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Abstract

We study the effect of reinsurance on the probability of ultimate ruin in the
classical surplus process and consider a retention level as optimal if it
minimises the ruin probability. We show that optimal retention levels can be
found when the reinsurer’s premium loading depends on the retention level. We
also show that when the aggregate claims process 1is approximated by a
translated Gamma process very good approximations to both optimal retention
levels and ruin probabilities can be obtained. Finally, we discuss the effect

of reinsurance on the probability of ruin in finite time.

"1l. Introduction and notation
The purpose of this paper is to study the effect of reinsurance on the
probability of ruin in the classical surplus process. Previous studies of the
effect of reinsurance on the probability of wultimate ruin (for example
Gerber (1979), Waters (1983), Centeno (1986) and Hesselager (1990)) have
focussed on the effect of reinsurance on the adjustment coefficient. By
finding a type of reinsurance arrangement or a retention level that maximises
the wvalue of thé adjustment coefficient we can minimise the value of
Lundberg’'s upper bound for the probability of ultimate ruin. The reason for
considering the adjustment coefficient in the past was that it was relatively
simple to calculate whereas the probability of ruin was not. However, the
recent development of numerical algorithms for calculating, and approximating,
the probability of ruin have made its calculation more feasible. (See, for
example, Panjer (1986), De Vylder and Goovaerts (1988), Dickson and Waters
(1991) and Dickson and Waters (1993).) We will use these algorithms to study
the effect of different types and levels of reinsurance on the insurer’s
probability of ruin. Our aim is to find retention levels that minimise this
probability given a type of feinsurance arrangement and a reinsurance premium
loading.
In the classical surplus process, the insurer’s surplus at time t is denoted
U(t) and defined by |

U(t) = u + ct - X(¢t)

where u is the initial surplus, ¢ is the premium income per unit time, assumed
to be received continuously, and X(t) denotes aggregate claims up to time t.
The premium is calculated by the expected value principle with loading factor

§ > 0. The aggregate claims process is a compound Poisson process, and without




loss of generality we can assume that the Poisson parameter is 1. Individual
claim amounts have distribution function P(x) and we assume (again without
loss of generality) that this distribution has mean 1. With these assumptions,
¢ =1+ 4. The ultimate ruin probability for this risk process is denoted ¥(u)
and defined by

P(u) = P(U(t) < 0 for some t > 0)

Now suppose that the insurer effects reinsurance and that the amount paid by
the insurer when the i-th c¢laim, denoted Xi, occurs 1is h(Xi) where
0< h(Xi) < Xi. We will assume throughout that reinsurance premiums are
calculated with a loading factor ¢, where ¢ > 0. Then, assuming that
reinsurance premiums are paid continuously, the insurer's surplus at time t,
denoted U(t;h), is

N(t)
U(t;h) =u+ (1 + 8)t - (1 4+ &)(Q - E[h(Xi)]) -3 h(Xi)
i=1

where N(t) denotes the number of claims up to time t. For this surplus process

we denote the ultimate ruin probability by ¥(u;h) and define it by

¥(u;h) = P(U(t;h) < 0 for some t > 0)
We will consider two forms of h(X):
(i) h(X) = oX, 0 < @ £ 1, i.e. proportional reinsurance with retention
level a, and |
(ii) h(X) = min(X,M), i.e. excess of loss reinsurance with retention level
M.
Our objective in each case is to find the retention level that minimises
Y(u;h), and we will consider a retention level to be optimal if it minimises
¥(u;h). We will also consider the question of whether finding the retention
level that maximises the adjustment coefficient is a reasonable method of
approximating this optimal retention level.
In sections 8 and 9 we study the effect of reinsurance on the probability of
ruin in finite time. We demonstrate through a series of examples how the
timescale affects the optimal retention level. We also show that considering
discrete time ruin probabilities leads to different conclusions from a study
of continuous time ruin probabilities. Steenackers and Goovaerts (1992) also
consider the effect of reinsurance on the probability of ruin in finite and
continuous time. However, their primary consideration is to determine an

optimal form of reinsurance rather than an optimal retention level.

2. Reinsurance and the adjustment coefficient
Under the assumptions of the previous section, the insurer’s adjustment

coefficient is the unique positive number R satisfying




1+ (1 +4)R= M&(R)

where M&(R) denotes the moment generating function of the individual claim
amount distribution evaluated at R. When there is a reinsurance arrangement in
force, 1 + § is replaced by premium income per unit time net of reinsurance,
and X denotes the net individual claim amount. We will consider two individual
claim amount distributions, exponential and Pareto. In our examples we will

use the following combinations of 4§ and ¢.

4 £
0.1 0.15
0.1 0.2
0.1 0.3
0.2 0.3
0.2 0.4

2.1 Proportional reinsurance
First, let P(x) = 1 - exp{(-x). Then the insurer’s adjustment coefficient (net
of reinsurance) is given by

§ - €1 - a)
all +6 - (1 + &)1 - a)]

R(a) =

The values of a which maximise R(a) and the corresponding values of R(a) for

our chosen combinations of § and ¢ are shown in Table 1.

Table 1
9/¢ o R(a)
0.1/0.15  0.644 0.1048
0.1/0.2 0.956 0.0911
0.1/0.3  1.000 0.0909
0.2/0.3 0.626 0.1965
0.2/0.4 0.923 0.1678

Consider next the case when P(x) =1 - (1 + x)-z, i.e. individual claims
follow a Pareto(2,1) distribution. Then individual claims net of reinsurance
follow a Pareto(2,a) distribution and so we cannot compute the adjustment
coefficient in this case. Let us therefore take an alternative measure. For
this distribution there is an asymptotic formula for the probability of
ultimate ruin (see, for example, Panjer and Willmot (1992)), and so we could
consider finding the value of a which minimises the asymptotic ultimate ruin
probability. Since maximising‘exp{-Ru) is roughly eduivalent to minimising
Y(u;h) when u is large, we are adopting a similar criterion by minimising the
ultimate ruin probability as u » w«,

Adapting formula';(11.6.4) of Panjer and Willmot (1992) to allow for

proportional reinsurance, we find that




P - /(@ + W - £+ af) (2.1)

It is easy to show that the value of a which minimises the right hand side of
(2.1) as u > « is min(2(1 - 0/{),1). For our chosen combinations of 4§ and ¢,

Table 2 shows the values of a which minimise the asymptotic ultimate ruin

probability.
Table 2

/¢ o
0.1/0.15  0.667
0.1/0.2 1
0.1/0.3 1
0.2/0.3 0.667
0.2/0.4 1

2.2 Excess of loss reinsurance
Consider first the case when P(x) =1 - exp{-x), and let M denote the
retention level under an excess of loss reinsurance arrangement. Then the

equation defining the adjustment coefficient is
1+ [1 +6 - (1L + f)exp{-M)]R = (1 - R)™(1 - Rexp(-(1l - R)M))

which can be solved for R (= R(M)) by standard numerical techniques given
values of 4, £ and M. Table 3 shows the values of M which maximise R(M)
together with the corresponding values of R(M) for our chosen combinations of

f and ¢.

