
and Almon-MIDAS are estimated via NLLS with the maximum K. For NP-MIDAS we follow Breitung and
Roling (2015) and initially apply the maximum K in Table 2 and determine the regularisation parameter
via numerical optimisation of a modified AIC. K is then reduced by the step size in Table 2 and the model
re-estimated. This continues until the minimum K and the adjusted R2 used to select the final model. PDL-
MIDAS estimation commences with the maximum K and polynomial orders from P = 3 to 10. The best
model is selected via an AIC that penalises according to P . The lag is then reduced by the step size and the
procedure repeated. From the set of best models for each K, the final model is selected using an AIC that
penalises according to K.
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AR(1) : ς = 0.9. Results for OOS MSE and T = 200, 500 are similar. For most DGPs, SNRs,

aggregation levels and sample sizes, UO-MIDAS is the only model in the MCS and PDL-

MIDAS is never included. Limited exceptions indicate that UO-MIDAS dominance is less

likely if all of the following applies: little or no oscillation, a low SNR and x
(m)
t ∼ i.i.d. Under

these circumstances Almon or NP-MIDAS may provide the best fit and OOS forecast.16

Further, when the SNR is strong, T ≥ 200 and ς = 0.9, UO-MIDAS generally outperformed

the alternatives. Therefore the parameter bias (in section 5.1) rarely results in a poor

polynomial fit or forecast. Caution is recommended though, as Table 7 reveals the fit was

poor for DGP5 when the SNR was strong and ς = 0.9. Finally, when x
(m)
t is persistent and

the SNR high, an increase in T may see NP-MIDAS forecast slightly better than UO-MIDAS,

however both models outperform Almon and PDL-MIDAS.

Table 7: Squared deviations×100 in lag weights: UO-MIDAS DGP, T=100

DGP x
(m)
t ∼ i.i.d x

(m)
t ∼ AR(1) : ς = 0.9

Signal m UO Alm NP PDL UO Alm NP PDL

DGP1
low 40 0.096∗∗∗ 0.163 0.106 0.295 0.002∗∗∗ 0.136 0.013 0.136
medium 40 0.075∗∗∗ 2.253 0.285 2.304 0.007∗∗∗ 2.616 0.209 3.331
high 40 0.086∗∗∗ 8.903 0.714 8.676 0.022∗∗∗ 12.348 0.824 13.301
DGP2
low 40 0.090 0.075 0.062∗∗∗ 0.133 0.001∗∗∗ 0.014 0.003 0.002
medium 40 0.056 0.047∗∗∗ 0.091 0.105 0.001∗∗∗ 0.247 0.006 0.004
high 40 0.052 0.043∗∗∗ 0.110 0.114 0.001∗∗∗ 0.964 0.009 0.013
DGP3
low 40 0.117∗∗∗ 0.235 0.144 0.452 0.002∗∗∗ 0.215 0.015 0.170
medium 40 0.078∗∗∗ 3.471 0.341 4.283 0.007∗∗∗ 4.701 0.194 3.856
high 40 0.088∗∗∗ 13.763 0.766 16.424 0.020∗∗∗ 19.254 0.751 15.412
DGP4
low 40 0.093 0.078 0.068∗∗∗ 0.161 0.001∗∗∗ 0.024 0.004 0.016
medium 40 0.074∗∗∗ 0.099 0.117 0.172 0.001∗∗∗ 0.753 0.014 0.015
high 40 0.069∗∗∗ 0.251 0.148 0.143 0.002∗∗∗ 4.128 0.039 0.038
DGP5
low 40 0.094 0.095 0.069∗∗∗ 0.175 0.002∗∗∗ 0.020 0.006 0.023
medium 40 0.075∗∗∗ 0.667 0.144 0.323 0.002∗∗∗ 0.522 0.012 0.258
high 40 0.068∗∗∗ 2.444 0.172 0.611 1.505 2.323 0.020∗∗∗ 0.742

Reports the sum of squared deviations between the actual (UO-MIDAS model) and estimated lag weights by

SNR (low, medium, high). Models in the MCS at M̂∗
75%

,M̂∗
90%

, M̂∗
95%

are identified by ***,**, and * respectively.
MCS results for OOS forecasting are similar.

5.3.2 Almon-MIDAS DGP

We now perform a similar experiment to section 5.3.1, with data generated via the four

Almon-MIDAS DGPs in Andreou et al. (2010); DGP 1: slow decay θ = (0.0007,−0.006),

16The limited exceptions are: i) DGP 2 when x
(m)
t ∼ i.i.d where Almon-MIDAS provides the best fit and

forecasts; ii) DGP4 and 5 when x
(m)
t ∼ i.i.d and the SNR low, where Almon and NP-MIDAS perform well

and iii) DGP5 when ς = 0.9 and the SNR high, where NP-MIDAS is the best.
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DGP 2: fast decay θ = (0.0007,−0.05), DGP 3: inverse U θ = (0.3,−0.006), and DGP 4:

near flat θ = (0,−0.0005). We set β0 = 0.5 and consider low, medium and high SNRs via

β1 = 0.6, 1.5 and 3 respectively with m = 3, 40, 100; and T = 100, 200, 500.17 18

Table 8 reports illustrative results when x
(m)
t ∼ i.i.d, m = 40 and T = 100. MCS results

for polynomial fit mirror OOS MSE. Almon-MIDAS is very often the only model in the MCS,

but as the SNR increases UO-MIDAS may provide comparable performance (DGP2, 4).19

Despite this, polynomial estimates from all models provide very good approximations that

improve with increases in T . Almon-MIDAS may therefore provide the best polynomial fit

and OOS MSE, however it’s only slightly better than UO-MIDAS which slightly outperforms

NP and PDL-MIDAS. The exception is DGP3 (inverse U) where Almon-MIDAS is clearly

superior.

Table 8: Almon-MIDAS DGP, x
(m)
t ∼ i.i.d, T=100

DGP Squared deviations×100 Out of sample MSE

Signal m UO Alm NP PDL UO Alm NP PDL

DGP 1
low 40 0.0660 0.0535∗∗∗ 0.1001 0.1072 0.0162 0.0160∗∗∗ 0.0165 0.0166
med 40 0.0709 0.0526∗∗∗ 0.1523 0.1389 0.0162 0.0160∗∗∗ 0.0170 0.0169
high 40 0.0908 0.0522∗∗∗ 0.1796 0.1395 0.0164 0.0160∗∗∗ 0.0173 0.0169
DGP 2
low 40 0.0679 0.0492∗∗∗ 0.0927 0.1290 0.0165 0.0163∗∗∗ 0.0168 0.0171
med 40 0.0722 0.0483∗∗∗ 0.1114 0.1522 0.0166 0.0163∗∗∗ 0.0170 0.0174
high 40 0.0970∗∗∗ 0.9332 0.1413 0.1517 0.0168∗∗∗ 0.0257 0.0173 0.0174
DGP 3
low 40 0.1453 0.0568∗∗∗ 0.2856 0.6201 0.0173 0.0164∗∗∗ 0.0187 0.0221
med 40 0.5465 0.0531∗∗∗ 0.2423 1.6237 0.0213 0.0163∗∗∗ 0.0182 0.0323
high 40 1.9961 0.0526∗∗∗ 0.2333 3.6090 0.0358 0.0163∗∗∗ 0.0181 0.0524
DGP 4
low 40 0.0601∗∗∗ 0.0591∗∗∗ 0.0670 0.0787 0.0162∗∗∗ 0.0162∗∗∗ 0.0163∗ 0.0165
med 40 0.0612∗∗∗ 0.0592∗∗∗ 0.0821 0.0923 0.0162∗∗∗ 0.0163∗∗∗ 0.0165 0.0166
high 40 0.0676∗∗∗ 0.1286 0.0935 0.1119 0.0163∗∗∗ 0.0171 0.0166 0.0168

Reports the sum of the squared deviations between the actual and estimated lag weights and OOS MSE by SNR
(low, medium, high). Models in the MCS at M̂∗

75%
,M̂∗

90%
, M̂∗

95%
are identified by ***,**, and * respectively.

5.4 Concluding comments

In the presence of oscillating and non-oscillating lag polynomials, UO-MIDAS is well esti-

mated via NLLS. The HQIC and SIC are shown to effectively select between UO-MIDAS

17The Almon (as opposed to the beta) polynomial is used given its ubiquity, ease of estimation, and smaller
square errors (relative to the true weights) in finite samples (Andreou et al., 2013).

18Almon and UO-MIDAS apply the following lags: DGP1 lag 40, DGP2 lag 20, DGP3 lag 60, DGP4 lag
120, while NP and PDL-MIDAS employ lag optimisation in the following way: DGP1 lags 15-40 step size 1,
DGP2 lags 8-20 step size 1, DGP3 lags 20-60 step size 1 and DGP4 lags 50-120 step size 5.

19MCS p values excluding Almon-MIDAS generally support UO-MIDAS over the alternatives, with the
main exception being DGP 3 where NP-MIDAS dominates. PDL-MIDAS also performs well for DGP 1 and
2 when the signal is strong and T = 500.
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models with and without oscillation and no predictability. Minor exceptions occurred when

the SNR was weak, however even when the incorrect model was selected, forecast perfor-

mance was as good or better than the correctly specified model ≈ 50% of the time. High

levels of polynomial oscillation with a highly persistent x
(m)
t , may result in parameter iden-

tification problems with increases in T , however this generally has little effect on forecast

performance. Larger sample sizes increase the oscillations in x
(m)
t , and this may cause these

identification issues via an interaction with the oscillating polynomial. Exploring this issue

via near integrated asymptotics is left for further research.

6 Empirical application

We illustrate the proposed UOMIDAS model with two data sets. The first, DS1, forecasts the

one month ahead change in the US monthly inflation rate using daily GSCI commodity index

returns. The second, DS2, forecasts the annualised monthly growth rate in US industrial

production (IP) using the daily CBOE Volatility Index (VIX).

For both data sets autocorrelation functions suggest an AR(2) process, so we estimate

an AR(2) benchmark plus the following 13 models: UO, Almon, Beta, NP and PDL MIDAS

with and without AR(2) dynamics (including the common factor version for UO, Almon

and Beta). We apply the following nomenclature: UO-AR(2)-MIDAS, UO-comfac-AR(2)-

MIDAS, and UO-MIDAS (no AR term) with UO MIDAS (no hyphen) representing all UO

MIDAS models.