Table 3
8/¢ M R(M)
0.1/0.15  0.851 0.1642
0.1/0.2 1.533 0.1189
0.1/0.3 2.643 0.0993
0.2/0.3 0.832 - 0.3153
0.2/0.4 1.486 0.2265

Similarly, when P(x) = 1 - (1 + x)7°

1+[1+9-1

1+ ¢
+ M

]R = JMexp{Rx)———g——*z
0 (1 + %)

we can calculate R(M) from

1 2
dx + exp(RM) [m]

This equation can also be solved using standard numerical techniques and Table
4 shows the values of M which maximise R(M) together with the corresponding

values of R(M) for our chosen combinations of § and €.




Table &4

8/¢ M R(M)
0.1/0.15  1.111 0.1258
0.1/0.2 2.408 0.0757
0.1/0.3 5.326 0.0493
0.2/0.3 1.084 0.2420
0.2/0.4 2.325 0.1447

In Sections 4 and 5 we will compare these optimal retention levels with the
optimal retention levels when the criterion for optimality will be that the

ultimate ruin probability is minimised.

3. An algorithm to compute ultimate ruin probabilities
Dickson and Waters (1991) consider a discrete time compound Poisson risk
model with the following characteristics:
- individual claim amounts are distributed on the non-negative integers
with mean B, where B is greater than 1,
- the Poisson paraﬁeter for the expected number of claims per unit time is
/11 + 6)8],
* - the premium income per unit time is 1.
For this model the surplus process, given initial surplus u which is assumed
to be an integer, is denoted {Z(n.))nZO and the ultimate ruin probability is
given by ¢d(u) = P(J < =) where
J = min(n: Z(n) <0, n=1,2,...)
= w if Z(n) >0 for n=1,2,...
For reasons given by Dickson and Waters (1991, Section 1) we can regard ¢h(ﬂu)
as an approximation to P(u).
Ultimate ruin probabilities under this model can be calculated recursively.
Define g and G(k) for k = 0,1,2,... to be the probabilities that aggregate
claims per unit time are respectively equal and less than or equal to k. Then
values of gk can be calculated from Panjer’'s (1981) recursion formula. The

algorithm to compute ultimate ruin probabilities is
¥, (0) = /(1 + 6)

5, = 55,0 - 1+ 60)
u-1

¢d(u) - g;1{¢d(u - 1) -jglgj¢d(u -3y -1+ 6Gu - 1)] for u 2> 2

(see Dickson ahd Waters (1991)). In the following sections we will explain how

this algorithm can be modified to take account of reinsurance arrangements.




4. Proportional reinsurance

Let ¥(u;a) denote the probability of ultimate ruin when h(X) = aX. Then

N(t) ‘
Y(u;a) = P(u + (L+46 -1 -a)l+ &)t - Z aXi <0 for some t > 0]
i=1
u A N.(t) ’
= P(E + (1 + &)t - 2:X1 <0 for some t > 0}
i=1

where ; = (8 - &€(1 - a))/a, so that Yy(u;a) = ¢(u/d) where ¢(u/&) is calculated
using a loading of 2.

To apply the recursion algorithm we have discretised the distribution P(x) on
O,I/bB,Z/bﬂ,... , where 8 is an integer, using the discretisation procedure of
De Vylder and Goovaerts (1988). The calculated ruin probabilities give
approximations to ¢(j/dﬁ), for j =0,1,2,... when the loading is 2. As
we shall only consider integer values of u we find P(u/a) by setting j = Bu
and this gives our approximation to ¥(u;a). The starting value for the
algorithm becomes wd(O) -1/(1 + ;). '

4.1 Exponential individual claims

In this section we assume that individual claims are exponentially distributed
with mean 1. In this case there is no need to calculate approximate values of
Y(uj;a) since claims (net of reinsurance) are exponentially distributed with

mean a, and S0 we can calcdlate values of Y(u;a) exactly from
a
¥(uja) = — exp{-R(a)u)

where ¢/ =1+ 8§ - (1 + £€)(1 - a) and R(a) = (6 - (1 - a)£)/hc’.

Table 5 shows values of a which minimiée Y(u;a) for different values of u. We
have calculated ¥(u;a) for values of a that are integer multiples of 0.001 and
have then selected the value of a which minimises ¥(u;a) for a given value of
u. If desired, the optimal retention level could be calculated to more than
three decimal places. The final row of the table shows the values of a which

maximise R{a).




Table 5

Loadings 0.1/0.15 0.1/0.2 0.1/0.3 0.2/0.3 0.2/0.4

u =10 0.666 1.000 '1.000 0.646 0.967
u = 20 0.655 0.980 1.000 0.636 0.944
u = 30 0.651 0.972 1.000 0.632 0.937
u = 40 0.649 0.968 1.000 0.631 0.933
u = 50 0.648 0.966 1.000 0.630 0.931
u = 60 0.648 0.964 1.000 0.629 0.930
u =70 - 0.647 0.963 1.000 0.628 0.928
u = 80 0.647 0.962 1.000 0.628 0.928
u= 90 0.646 0.962 1.000 0.628 0.927
u = 100 0.646 0.961 1.000 0.628 0.927

R - 0.644 0.956 1.000 0.626 0.923

When § = 0.1 and £ = 0.3, the insurer's probability of ultimate ruin is

always minimised when a = 1. However, we can see that for the other
combinations of § and ¢ that as u increases, the values of a that minimise the
probability of ultimate ruin decrease, and appear to converge to the values of
a that maximise the adjustment coefficient. However, reinsurance does not have
a great effect on the probability of ultimate ruin. Table 6 shows mimimum
values of Y(u;a) together with values of ¥(u). The tabulated figures show that
the maximum reduction in the ultimate ruin probability is around 0.04. (In
this table, the column headed 0.1/- gives P(u) when 6§ = 0.1; a similar
interpretation applies to the column headed 0.2/-.)