UO, Almon and Beta MIDAS are estimated via NLLS, while NP and PDL MIDAS

employ least squares. Following Breitung and Roling (2015), NP MIDAS selects the lag via

the adjusted R2 and PDL MIDAS selects the lag and polynomial order via the AIC. We

calculate standard errors for parameters via the HAC sandwich estimator and employ the

square root of the diagonal elements of ĴΣ̂Ĵ ′ for the lag polynomial weights where20

√
T (ψ̂(θ)− ψ(θ))

d→ N(0, JΣJ
′
) (13)

20Σ = cA−1BA−1, where c = T
T−(5+p)

is a degrees of freedom correction, A = ∂2f(θ∗)/[∂θ∗∂θ∗
′
] is the

Hessian and B is a kernel weighted outer-product estimate B =
∑∞

j=−∞ k( j
bT

)Γ(j), where k( j
bT

) is a kernel

estimator, Γ(j) = Γ(−j) and Γ(j) =
∑T

t=j+1
∂f(θ∗)t

∂θ∗
∂f(θ∗)

′
t−j

∂θ∗ . We apply a Bartlett kernel with a bandwidth

(bT ) equal to the rule of thumb estimate 0.75T 1/3.

19



ψ(θ∗) is the K × 1 weight vector, ψ̂(θ∗) its estimate, and J = ∂ψ(θ∗)/∂θ∗
′
the Jacobian.21

6.1 DS1: US inflation forecasting using daily GSCI commodity returns

We examine commodity returns as a predictor of inflation because they are determined in

auction markets and respond rapidly to shocks. Commodity prices do not improve 12 month

inflation forecasts (Stock and Watson, 1999) and there is little evidence of cointegration

(Pecchenino, 1992), however they granger cause inflation over the short run (Kyrtsou and

Labys, 2006) and successfully forecast inflation one month ahead (Monteforte and Moretti,

2013; Breitung and Roling, 2015).

We consider monthly US Consumer price indices (Pt) from January 1972 to August 2018.

Inflation rates (πt = 100 × ((Pt ÷ Pt−1) − 1)) are I(1) so we model their first differences.22

We employ a 25 year rolling window and set K = 125 for the Almon, Beta and UO MIDAS

models. For NP and PDL MIDAS we optimise K between 25 to 125.

Lag polynomials change shape at the end of 2006. Figure 3 presents plots for the first

120 estimation windows (conditional on the information at December 1996 to November

2006), and the remaining 140 windows (conditional on the information at December 2006

to July 2018). Figures plot the average lag weight and the 5th and 95th percentiles for

the UO-AR(2)-MIDAS and Almon-AR(2)-MIDAS models across the estimation windows.

Illustrative models for both sub-samples are reported in Table 9 along with model selection

tests in Table 10, which select the UO-AR(2)-MIDAS model over its restricted versions (this

also applied for the UO-AR(2)-comfac and UO-MIDAS models).

(Insert Figure 3)

Results show an initial positive relation between commodity returns and the change in

the inflation rate. For all MIDAS models, the impact decays to zero after approximately

five weeks (25 trading days). The first sub-sample has a weaker initial response, and the

21Numerical optimisation of non-linear MIDAS models may encounter estimation issues (Foroni et al.,
2015). We estimate UO MIDAS by maximising the negative of the squared residuals using the sequential
quadratic programming algorithm in Oxmetrics. Starting values for the AR(2) parameters are equal to partial
acf values. Previous research (below) suggests a 6-12 month lag, so we start γ at 0.06, with our remaining
starting values close to zero.

22First differences are de-seasonalised using the Census X-13 methodology in Eviews with seasonal dummies,
additive outliers, and the TRAMA auto ARIMA selection. Breakpoint unit root tests on the inflation rate
(with innovation or additive outliers with or without a trend) strongly reject the null of a unit root on allowing
for a break at June 1982. We therefore also estimate all models using the inflation rate from July 1982. Our
reported MIDAS models using first differences however provide better forecasts of the inflation level, as none
of the MIDAS models in levels are in the MCS at 10%.
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Table 9: Inflation MIDAS models

UO-AR(2) UO-comfac UO Almon-AR(2) Beta-AR(2)

coeff std err coeff std err coeff std err coeff std err coeff std err

1st sub-sample (Dec 96 to Nov06): representative models at April 30, 2003

β0 −0.010 0.009 −0.010 0.009 −0.007 0.007 β0 −0.014 0.010 −0.014 0.010
λ1 −0.328∗∗∗ 0.070 −0.335∗∗∗ 0.071 − − λ1 −0.364∗∗∗ 0.072 −0.360∗∗∗ 0.071
λ2 −0.220∗∗∗ 0.074 −0.227∗∗∗ 0.067 − − λ2 −0.268∗∗∗ 0.058 −0.271∗∗∗ 0.058
γ 0.055 0.037 0.027∗ 0.015 0.029∗ 0.015 − − − −
A 0.004 0.006 0.007 0.005 0.007 0.006 θ1 0.133∗ 0.080 2.298∗ 1.178
B 0.023∗∗∗ 0.008 0.018∗∗∗ 0.004 0.018∗∗∗ 0.005 θ2 −0.005∗∗ 0.002 16.503∗∗ 7.147
α 0.094∗∗∗ 0.010 0.095∗∗∗ 0.006 0.095∗∗∗ 0.008 β1 0.349∗∗∗ 0.060 0.338∗∗∗ 0.061
LL -11.197 -11.167 -12.719 -11.388 -11.655
2nd sub-sample (Dec06 to Jul18): representative models as at June 30, 2008

β0 0.001 0.009 −0.005 0.009 −0.004 0.008 β0 −0.016 0.010 −0.016 0.010
λ1 −0.383∗∗∗ 0.052 −0.301∗∗∗ 0.059 − − λ1 −0.318∗∗∗ 0.054 −0.313∗∗∗ 0.053
λ2 −0.362∗∗∗ 0.062 −0.379∗∗∗ 0.070 − − λ1 −0.379∗∗∗ 0.060 −0.387∗∗∗ 0.060
γ 0.043∗∗∗ 0.009 0.038∗∗∗ 0.008 0.049∗∗∗ 0.007 − − − −
A 0.033∗∗∗ 0.006 0.030∗∗∗ 0.006 0.036∗∗∗ 0.007 θ1 0.045 0.068 1.357∗∗∗ 0.358
B −0.018∗ 0.010 −0.006 0.004 −0.005 0.015 θ2 −0.005∗∗ 0.002 14.930∗∗∗ 3.327
α 0.035∗∗∗ 0.006 0.055∗∗∗ 0.005 0.065∗∗∗ 0.015 β1 0.440∗∗∗ 0.067 0.430∗∗∗ 0.066
LL -10.475 -10.887 -12.992 -11.469 -11.622

Reports illustrative estimates for MIDAS models fit to monthly changes in US inflation rates against daily GSCI
commodity index returns. Models are estimated using a 25 year rolling window which commences January 1972
to December 1996. ***,**,* denotes statistical significance at 1%,5% and 10% respectively using HAC standard
errors. LL denotes the log likelihood.

Table 10: Model selection via SIC and HQIC: UO-AR(2)-MIDAS

April 2003 June 2008

SIC HQIC SIC HQIC

UO -3.1550 -3.2069 -3.2217 -3.2735
α = 0 -3.1510 -3.1880 -3.1430 -3.1800
No predictability -3.1061 -3.1283 -2.9951 -3.0174

Reports Schwarz information criteria (SIC) and Hannan-Quinn information criteria (HQIC) for the UO-AR(2)-
MIDAS model, its restricted version α = 0 and w(j; θ) = 0 for j ∈ {1, ...,K}. Model ordering for the UO-AR(2)-
comfac-MIDAS model is identical. The UO-MIDAS model also had the lowest SIC and HQIC, however when
α = 0 the model failed to converge and had the highest SIC/HQIC.
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lag weights for UO, NP and PDL MIDAS models suggest mild overshooting. Figure 4 for

example shows that as at April 2003, overshooting is statistically significant for the UO-

AR(2)-comfac model, but its significance at the 5% level is less clear for the UO-AR(2)

model. In the second sub-sample there is a larger initial response and stronger evidence of

overshooting.

(Insert Figure 4)

Table 11 presents MSE and MAE for the one month ahead forecasts over the entire

OOS period: January 1997 to August 2018, as well as the two sub-samples: January 1997

to December 2006 and January 2007 to August 2018. Over the entire OOS period, results

strongly support the UO MIDAS model. At the 25% level, UO-AR(2)-MIDAS and UO-

comfac-AR(2)-MIDAS are the only models in the MCS for the MAE. The MSE only includes

one other model that also captures overshooting (PDL-AR(2)-MIDAS).

On considering the first sub-sample, most AR(2)-MIDAS models (including UO MIDAS)

are in the MCS at 25%. Therefore even if overshooting is weak or not present, UO MIDAS

forecasts are not compromised. Consistent with the higher level of overshooting in the second

sub-sample, our results provide strong support for UO MIDAS, as Almon and Beta MIDAS

are never in the MCS. UO MIDAS with AR(2) dynamics dominates, with some NP and PDL

MIDAS models in the MCS at the 10% but not the 25% level.

Table 11: Out of sample forecasts: change in US inflation rate

MSE MAE

Jan 97- Jan 97- Jan 07- Jan 97- Jan 97- Jan 07-
Aug 18 Dec 06 Aug 18 Aug 18 Dec 06 Aug 18

AR(2) models

UO 0.0609∗∗ 0.0594∗∗ 0.0619∗∗ 0.1828∗∗ 0.1881∗∗ 0.1782∗∗

Alm 0.0707∗ 0.0621∗∗ 0.0781 0.1923 0.1921∗∗ 0.1924
Beta 0.0716∗ 0.0628∗∗ 0.0791 0.1942 0.1920∗∗ 0.1961
NP 0.0725∗ 0.0681∗∗ 0.0763 0.2034 0.2058∗∗ 0.2014
PDL 0.0640∗∗ 0.0626∗∗ 0.0651∗ 0.1912 0.1933∗∗ 0.1893∗

AR(2) 0.0839 0.0736 0.0928 0.2084 0.2026∗∗ 0.2135
Common factor models
UO 0.0624∗∗ 0.0611∗∗ 0.0635∗∗ 0.1857∗∗ 0.1907∗∗ 0.1813∗∗