Table 6
Loadings 0.1/0.15 0.1/0.2 0.1/- 0.2/0.3 0.2/0.4 0.2/-
u=10 0.3267 0.3663 0.3663 0.1227 0.1571 0.1574
u = 20 0.1146 0.1475 0.1476 0.0172 0.0294 0.0297
u = 30 0.0402 0.0593 0.0595 0.0024 0.0055 0.0056
u = 40 0.0141 0.0239 0.0240 0.0003 0.0010 0.0011
u = 50 0.0049 0.0096 0.0097 0.0000 0.0002 0.0002

The figures in Table 5 show that choosing a to maximise R(a) is a reasonable
alternative to choosing a to minimise %(u;a) at least for large values of u.
Further, when u is large, say u > 50, exp({-R(e@)u) gives a good approximation

to Y(u;a) around the optimal value of a.

4.2 Pareto individual claims

Let P(x) = 1 - (1 + x)'z. In this case we must compute approximate values of




Y(u;a) from the algorithm described in Section 3. To find the optimal
retention level we have set 8 = 60 to calculate values for y¥(u;a). This value
of B ensured that for all wvalues of a considered (i.e. those for which
Y(u;a) < 1) the discretisation is on intervals of at most 1/20th of the mean
individual claim amount. The optimal retention level has been taken to be the
value of a which is an integer multiple of 0.001 and which minimises ¥(u;a).
Finding the optimal value of a to a greater number of decimal places is of
course possible. Table 7 shows values of a that minimise the computed value of
the ultimate ruin probability for different values of u. The final row of the
table shows the values of o that minimise the asymptotic ultimate ruin
probabilities.
Table 7

Loadings 0.1/0.15 0.1/0.2 0.1/0.3 0.2/0.3 0.2/0.4

u = 40 0.762  1.000 1.000 0.739 1.000
u = 80 0.734 1.000 1.000 0.711 1.000
u=120  0.720 1.000 1.000 0.698 1.000
u=160 0.710 1.000 1.000 0.691 1.000
u=200 0.703 1.000 1.000 0.686 1.000
us e 0.667 1.000 1.000 0.667 1.000

We can see that for three combinations of § and ¢ the optimal retention level
in terms of minimising the ultimate ruin probability is 1. As in the case of
exponential individual claims, proportional reinsurance causes 1little
reduction in the wultimate ruin probability. Choosing a to minimise the
asymptotic wultimate ruin probability does not appear to be a reasonable
alternative to choosing a to minimise ¥(u;a), especially for smaller values of

u.

4.3 General remarks

It is straightforward to show that ¥(0;a) > ¥(0) for any form of P(x) provided
that @ < 1 since the net loading ; is then strictly less than § as § < ¢.

We can see from Table 5 that when u = 10 and the loading factors are 0.1/0.2
the optimal retention level is a = 1. This is also true for smaller values of
u (and when the loadings are different). This feature is also apparent when

the individual claim distribution is Pareto(2,1).

5. Excess of loss reinsurance
Let %(u;M) denote the probability of ultimate ruin when h(X) = min(X,M). In
order to apply the algorithm described in Section 3 to calculate approximate

values of ¥(u;M) we discretised the individual claim amount distribution on 0,




M/B,2M/B,... M where B was always chosen to be an integer. If the value of u
for which we wished to calculate ¥(u;M) was not an integer multiple of M/B,

then the value was calculated by linear interpolation as
YuM) = (k + 1 - Bu/Mpk;M) + (BuM - K)p(k + 1;M)

where k is the integer such that k g ﬂu/M <k + 1. Values of %(u;M) were
calcﬁlated for values of M that were integer multiples of 0.001. This allowed
us to find to three decimal places the value of M that minimised ¥(u;M).

For most of our calculations the value of B was 200. The calculated values
were confirmed using a higher value of B (e.g. 300). If necessary, higher
values of f were used until calculated optimal retention levels matched for
differing values of B. For all combinations of 4§ and ¢, and for both
distributions considered, the values of ¥(u;M) around the optimal retention
level were very close, often agreeing to das many as ten decimal places. Thus,
the procedure of selecting the optimal value of M is very sensitive to the
choice of 8.

As in the previous section, we have discretised the individual claim amount
distribution (net of reinsurance) using the method of De Vylder and Goovaerts
(1988) as this method preserves the value of the insurer’s expected individual

claim payment.

5.1 Exponential individual claims
Again let P(x) = 1 - exp(-x). Table 8 shows values of M which minimise the
computed values of %(u;M) for selected values of u. The final row of this

table shows the values of M which maximise the adjustment coefficient.
Table 8

Loadings 0.1/0.15 0.1/0.2 0.1/0.3 0.2/0.3  0.2/0.4

u=10 0.865 1.583 2.821 0.845 1.529
u = 20 0.858 1.557 2.727 0.838 1.507
u = 30 0.856 1.549 2.698 0.836 1.500
u = 40 0.855 1.545 2.684 0.835 1.496
u = 50 0.854 1.543 2.676 0.833 1.494

R 0.851 1.533 2.643 0.832 1.486

The pattern in Table 8 is similar to that in Table 5.. For each combination of .
§f and ¢, the value of M which minimises the probability of ultimate ruin
decreases as u increases, and these values appear to converge to the value of
M which maximises the value of the adjustment coefficient. One difference from
Table 5 is-that for each combination of # and ¢ that we have considered the

ultimate ruin probability for these values of u is not minimised by retaining




the entire risk.

The figures in Table 8 suggest that, at least for large values of u, finding
the value of M which maximises the adjustment coefficient is a reasonable
_alternative to finding the wvalue of M that minimises the ultimate ruin
probability.

For this individual claim distribution we can assess the accuracy of the
algorithm when u < M since it is possible to find an explicit expression for

Y(u;M) in this case. For 0 < u < M, it is easy to show that

k5 ) = B - [ p - 0peMa - (A - Bw) (5.1)
: 0

where k denotes the insurer’s premium income net of reinsurance per unit time
and k =1+468 - (1 + ¢£)exp(-M}. Equation (511) can be solved directly, but it
is easier to note that the function F(u,x), representing the probability that
ultimate ruin occurs and that the surplus immediately prior to ruin is less

than x, satisfies the equation

1+ 9) gﬁ F(u,%) = F(u,x) - J‘p(u - z)F(z,x)dz - (1 - P(u)) (5.2)
0

when u < x. Since F(0,x) = (1 - exp{-M))/(l + 8) and Y(O;M) = (1 - exp{-M))/k
we can use the solution for F(u,x) given by Dickson (1992, Section 4) to write

down the solution for P(u;M) for 0 £ u < M as

I E——

1 1
Pp(u;M) = " {1 + P exp(-M)]exp(-(l - l/k)u} -
Table 9 shows some exact and approximate values of ¥%(2;M) when 6 = 0.1
and § = 0.15. These figures show that the algorithm is producing good
approximations and there is no reason to suspect that it will not produce good

approximations when u > M.

Table 9

‘ Exact wvalue Calculated value

M of P(2;M) of  P(2;M)
2.25 -0.73437 0.73437
2.50 0.74034 0.74034
2.75 0.74466 0.74467
3.00 0.74785 0.74785
3.25 0.75023 0.75023 i
3.50 0.75202 0.75203

Figure 1 shows calculated values of %(u;M) (solid lines)and Lundberg’s upper
bound (dotted lines) for u = 10,20,30,40,50 when # = 0.1 and ¢ = 0.15. We can
see that at the optimal retention levels the probability of ultimate ruin is

much smaller than ¥(u). Further, the Lundberg bound is very close to the ruin

10




probability at the optimal retention levels. Figure 2 illustrates the
situation when § = 0.1 and £ = 0.3. In this case the probability of ultimate

ruin at the optimal retention level is at most 2% lower than ¥(u).

5.2 Pareto individual claims
In this section we again consider P(x) =1 - (1 + x)-z. Table 10 shows values
of M which minimise the calculated value of ¢(u;M) for selected values of u.
The final row of this table shows the values of M that maximise the adjustment
coefficient.

Table 10

Loadings 0.1/0.15 0.1/0.2 0.1/0.3 0.2/0.3 0.2/0.4

u = 10 1.137 2.548 6.238 1.107 2.446
u = 20 1.124 2.475 5.716 1.095 2.383
u = 30 1.120 2.452 5.575 1.092 2.363
u = 40 1.118 2.441 5.509 1.090 2.354
u = 50 1.116 2.434 5.471 1.088 2.348

R 1.111 2.408 5.326 1.084 2.325

The pattern in this table is identical to that in Table 8. Again we can see
that for large values of u at least, choosing M to maximise the adjustment
coefficient is a reasonable alternative to choosing M to minimise the ultimate
rYuin probability.

Figure 3 shows calculated values of ¢(u;M) and Lundberg’s upper bound fof
u = 10,20,30,40,50 when ¢ - 0.1 and € = 0.15, and Figure 4 illustrates the
situation when § = 0.2 and € = 0.4. We can see from these figures that excess
of loss reinsurance causes a significant reduction in the wultimate ruin
probability. Once again, the Lundberg bound is close to the ruin probability
at the optimal retention levels. However as M increases, the bound drifts away

from $(u;M) since R(M) > 0 aé M> o,

5.3 General remarks

As in the case of proportional reinsurance, it is easy to show that when u = 0
the insurer should not effect reinsurance if the insurer’s aim is to minimise
the probability of ultimate ruin. We can show numerically that this is also

true for small values of u.

6. Translated gamma processes

Dickson and Waters (1993) defihe a translated Gamma process (Srs(t))um by

STG(t) = Sg(t) + kt

11




for all t > 0 where (Sc;(t))t>0 is a Gamma(a,B) process. (We are adopting the
same notation as Dickson and Waters (1993) so that for a fixed value of ¢,
SG(t) has a Gamma distribution with parameters at and B, and E[S(t)] = at/ﬂ.)
Dickson and Waters (1993) show that finite time ruin probabilities for a
compound Poisson process can be reasonably approximated by ruin probabilities
for a translated Gamma process for large values of u. In this section we will
show that this approximation method can also be successfully applied to the
problem of finding optimal retention levels. In the following we will
approximate the compound Poisson process for nét retained aggregate claims by
a translated Gamma process and will find values of the retention level that
maximise the adjustment coefficient and minimise the ultimate ruin probability
for the approximating translated Gamma process.

The adjustment coefficient for a translated Gamma process with parameters a,p

and k is the unique positive number R which satisfies
exp(R(c - k)) = (1 - R/B)™®

where ¢ (> a/f + k) is the premium income per unit time. Given the parameter
values, this equation is easily solved using standard numerical techniques.
Following Dickson and Waters (1993) the parameter values will be chosen such
that the mean, variance and coefficient of skewness of S(t) and Src(t) are the
same for all values of t. The ultimate ruin probability ¥(u) for a compound
Poisson process where the premium loading factor is # is approximated by
¢&Jﬂu), the probability of ultimate ruin for a stangardised Gamma process
(i.e. a Gamma(l,l) process) when the loading factor is § = (1 + kﬂ/&)ﬂ. In the
case when the insurer has effected reinsurance, we simply use the moments net
of reinsurance of the process (S(t))um to find the Parameters of the
translated Gamma process and calculate the loading factor, §, using the net of
reinsurance loading in plaCe of 4.

Ultimate ruin probabilities for a standardised Gamma process have been
calculated in a slightly different way to that described by Dufresne et al
(1991). They show that ultimate ruin probabilities for a standardised Gamma
process when the premium loading factor is # can be calculated from

L n

6 n#
P _(u) =) ———— G (u)
¥ a0 (14 )™
where
G(x) = 1 - exp{-x)} + x I (exp(-y)/y)dy
.4
We have calculated wvalues of dgG(u) by discretising G(x) on 0,h,2h,... using

crude rounding and then applying the method of Panjer (1981). To evaluate the

integral expression in G(x) we applied approximate formulae given by

12




Abramowitz and Stegun (1964). This approach, with h = 0.005, leads to values
of ¢SG(u) which match those in Table 2 of Dufresne et al (1991) for almost all
values of u > 10. In the cases where there was not an exact match to four
decimal places, the difference in the computed values was one in the fourth

decimal place.

6.1 Exponential individual claims

Consider first the case when individual claims are exponentially distributed
with mean 1. For both proportional and excess of loss reinsurance the first
three moments of the individual claim amount distribution net of reinsurance

exist and so we can apply the approximation in both cases.

6.1.1 Proportional reinsurance
Table 11 shows values of a that maximise R(a) for the approximating translated
Gamma process and the corresponding maximum values of R(a). The figures in

parenthesis'show the values for the compound Poisson process (as in Table 1).