Alm 0.0984 0.0967 0.0999 0.2317 0.2451 0.2203
Beta 0.0948 0.0913 0.0979 0.2296 0.2395 0.2211
Models with no AR term
UO 0.0716 0.0760 0.0679∗ 0.2024 0.2188 0.1883∗∗

Alm 0.0841 0.0846 0.0836 0.2131 0.2265 0.2016
Beta 0.0847 0.0852 0.0843 0.2140 0.2254 0.2043
NP 0.0685∗ 0.0725∗∗ 0.0651∗∗ 0.2021 0.2129∗ 0.1928
PDL 0.0700∗ 0.0723 0.0680∗ 0.2032 0.2165 0.1918∗

Reports OOS MSE and MAE for monthly changes in US inflation over the entire OOS period, January 1997
to August 2018, and two sub-periods, January 1997 to December 2006 and January 2007 to August 2018. **,*
denotes inclusion in the MCS at the 25% (M∗

0.25) and 10% (M∗
0.10) levels respectively. Note M∗

0.25 ⊂ M∗
0.10.
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6.2 DS2: US industrial production forecasting using the daily VIX

Now we model the one month ahead annualised growth rate in US industrial production

(IP) as a function of the VIX (a proxy for uncertainty). We are motivated by the monthly

structural VAR and theoretical model of the firm by Bloom (2009), which shows that a rise

in the VIX initially decreases IP over the next 6 months. IP then overshoots with most of

the recovery occurring over the following six months. Instead we use the MIDAS framework

to regress monthly IP against a daily VIX and perform OOS forecasting. We employ IP

from March 1992 to May 2021, with 20 year rolling windows and K = 250.

Like inflation, we identify a shift in the polynomials. Our first sub-sample consists of the

first 98 estimation windows conditional on the information from February 2012 to March

2020, the second sub-sample is over the remaining 13 estimation windows. We report il-

lustrative models for each sub-sample in Table 12 and model selection tests in Table 13.

Out of the 14 models considered, UO-AR(2)-MIDAS consistently provides the best fit. The

SIC and HQIC also clearly select UO-AR(2)-MIDAS over its restricted versions (α = 0 and

w(j; θ) = 0 for all j ∈ {1, ...,K}).23 Models without AR dynamics provide the best forecasts

below, so we also report UO-MIDAS, Almon-MIDAS and Beta-MIDAS models. UO-comfac

estimates are similar to those reported, but Almon-comfac and Beta-comfac models were

dropped as they often failed to converge.

Figure 5 plots the average lag weight and the 5th and 95th percentiles for the UO-AR(2)-

MIDAS models over the sub-samples.24 Polynomials in the first sub-sample are similar to

Bloom (2009) and suggest a rise in the VIX decreases IP over the first 50 lags (2.5 months),

with overshooting occurring over the next 9 to 10 months. In the second sub-sample there is

a much larger decrease in IP, a quicker recovery, and a shorter but more pronounced period

of overshooting. This is consistent with the ”V shaped recovery” after the initial shock

from COVID-19. Further, over the second sub-period, all Beta MIDAS models estimate a

negative relation between IP and the VIX (β1 < 0), however 9 out of 13 Almon-MIDAS

models estimate a positive response (β1 > 0). The Beta-MIDAS models therefore capture

the initial decrease in IP, while most of the Almon-MIDAS models (with β1 > 0) capture

23The same ordering applied for the UO-AR(2)-comfac and UO-MIDAS models in February 2019. For
September 2020, UO-MIDAS still had the lowest SIC/HQIC, but the model with α = 0 didn’t converge.

24Plots for the other UO MIDAS models are similar as are the 95% confidence intervals around the lag
polynomials for each month.
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the overshooting.

(Insert Figure 5)

Table 12: Industrial production MIDAS models

UO-AR(2) UO Almon Beta

coeff std err coeff std err coeff std err coeff std err

1st sub-sample (Feb 12 to Mar 20): representative models at February 2019

β0 3.002∗∗ 1.369 1.175 3.580 β0 7.565∗∗∗ 1.430 7.565∗∗∗ 1.449
λ1 0.081 0.069 − − - − − − −
λ2 0.140∗ 0.074 − − - − − − −
γ 0.030∗∗∗ 0.007 0.039∗∗ 0.018 − − − −
A −0.017∗∗∗ 0.005 −0.015∗∗ 0.007 θ1 0.254 0.170 4.235∗∗ 1.912
B 0.054∗∗∗ 0.011 0.028∗∗∗ 0.008 θ2 −0.007∗∗ 0.004 61.632 43.609
α 0.005∗∗∗ 0.001 0.010∗∗∗ 0.003 β1 −0.326∗∗∗ 0.073 −0.326∗∗∗ 0.074
LL -10402.5 -11574.1 -11593.6 -11581.5
2nd sub-sample (Apr 20 to Apr 21): representative models at September 2020

β0 3.622 2.698 4.174∗∗∗ 1.202 β0 −2.522∗∗∗ 0.301 7.7952∗∗∗ 3.0402
λ1 0.466∗∗∗ 0.165 − − - − − − −
λ2 −0.251 0.170 − − - − − − −
γ 0.069∗∗∗ 0.024 0.034∗ 0.021 − − − −
A −0.102 0.078 −0.064 0.048 θ1 27.376∗∗∗ 2.8e−05 3.340∗∗∗ 1.184
B 0.035 0.044 0.009 0.024 θ2 −0.264∗∗∗ 2.8e−05 168.280∗∗∗ 1.184
α 0.068∗∗∗ 0.014 0.055∗∗∗ 0.005 β1 0.182∗∗∗ 0.064 −0.343∗ 0.176
LL -23904.3 -29449.7 -36260.5 -34664.9

Reports illustrative MIDAS models fit to one month ahead US industrial production growth rates (annu-
alised) against a daily VIX. Models are estimated using a 20 year rolling window commencing March 1992 to
February 2012. ***,**,* denotes statistical significance at 1%,5% and 10% respectively, using HAC standard
errors. LL denotes the log likelihood.

Table 13: Model selection via SIC and HQIC: UO-AR(2)-MIDAS

February 2019 September 2020

SIC HQIC SIC HQIC

UO 3.9290 3.8684 4.7610 4.7004
α = 0 4.0212 3.9779 4.8592 4.8159
No predictability 3.9851 3.9391 4.8764 4.8504

Reports Schwarz information criteria (SIC) and Hannan-Quinn information criteria (HQIC) for the UO-AR(2)-
MIDAS model, its restricted version α = 0 and w(j; θ) = 0 for j ∈ {1, ...,K}. The same ordering applied for the
UO-AR(2)-comfac-MIDAS model as well as UO-MIDAS in February 2019. For September 2020, UO-MIDAS
had the lowest SIC/HQIC, but the model with α = 0 did not converge and had the highest SIC/HQIC.

Table 14 reports the one month ahead OOS MSE and MAE for the entire period (March

2012 to May 2021) and the second sub-period (May 2020 to May 2021). The first sub-period

results are similar to the entire OOS period. UO-MIDAS has the lowest MSE and MAE

across the entire OOS period. The low power of MSE means that all models are in the

MCS at 25%, however UO-MIDAS is the only model in the MAE MCS. For the second sub-

sample most models are in the MSE MCS at 10%, however for the MAE only UO-MIDAS and

Almon-MIDAS are included. Given the Almon-MIDAS can only capture the initial decrease

or overshooting, its inclusion in the MCS is more likely a result of low power associated with
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the short OOS period.25

Table 14: Out of sample forecasts: US industrial production growth rate

MSE MAE

Mar 12- May 20- Mar 12- May 20-
May 21 May 21 May 21 May 21

AR(2) models

UO 313.51∗∗∗ 1761.2∗ 9.051 29.650
Alm 319.66∗∗∗ 1859.2 9.533 32.277
Beta 313.61∗∗∗ 1792.8 9.413 31.733
NP 305.16∗∗∗ 1816.7 9.005 28.935
PDL 282.51∗∗∗ 1632.8∗∗ 9.045 29.259
AR(2) 308.93∗∗∗ 1610.9∗∗ 8.948 28.483
UO:com 306.87∗∗∗ 1704.3∗∗ 8.981 28.934
Models with no AR term
UO 259.19∗∗∗ 1460.2∗∗∗ 8.148∗∗∗ 25.470∗∗∗

Alm 275.64∗∗∗ 1594.5∗∗∗ 8.600 25.908∗∗∗

Beta 283.19∗∗∗ 1652.8∗∗∗ 8.743 27.006
NP 300.55∗∗∗ 1823.1∗ 8.966 29.920
PDL 281.89∗∗∗ 1745.0∗∗ 8.796 29.421

Reports OOS MSE and MAE for the monthly growth rate in US industrial production (annualised) over the
entire OOS period March 2012 to May 2021, as well as a subset from May 2020 to May 2021. The first subset
(March 2012 to April 2020) is similar to the overall result. **,* denotes inclusion in the MCS at the 25%
(M∗

0.25), 10% (M∗
0.10) levels respectively. Note M∗

0.25 ⊂ M∗
0.10.

7 Conclusion

We proposed a flexible parametric MIDAS model that can model oscillating lag polynomi-

als. The model is parsimonious, easy to estimate, and can approximate shapes commonly

captured by the exponential Almon and Beta lag. The model includes a parameter that

captures the rate of decay, so endpoint restrictions are not required. We show that the SIC

and HQIC can consistently select between the proposed model, a version with no oscillation,

and no predictability. Empirical forecasting applications supported overshooting, with the

model outperforming a variety of MIDAS benchmarks. Further research may consider other

variables that overshoot (like exchange rates), as well as applying the UO polynomial to

other models like GARCH-MIDAS (Engle et al., 2013), DCC-MIDAS (Colacito et al., 2011)

and VAR-MIDAS (Ghysels, 2016).

25Bloom (2009) shows US employment has a similar though much weaker, marginally significant response
to the VIX. UO-MIDAS models (annualised growth rate in non farm employee numbers (s.a) against a daily
VIX) find similar results, with forecasts no better than Almon and Beta-MIDAS.
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Figure 1: Polynomial decay as a function of γ
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Figure 2: UO-MIDAS model lag polynomials
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Figure 3: Average inflation lag polynomials with 5th and 95th percentiles
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Figure 4: Illustrative inflation lag polynomials with 95% confidence intervals
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(a) UO-AR(2)-MIDAS April 2003
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(b) UO-AR(2)-MIDAS June 2008

‐0.02

‐0.01

0

0.01

0.02

0.03

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

Lag

weight lower upper

(c) UO-comfac-MIDAS April 2003
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(d) UO-comfac-MIDAS June 2008

Figure 5: Average industrial production lag polynomials with 5th and 95th percentiles
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(a) UO-AR(2) Feb12-Mar20
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(b) UO-AR(2) Apr20-Apr21
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A Appendix: Proof of Theorem

The following steps show that the probability of selecting a model that imposes an incorrect

restriction converges to zero, that is:

(a)∗ If (A0, B0) ̸= (0, 0) and α0 ̸= 0 or π then P (ξa < ξb, ξc, ξd) → 1.