Table 11
8/¢ a R(a)
0.1/0.15 0.644 (0.644) 0.1047 (0.1048)
0.1/0.2 - 0.956 (0.956) 0.0910 (0.0911)
0.1/0.3 1.000 (1.000) 0.0908 (0.0909)
0.2/0.3 0.624 (0.626) 0.1961 (0.1965)
0.2/0.4 0.920 (0.923) 0.1673 (0.1678)

The values of a that minimise R(a) for the translated Gamma pfocess are very
~ close to those for the compound Poisson process, as are the values of R(a).
This is not particularly surprising since an approximate identity for R(a) for
each process can be written in terms of the first three moments of the

aggregate claims distribution.
Table 12 shows values of a that minimise ultimate ruin probabilities for the

translated Gamma process and the corresponding ruin probabilities for two

combinations of § and £. The figures in parenthesis show the exact values.
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Table 12

u | §=0.1/¢=0.15]| 9 =0.2/¢ =0.4
a ¥(u;a) a Y(u;a)
20 | 0.655 0.1146 0.943  0.0295
(0.655) (0.1146) |(0.944) (0.0294)
40 | 0.649  0.0141 0.931  0.0010
(0.649) (0.0141) |(0.933) (0.0010)
60 | 0.647 0.0017 0.927  3.67x107;
(0.648) (0.0017) |(0.930) (3.57x107)
80 | 0.646  0.0002 0.926  1.29x107°
(0.647) (0.0002) |(0.928) (1.25x10°%)
100 | 0.646  2.6x107 | 0.924  4.56x10°
(0.646) (2.6x107°)](0.927) (4.34x10°%)

The wvalues of o that minimise the wultimate ruin probabilities for the
translated Gamma process are remarkably close to the exact values and the
computed ruin probabilities give an excellent approximation to those for the
compound Poisson process. The same pattern of results applies for other

combinations of 4 and ¢.

6.1.2 Excess of loss reinsurance
Table 13 shows values of M that maximise R(M) for the approximating translated
Gamma process and the corresponding maximum values of R(M). The figures in

parenthesis show the calculated values for the compound Poisson process (as in
Table 3).

Table 13
8/¢ M R(M)
0.1/0.15  0.851 (0.851) 0.1641 (0.1642)
0.1/0.2 1.532 (1.533) 0.1188 (0.1189)
0.1/0.3 2.639 (2.643) 0.0991 (0.0993)
0.2/0.3 0.830 (0.832) 0.3145 (0.3153)
0.2/0.4 1.480 (1.486) 0.2257 (0.2265)

This table displays the same characteristics as Table 11. Table 14 shows
values of M that minimise ultimate ruin probabilities for the approximating
translated Gamma process, together with the minimum ruin probabilities. The
figures in parenthesis show the calculated values for the compound Poisson

process.,
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Table 14

u | §=0.1/¢6 ~0.15| 8 =0.2/¢6 =0.4
M Y(u;M) M Y(u; M)

10 | 0.865 0.1853 1.529  0.0094
(0.865) (0.1854) |[(1.529) (0.0094)

20 | 0.858 0.0359 1.504 0.0099
(0.858) (0.0359) |(1.507) (0.0098)

30 | 0.855 0.0070 1.496 0.0010
(0.856) (0.0070) |(1.500) (0.0010)

40 | 0.854 0.0014 1.492  0.0001
(0.855) (0.0013) |(1.496) (0.0001)

50 | 0.853 0.0003 1.489 0.0000
(0.854) (0.0003) |(1.494) (0.0000)

We can see that the values of M that minimise the ultimate ruin probability
when the aggregate claims process is a translated Gamma process are again
remarkably close to those that minimise the ultimate ruin probability when the
aggregate claims process is a compound Poisson process, as are the values of

the ultimate ruin probabilities at these values of M.

6.2 Pareto(2,l) claims

Since the second and third moments of the Pareto(2,1) distribution do not
~exist we cannot apply this approximation method when the reinsurance
arrangement is proportional.

- However, we can apply the approximation when the reinsurance arrangement is
excess of loss. Table 15 shows values of M that maximise R(M) for the
approximating translated Gamma process and the corresponding maximum values of
R(M). The figures in parenthesis show the calculated values for the compound

Poisson process (as in Table 4).

Table 15
8/¢ M R(M)
0.1/0.15 1.111 (1.111) 0.1257 (0.1258)
0.1/0.2 2.406 (2.408) 0.0757 (0.0757)
0.1/0.3 5.318 (5.326) 0.0492 (0.0493)
0.2/0.3 1.081 (1.084) 0.2415 (0.2420)
0.2/0.4 2.317 (2.325) 0.1444 (0.1447)

The pattern of results in Table 15 is similar to that in Table 13. The values
of M that maximise R(M) for the translated Gamma process are marginally
smaller than the values for the compound Poisson process, and the same is true

for the values of R(M).
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Table 16 shows values of M that minimise ultimate ruin probabilities for the
approximating translated Gamma process together with minimum ruin
probabilities. The figures in parenthesis show the calculated values for the
compound Poisson process. The pattern in this table is the same as that in
Table 14. |

Table 16

u| §=01/6=0.15]| 6 =0.1/¢ = 0.2
M P(u; M) M Y(u;M)

10 | 1.137 0.2727 2.553  0.4457
(1.137) (0.2729) |(2.548) (0.4462)

20 | 1.124 0.0776 2.476 0.2093
(1.124) (0.0776) |(2.475) (0.2094)

30 | 1.119 0.0221 2.452  0.0982
(1.120) (0.0221) [(2.452) (0.0982)

40 | 1.117 0.0063 2.440 0.0461
(1.118) (0.0063) |(2.441) (0.0461)

50 | 1.116 0.0018 2.433  0.0216
(1.116) (0.0018) |(2.434) (0.0216)

7. Varying the reinsurer'’s loading

In this section we illustrate how the optimal retention level can be found
when the reinsurer’s loading varies with the retention level. We will consider
the case of excess of loss reinsurance and Pareto(2,1) individual claims.

To apply the algorithm to calculate ¥(u;M) (given the individual claim amount
distribution) the input parameters are simply the initial surplus, the
retention level, the insurer's loading and the reinsurer's loading. Thus it is
straightforward to calculate ruin probabilities when £ = €(M) by simply
changing the value of ¢ when we change the value of M.