(c)∗ If (A0, B0) ̸= (0, 0) and α0 = 0 then P (ξc < ξb, ξd) → 1.

(d)∗ If (A0, B0) ̸= (0, 0) and α0 = π then P (ξd < ξb, ξc) → 1.

To show these, consider any two models i, j with pi ≥ pj . The difference between their ICs

can be written

ξi − ξj =

(
−2max

θ∈Θi

ℓn(θ) + piqn

)
−
(
−2max

θ∈Θj

ℓn(θ) + pjqn

)
= −λi,j + (pi − pj)qn (14)

where λi,j is the likelihood ratio statistic for testing the null hypothesis of model j against

the alternative of model i. If λi,j
p→ +∞ at rate Op(n) then ξi − ξj

p→ −∞ and hence

P (ξi − ξj < 0) → 1.

For any model i = a, b, c, d the log-likelihood maximisation can be expressed

max
θ∈Θi

ℓn(θ) = −n
2
log(1 + 2π)− n

2
log min

θ∈Θi

σ̂2n(θ),

so the likelihood ratio statistic λi,j is

λi,j = 2

(
max
θ∈Θi

ℓn(θ)−max
θ∈Θj

ℓn(θ)

)
= n log

minθ∈Θj
σ̂2n(θ)

minθ∈Θi
σ̂2n(θ)

. (15)

In the following we use the notation W0 = (w(1; θ0), . . . , w(K; θ0))
′. The error variance

function can be written

σ̂2n(θ) =
1

n

n∑
t=1

ε2t − 2
1

n

n∑
t=1

εtX
′
t−1 (W (θ)−W0)

+ (W (θ)−W0)
′ 1

n

n∑
t=1

Xt−1X
′
t−1(W (θ)−W0)
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so that, under Assumptions (C) and (D),

σ̂2n(θ)
p→ σ20 + (W (θ)−W0)

′ΣXX(W (θ)−W0) := σ2(θ)

pointwise for each θ where ΣXX = E(Xt−1X
′
t−1). For any model defined by parameter space

Θm, compactness of Θm and continuity of W (θ) implies this convergence is uniform in θ and

a minimiser exists, so that

min
θ∈Θm

σ̂2n(θ)
p→ min

θ∈Θm

σ2(θ)

= σ20 + min
θ∈Θm

(W (θ)−W0)
′ΣXX(W (θ)−W0)

:= σ20 + ω′
mΣXXωm.

If θ0 ∈ Θm then minimisation is obtained by θ = θ0 and hence ωm = 0, so that

min
θ∈Θm

σ̂2n(θ)
p→ σ20.

If θ0 ̸∈ Θm then ωm ̸= 0 and hence

min
θ∈Θm

σ̂2n(θ)
p→ σ20 + ω′

mΣXXωm > σ20,

the final inequality from the positive definitiveness of ΣXX (Assumption (E)).

Considering the expression for λi,j in (15), if model i is defined so that θ0 ∈ Θi and model

j so that θ0 ̸∈ Θj then it follows that

λi,j = n

(
log

σ20 + ω′
mΣXXωm

σ20
+ op(1)

)

and hence, from (14),

ξi − ξj = −n
(
log

σ20 + ω′
mΣXXωm

σ20
+ op(1)

)
+ (pi − pj)qn.

The first term diverges to −∞ at rate Op(n) which the second term diverges to +∞ at rate

o(n). Hence ξi − ξj
p→ −∞ and

P (ξi − ξj < 0) → 1.
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Now to show that models that impose a correct restriction will be selected over less

restricted models.

(b)∗∗ If (A0, B0) = (0, 0) then P (ξb < ξa.ξc, ξd) → 1.

(c)∗∗ If (A0, B0) ̸= (0, 0) and α0 = 0 then P (ξc < ξa) → 1.

(d)∗∗ If (A0, B0) ̸= (0, 0) and α0 = π then P (ξd < ξa) → 1.

We will show (c)∗∗ in detail, with the others following similarly. For any B define the

likelihood ratio process

λ(n)a,c (B) = 2

(
max
γ,A,α

ℓn(γ,A, α,B)−max
γ,A

ℓn(γ,A, 0, B)

)
.

When α0 = 0, for each B ∈ B standard likelihood ratio asymptotics gives

λ(n)a,c (B)
d→ λa,c(B)

with λa,c(B) ∼ χ2
1, and hence Op(1) pointwise for each B. We can then show

sup
B∈B

λ(n)a,c (B) = Op(1), (16)

essentially from continuity and boundedness in B on the compact parameter space B and

non-singularity of ΣXX . Thus, since we assume cn → +∞,

ξa − ξc = − sup
B∈B

λn(B) + 2cn
p→ +∞

and hence P (ξa − ξc > 0) → 1.