Figure 5 shows calculated values of ¥(50;M) and exp{-50R(M)} when § = 0.1 and

E(M) = 0.15 for 0.5 <M< 3
= 0.2 for 3<M<S5

= 0.3 for 5 €M<

This figure is consistent with the figures shown by Centeno (1991) who
considers the effect of reinsurance on the adjustment coefficient. In this
case we see that the optimal retention level for each value of u is the same
as it is when &€(M) = 0.15 for 0.5 < M < =,

Figure 6 shows <calculated values of Y(u; M) and exp{-R(M)u) for
u = 10,20,30,40,50 when ¢ = 0.1 and |

EM) = (1 + M/S)/6 for 1 <M< 25
-1 for M > 25
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i.e. a loading that increases linearly from 20% at M = 1 to 100% at M = 25 and
remains at 100% for M > 25. The features of this figuré are similar to those

in Figures 1 to 4.

8. Finite and continuous time ruin and reinsurance
So far in this paper we have considered the effect of reinsurance on the
probability of ruin in infinite (and continuous) time. In this section we
consider, wusing numerical examples, the effect of reinsurance on the
probability of ruin in finite and continuous time - finite and discrete time
ruin will be considered in the next section.
Recall from Section 1 that U(t;h) denotes the insurer’'s net surplus at time t
given a reinsurance arrangement, either proportional or excess of 1loss,
defined by the function h(x). Now define ¥(u,T;h), the probability of ruin in
continuous time before time T, given reinsurance defined by h(x), as follows:
Y(u,T;h) = P(U(t;h) < 0 for some t, 0 < £t £ T)
In what follows we will replace h by a to indicate proportional reinsurance
and by M to indicate excess of loss. (We may also replace h by a numerical
value for o or for M, in which case it will be clear what form of reinsurance
we are considering.) In all our examples, as in previous sections, the unit of
time is such that we expect one claim per unit time, so that the Poisson
parameter is 1.
Example 1: Individual claim amounts have an exponential distribution with
mean 1; § = 0.2; € = 0.3; u = 30; proportional reinsurance.
Table 17 shows values of ¥(30,T;a) for T = 100, 500, 1000 and a in steps of
0.05 from 0.00 to 1 calculated in two different ways. The three columns headed
Y(30,T;a) have been calculated using the algorithm of De Vylder and Goovaerts
(1988) (as rescaled by Dickson and Waters (1991, Section 2)). The individual
claim amount distribution has been discretised in steps of L/ZO {(before
reinsurance) and the control parameter, e, has been set at 3x10ﬂ. (See De
Vylder and Goovaerts (1988) for details of these last two points.) The value
of € is such that the maximum error is 2.16xT><1O-7 for T = 100, 500, 1000. The
columns headed ¥*(30,T;a) have been calculated by approximating the compound
Poisson process for net retained aggregate claims by a translated Gamma
process and then using the methods of Dickson and Waters (1993) to calculate
the finite time ruin probability for this approkimating process.
The points to note about Table 17 are:
a) Ruin probabilities for the translated Gamma process are very good
approximations to ruin probabilities for the compound Poisson process for all
values of a. (This is not surprising given the results of Dickson and Waters
(1993) .)
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Table 17

T = 100 T = 500 T = 1000
a Y(30,T;e) 9*(30,T;a) ¥(30,T;a) ¥*(30,T;a) %(30,T;a) ¥*(30,T;a)
0.00 0.0000 0.0000 1.0000 ~ 1.0000 1.0000 1.0000
0.05 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
0.10 0.0000 0.0000 0.9460 0.9481 1.0000 1.0000
0.15 0.0000 0.0000 0.3138 0.3133 1.0000 1.0000
0.20 0.0000 0.0000 0.0714 0.0709 0.8904 0.8910
0.25 0.0000 0.0000 0.0217 0.0215 0.3871 0.3868
0.30 0.0000 0.0000 0.0091 0.0090 0.1085 0.1081
0.35 0.0000 0.0000 0.0049 0.0049 0.0316 0.0314
0.40 0.0000 0.0000 0.0032 0.0032 0.0116 0.0115
0.45 0.0000 6.0000 0.0025 0.0025 | 0.0056 0.0056
0.50 0.0000 0.0000 0.0021 0.0021 0.0035 0.0035
0.55 0.0000 0.0000 0.0020 0.0020 0.0027 0.0027
0.60 0.0001 0.0001 0.0020 0.0021 0.0024 0.0024
0.65 0.0002 0.0002 0.0022 0.0022 0.0024 0.0024
0.70 0.0003 0.0003 0.0024 0.0024 0.0026 0.0026
0.75 0.0005 0.0005 0.0027 0.0027 0.0028 0.0029
0.80 0.0007 0.0008 0.0031 0.0031 0.0032 0.0032
0.85 0.0011 0.0011 0.0036 0.0036 0.0037 0.0037
0.90 0.0015 -0.0015 0.0042 0.0042 0.0042 0.0043
0.95 0.0020 0.0020 0.0048 0.0049 0.0049 0.0049
1.00 0.0026 0.0026 0.0056 0.0056 0.0056 0.0057

b) For small values of a, several values of ¥(30,T;a) are shown as 0.0000 or
1.0000. It is easy to see how these values arise. Consider the case where a is
0. In this case the surplus process is deterministic: there are no (net)
claims for the insurer to pay and the insurer’s net premium income is (4 - ¢),
which is negative. So for this particular example with a = 0, the insurer will
be ruined with certainty at time 30/0.1 = 300, but cannot be ruined earlier
than this,

c) For the higher values of a, the value of ¥(30,T;a) does not increase very
much as T increases from 500 to 1000. This indicates that ¥(30,500;a) is very

close to ¥(30;a), the probability of ruin in infinite time.

The observation that ¥*(u,T;a) gives a good approximation to ¥%(u,T;a) (at
least in this example) is interesting because it is far easier to calculate
Y*(u,T;a) than it is to calculate %(u,T;a). We will make use of this

observation in the next example.
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Example 2: Individual claim amounts have an exponential distribution with
mean 1; 6§ = 0.1; € = 0.2; excess of loss reinsurance.