To elaborate on (16), define the notation η = (γ,A) and, for any B ∈ B, the unrestricted

estimator

(η̂(B), α̂(B)) = argmax
η,α

ℓn(η, α,B)

and restricted estimator (with α = 0)

η̃(B) = argmax
η

ℓn(η, 0, B).
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To construct the score and Hessian, define the derivatives

wα(j; η, α,B) =
∂w(j; η, α,B)

∂α
= e−

γ
2
j [−Aj sin(αj) +Bj cos(αj)]

wγ(j; η, α,B) =
∂w(j; η, α,B)

∂γ
= − j

2
e−

γ
2
j [A cos(αj) +B sin(αj)]

wA(j; η, α,B) =
∂w(j; η, α,B)

∂A
= e−

γ
2
j sin(αj),

and then

wη(j; η, α,B) = [wγ(j; η, α,B) wA(j; η, α,B)]

and

Wα(B) =


wα(1; η0, 0, B)

...

wα(K; η0, 0, B)

 , Wη(B) =


wη(1; η0, 0, B)

...

wη(K; η0, 0, B)

 .

The elements of the score evaluated at the true values η = η0, α = 0 (noting B is not

identified when α = 0) are denoted

sα(B) =
∂ℓn(η, α,B)

∂α

∣∣∣∣
η=η0,α=0

=
n

σ20

1

n

n∑
t=1

Wα(B)′Xt−1εt (17)

and

sη(B) =
∂ℓn(η, α,B)

∂η

∣∣∣∣
η=η0,α=0

=
n

σ20

1

n

n∑
t=1

Wη(B)′Xt−1εt. (18)

The corresponding elements of the Hessian are

Hαα(B) =
∂2ℓn(η, α,B)

∂α2

∣∣∣∣
η=η0,α=0

= − n

σ20

(
1

n

n∑
t=1

(Wα(B)′Xt−1)
2 + op(1)

)

= − n

σ20

(
Wα(B)′ΣXXWα(B) + op(1)

)
(19)

and similarly

Hηα(B) =
∂2ℓn(η, α,B)

∂η∂α

∣∣∣∣
η=η0,α=0

− n

σ20

(
Wη(B)′ΣXXWα(B) + op(1)

)
(20)

Hηη(B) =
∂2ℓn(η, α,B)

∂η∂η′

∣∣∣∣
η=η0,α=0

− n

σ20

(
Wη(B)′ΣXXWη(B) + op(1)

)
(21)
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The usual expansion of the likelihood function is then

ℓn(η̃(B),0;B) = ℓn(η̂(B), α̂(B);B)

+
1

2

η̂(B)− η̃(B)

α̂(B)


′Hηη(B) Hαη(B)

Hηα(B) Hαα(B)


η̂(B)− η̃(B)

α̂(B)

+ op(1) (22)

with the remainder uniformly op(1) in B over the compact set B. Similarly the expansion

for the unrestricted MLE is

η̂(B)− η0

α̂(B)

 = −

Hηη(B) Hαη(B)

Hηα(B) Hαα(B)


−1sη(B)

sα(B)

+ op(1) (23)

and for the restricted MLEη̂(B)− η0

α̂(B)

 =

−Hηη(η0, 0;B)−1sη(B)

0

+ op(1) (24)

Partitioned inversion of the unrestricted Hessian and difference between (23) and (24) gives

η̂(B)− η̃(B)

α̂(B)

 =

Hηη(B)−1Hηα(B)

−1

Hαα·η(B)−1sα·η(B) + op(1). (25)

where

sα·η(B) = sα(B)−Hαη(B)Hηη(B)−1sη(B)

Hαα·η(B) = Hαα(B)−Hαη(B)Hηη(B)−1Hηα(B).

Substitution of (25) into (22) gives

λn(B) = −sα·η(B)′Hαα·η(B)−1sα·η(B) + op(1).
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Now using (17)–(21) gives

sα·η(B) =
√
n ν(B)′

1√
n

n∑
t=1

Σ
−1/2
XX Xt−1

εt
σ0

+ op(1)

=
√
n ν(B)′Zn

and

Hαα·η(B) = Hαα(B)−Hαη(B)Hηη(B)−1Hηα(B)

= −n ν(B)′ν(B) + op(1)

where

ν(B) = σ−1
0 Σ

1/2
XX(Wα(B)−Wη(B)(Wη(B)′ΣXXWη(B))−1Wη(B)′ΣXXWα(B))

and

Zn =
1√
n

n∑
t=1

Vt
d→ N(0, IK)

where Vt = Σ
−1/2
XX Xt−1εt/σ0 is a strictly stationary martingale difference sequence. Thus

λn(B) =

(
ν(B)′Zn

(ν(B)′ν(B))1/2
+ op(1)

)2

which is clearly asymptotically χ2
1 for each B ∈ B. The compactness of B, continuity of

Wα(B) and Wη(B), and non-singularity of ΣXX further imply that supB∈B λn(B) = Op(1)

as required for (16).

Combining (a)∗, (c)∗, (d)∗ and (b)∗∗, (c)∗∗, (d)∗∗ demostrates (a)–(d) in the statement

of the Theorem.
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