Table 18 shows, for u = 10, 30 and 50 and for wvarious values of T, the value
of the excess of loss retention 1limit, M (restricted to be an integer
multiple of 0.01), which minimises %(u,T;M) and the corresponding minimum
value of this probability. These probabilities have been calculated using a

translated Gamma process approximation to the retained aggregate claims

process.
Table 18

T Y(10,T;M) M Y(30,T;M) M ¥Y(50,T;M) M

200 0.1880 0.92

300 0.2335 1.16

400 0.2549 1.29 0.0078 0.76

500 0.2666 1.37 0.0132 1.00

600 0.2737 1.43 0.0170 1.15 0.0003 0.66

700 0.2781 1.47 0.0197 1.24 0.0007 0.90

800 0.2811 1.49 0.0216 1.31 0.0011 1.05

900 0.2832 1.51 0.0229 1.37 0.0014 1.16
1000 0.2846 1.53 0.0239 1.41 0.0016 1.24
1500 0.2875 1.57 0.0261 1.50 0.0022 1.43
2000 0.2882 1.58 0.0266 1.53 '0.0024 1.50
2500 0.2884 1.58 0.0268 1.54 0.0024 1.53
3000 0.2885 1.58 0.0268 1.55 0.0025 1.54
3500 0.2885 1.58 0.0268 1.55 0.0025 1.54

w0 0.2885 1 0.0268 1.55 0.0025 1.54

.58

The missing entries in Table 18 all correspond to %(u,T;M) equal to O for M
equal to 0. (See comment b) on Table 17.) The values of the optimal retention
level for T equal to =« have been calculated using the methods of Section 6.
The most interesting feature of Table 18 is thét it shows the convergence of
the finite time optimal M’s to the infinite time optimal M’s as T increases -
the smaller the value of u, the faster this convergence takes place, at least
in this example.

A translated Gamma process approximation has the advantage that the
calculation of the optimal finite time retention level is much faster than it
would be using the original process together with the algorithm of De Vylder
and Goovaerts (1988). However, the calculation of the optimal infinite time
retention level using the methods of Sections 4 and 5 is even faster. Given
this, we can ask whether it is reasonable to assume an optimal infinite time
retention level is "approximately optimal” in finite time. Table 18 provides

some answers to this question. For example, for u = 10, 30 or 50 the optimal
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infinite time retention level is also the optimal finite time retention level
(to two decimal places) for T greater.than 3000, but for u = 50 and T = 900
the optimal finite time retention level, 1.16, is not very close to the
optimal infinite time level, 1.54. Another measure of the "accuracy" of this
"approximation" is to calculate, for given values of u and T, the ratio:

YU, TM ) [P(u, TiM)

A

A
where MT and Moo are the optimal finite time and infinite time retention
A

levels, respectively. The reasoning here is that, even though M._r may not be
close to Mw, if w(u,T;Mm) is close to ¢(u,T;MT) then there is little to be

A A

gained from the extra effort required to calculate MT rather than M . We will
refer to this ratio as the "efficiency" of the optimal infinite time retention
level. Table 19 shows the efficiency for u = 10, 30 and 50 in this particular
example.

The figures in Table 19 show, as could be predicted from Table 18, that the
efficiency of the optimal infinite time retention level increases as the
finite time horizon, T, increases., Two furthef points to note about Table 19
are:

~a) For a given value of T, the efficiency (in this example) is a decreasing
function of u. ‘

b) The figures in Table 19 are more encouraging than those in Table 18 in the

sense that, for example, for u = 50 and T = 900 there is a considerable
Table 19
T Efficiency Efficiency Efficiency
u =10 u = 30 u = 50
200 0.87
300 0.95
400 0.98 0.57
500 0.99 0.78
600 1.00 0.88 0.33
700 1.00 0.93 0.58
800 1.00 0.96 0.79
900 1.00 0.97 0.88
1000 1.00 0.98 0.89
1500 1.00 1.00 0.96
2000 1.00 1.00 1.00
2500 1.00 1.00 1.00
3000 1.00 1.00 1.00
3500 1.00 1.00 1.00
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difference between MT and Mw, 1.16 and 1.54, respectively, but much less
difference between ¥%(50,700;1.16) and ¥(50,700;1.54), 0.0014 and 0.0016,

respectively.

9. Finite and discrete time ruin and reinsurance
In this section we consider briefly the effect of reinsurance on the
probability of ruin in finite and discrete time, once again using examples.
We define ¥ (u,T,d;h) as follows:

Y(u,T,d;h) = P(U(t;h) < O for some t, t =d, 2d, 3d, ...,T - d, T)
Qhere T is assumed to be an integer multiple of d. Once the (net of
reinsurance) individual claim amount distribution has been discretised on,
say, l/ﬁ, Z/ﬂ, ..., where B is some suitably large number: in Example 3
B = 100 and in Example 4 B = 20. We have used the algorithm of De Vylder and
Goovaerts (1988) to calculate %(u,T,d;h) in these two examples, with some

adjustments in Example 3 as described below.

Example 3: Individual claim amounts have a Pareto (2,1) distribution; 6 = 0.2;
& = 0.4; excess of loss reinsurance.
This example requires the algorithm of De Vylder and Goovaerts (1988) to be
adjusted because the insurer’s premium income net of reinsurance over the time
period of length d is not in general an integer so that the surplus process
need not be at integer levels at times d,2d,3d,... . Given that the aggregate
claims distribution has been discretised on the integers and that we regard a
surplus of zero as ruin (except at t = 0), note that

¥(u,d,d;h) = Y((u),d,d;h)
where {u)} denotes the least integer greater than or equal to u.
Consider an integer initial surplus of u and a non-integer premium income of P
in a time interval of length d. We define fk and F(k) to be the probabilities
that aggregate claims in a time interval of length d are equal to and less
than or equal to k, respectively.

The basic algorithm of De Vylder and Goovaerts (1988) now becomes

where [P] is the greatest integer less than or equal to P, and, for
T=2d,34,... ,

u+ [P}
WWL¢M=¢mﬁﬂm)+ZQWMW%LP¢¢M

j=0
For our calculations the relevant summations have been truncated using the
same control parameter as in Section 8.
Table 20 shows for T = 100 to 1000 in steps of 100 and for u = 10, 30 and 50,
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M (the value of the retention level which minimises Y(u,T,100;M), taken over
values of M which are integer multiples of 0.01), the minimum value of
P(u,T,100;M) and the efficiency of the infinite (and continuous) time optimal
retention level. (The optimal infinite and continuous time retention level,

from Table 10, is 2.45 for u = 10, 2.36 for u = 30 and 2.35 for u = 50.)

Table 20
u =10 u = 30 u = 50
T M " Eff'y Moy Eff'y M " Eff'y
100 2.09 0.0413 0.99
200 2.79 0.0627 0.99
300 3.00 0.0714 0.97  1.68 0.0020  0.83
400  3.09 0.0754 0.96 1.98 0.0031  0.95 1.34 4.3x107 0.53
500  3.24 0.0774 0.95  2.24 0.0038  0.99 1.75 9.7x10°° 0.78
600  3.24 0.0784 0.94  2.32 0.0042  1.00 1.91 1.5x10°% 0.90
700  3.30 0.0790 0.94  2.39 0.0045 1,00 2.09 1.9x10°* 0.96
800  3.34 0.0793 0.94  2.45 0.0047  1.00 2.24 2.1x10°% 0.98
900  3.34 0.0794 0.94  2.48 0.0048  0.99 2.24 2.3x10°% 0.99
1000 3.34 0.0795 0.93  2.48 0.0049  0.99 2.24 2.5x10°% 1.00

The figures for u = 50 in Table 20 are unremarkable: as the time horizon, T,
increases the optimal finite and discrete time retention level increases to
about the optimal infinite and continuous time retention 1level and the
efficiency of the latter converges to 1.00. The figures for u = 10 are a
little more remarkable: as T increases, the optimal finite and discrete time
retention level appears to be converging, but not to the optimal infinite and
continuous time retention level and the efficiency of the latter is falling
away from 1.00. These features will be even more apparent in our final example

in this section.

Example 4: Individual claim amounts have an exponential distribution with
mean 1; § = 0.2; £ = 0.3; proportional reinsurance.

Notice that this is the same as Example 1 in Section 8 except that we are now
working in discrete time rather than continuous time. Table 21 corresponds to
Table 20 for Example 3,

The significant message suggested by Table 20 and confirmed by Table 21 is
that optimality in finite and discrete time can be a very different matter
from optimality in infinite and continuous time, and even from finite and
continuous time. Consider u = 30 and T = 500 in this example. The optimal

retention level in finite and discrete time, from Table 21, is 0.63, which is

22




the same as for infinite and continuous time, but different from the optimal
finite and continuous time retention level, which, from Table 17, is in the
interval (0.55, 0.6). As we saw in Example 3, as the time horizon, T,
increases, the optimal finite and discrete time retention level actually moves
away from the optimal infinite and continuous time retention level. However,
these differences pale into insignificance when we consider the figures in
Table 21 for u = 10! In this case the optimal finite and discrete time
retention level is 1, i.e. no reinsurance, for all values of T in the table
(the optimal infinite and continuous time retention level is 0.65 for u = 10)
and the efficiency of the optimal infinite and continuous time retention level

is decreasing as T increases.

Table 21
. u =10 . u = 30 u = 50

T o ' Eff'y a Y Eff'y ; ¥ Eff'y
100 1.00 0.0220 1.00

200 1.00 0.0267 0.83

300 1.00 0.0278 0.77 . 0.28 2.9x10°"° 0.60

400  1.00 0.0281 0.74  0.55 6.1x10"" 0.97

500 1.00 0.0282 0.73  0.63 7.3x10°“ 1.00 0.27 4.5x10°% 0.49
600 1.00 0.0282 0.72 0.66 7.8x10°" 0.99 0.54 1.1x10°> 0.89
700 1.00 0.0283 0.72  0.67 8.0x10 ' 0.98 0.60 1.3x10°° 0.98
800  1.00 0.0283 0.72  0.68 8.1x10° " 0.97 0.63 1.5x10°° 1.00
900  1.00 0.0283 0.71  0.68 8.2x10°‘ 0.97 0.64 1.6x10°° 1.00
1000 1.00 0.0283 0.71  0.68 8.2x10°“ 0.96 0.65 1.6x10°° 0.99

In both examples in this section the interval for the discrete time "checking”
of the surplus process, i.e. the parameter d, has been chosen to be 100. In
other words, we are checking for ruin following intervals of time in which we
expect 100 claims. Presumably, the smaller the wvalue of d, the closer

"discrete time optimality" becomes to "continuous time optimality".

10. Conclusions

We have shown that (approximate) ultimate ruin probabilities can be calculated
when the aggregate claims process is a compound Poisson process and when there
is a reinsurance arrangement in force.

The value of the retention level (a or M) that minimises y(u;h) is close to
the value that maximises the adjustmeﬁt coefficient, particularly when the

initial surplus is large.
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The values of the retention level which maximise the adjustment coefficient
and minimise the ultimate ruin probability for a translated Gamma process are
very close to the corresponding values for the compound Poisson process, as
are the calculated values of the adjustment coefficient and ¥(u;h).
Calculation of optimal retention levels, particularly for excess of loss, can
be very sensitive to the discretisation of the individual claim amount
distribution since the probability of ruin, as a function of the retention
level, can be very flat around the optimal level. For this reason a high value
of the discretisation parameter B may be required to obtain reliable results
(see, for example, Section 5). It is interesting to note that the translated
Gamma process approximation gives very good results even in these
circumstances,

It seems clear from both Example 3 and Example 4 in Section 9 that it is
difficult to infer anything about optimal retention levels in discrete time

from information about optimality in continuous time.
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RESERVING CONSECUTIVE LAYERS OF INWARDS
EXCESS-OFF-LOSS REINSURANCE

EFFECTIVE AND ETHICAL INSTITUTIONAL
INVESTMENT

STOCHASTIC INVESTMENT MODELS: UNIT
ROOTS, COINTEGRATION, STATE SPACE AND
GARCH MODELS FOR AUSTRALIA

THREE POWERFUL DIAGNOSTIC MODELS FOR
LOSS RESERVING

KALMAN FILTERS WITH APPLICATIONS TO LOSS
RESERVING

RELATIVE REINSURANCE RETENTION LEVELS
SMOOTHNESS CRITERIA FOR MULTI-
DIMENSIONAL WHITTAKER GRADUATION

GEOGRAPHIC PREMIUM RATING BY WHITTAKER
SPATIAL SMOOTHING

RISK, CAPITAL AND PROFIT IN INSURANCE
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CALCULATIONS AND DIAGNOSTICS FOR LINK
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ON THE MOMENTS OF RUIN AND RECOVERY
TIMES
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THE MULTIVARIATE DE PRIL TRANSFORM
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THE EQUITY IMPLICATIONS OF CHANGING THE
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RUIN PROBLEMS FOR PHASE-TYPE(2) RISK
PROCESSES

COMPARISON OF METHODS FOR EVALUATION OF
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COMPARISON OF METHODS FOR EVALUATION OF
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RETIREMENT INCOME POLICY
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THE STATISTICAL DISTRIBUTION OF INCURRED
LOSSES AND ITS EVOLUTION OVER TIME II:
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A MARKOV CHAIN FINANCIAL MARKET
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