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Abstract

Many of the standard techniques based on link ratios (development factors), such as the Chain Ladder, can be

shown to correspond to weighted linear regressions (e.g. see Murphy 1994). In facI number of these techniques
can be encompassed under a single family of models indexed by a parameter representing the amount of
weighting by volume, allowing many of the results to be derived at once for models that appear to be separate.

The family is discussed by Mack (1993), who gives standard errors for the total forelcast in the case of the Chain

1
Many related diagnostic calculations are available, which are useful in fitting th\l. models, checking their

Ladder model.

assumptions and choosing between competing models. For the models discussed in this note, the diagnostics

generally have a simple form.
Additionally, these diagnostics are used on three case studies, to illustrate specitllc problems associated with

the assumptions required for models like the Chain Ladder to apply. The appropriateness of various assumptions

are discussed in detail.
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1. Introduction

Mack (1993) derives standard errors of development factors and forecasts (including the total) for the chain
ladder and discusses some diagnostics for choosing between the chain ladder and other techniques based on
different relative weighting by volume. He mentions the connection to weighted least squares regression through

the origin, and some of his diagnostics indicate that an intercept term may be warrarited on the data he analyses.

Working more directly in a regression framework, Murphy (1994) derives results for models without an
|

intercept, which he call multiplicative models, and those including an intercept, which he calls linear models,

though his multiplicative models are actually linear models as well.

We show how the results for these models can be derived as a family, discuss calculations and diagnostics for
fitting and choosing between models, and checking assumptions. Standard errors of forecasts and diagnostics on
the paid loss (uncumulated) scale are also derived for a generalisation of the models discussed by Murphy and

Mack.

We analyse data presented by Mack (1993), another real data array and a simula*ed set of data that displays

many features found in actual data. Using diagnostics with these sets of data indicate problems with the models

based on development factors. Possible remedies are discussed.




2. Notation and Basic Model

For simplicity, we will detail the calculations for a full loss triangle. The discussion applies to other array
shapes by changing the appropriate limits on summations. We refer to accident years, development years etc. for

convenience, but the discussion applies equally well for any sampling period.

Let there be n accident years, numbering the most recent accident year as 0, and the first as »n-1, as in Murphy

(1994). Let Yij be the cumulative amount paid in accident year i, development year j, i=0,...,n-1, j=0,...,n-1. This

simplifies many of the formulas. See Figure 1. Let x;; = y; ; ;, so that yij/x,-j is the observed development factor

from j-1 to j in accident year i.

<Insert Figure 1 about here>

For the basic model, assume y;; = Bjxij + Uy and that Var(u) = x,-f-o%.

This corresponds to a weighted linear regression model passing through the origin. The parameter /3,
|

represents the underlying development factor from j-1 to j common to all accident ylars.




3. Estimating the underlying development factors

From the Gauss-Markov Theorem we obtain that the best linear unbiased estimates are:
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where the wjj are the weights for the weighted regression (R), weighted chain ladder (C), and weighted average

development factor (A) formulations respectively. For array shapes with the early payment or latter accident
years cut off, or with missing values, the summations will be over a smaller range, b}xt in each case, the
summations are over the observations that have values for both y and x. Consequenti’y, the limits on summations
will usually be suppressed so as not to preclude the general form — the actual limits gre easily found in any

particular case, though difficult to write down in complete generality.

The above shows that the best linear unbiased estimates of the development factors can be equally well
thought of as weighted regression though the origin, weighted chain ladder estimates and weighted averages of

the individual development factors. In each case, the weights are dependent on the actual value of 8.

For some particular values of §, each of the estimates become "unweighted". When § is 2 the best linear
i

unbiased estimates of the developm:ent factors (ﬁj, Jj=1,...,n-1) are given by the unwe}ighted average development

factor, when d is 1 we get the ordinary chain ladder estimates, and when & is 0 we gét ordinary least squares

through the origin.




Best Estimates: The Gauss-Markov Theorem, however, doesn't make it clear wh

en a linear estimator of a

parameter is appropriate. Specifically, if the data are sufficiently non-normal, any linear estimate can be a very

bad one, and only choosing the best among those may be unwise. When the data are

estimates are the best among all estimators, not merely linear ones.

normal, however, the above

Rather than rely on the Gauss-Markov Theorem, then, it would seem more prudent to actually make the

assumption of normality explicitly, and then check whether it is appropriate. If the Jata indicate non-normality, it

would then be sensible to consider other estimators. One such widely used diagnostr is a plot of standardised

residuals against normal scores (expected normal order statistics). It is not usually necessary to consider explicit

tests of normality, but a test based on the squared correlation between the standardised residuals and their normal

scores, as given in Shapiro and Francia (1972), is convenient if we are already doing

4. Standard Errors of the Estimated Link Ratios
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we estimate the variance of 8 j by

A2
Oj

2-6 °
lel:"
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The estimated standard error of the estimate is just the square root of this quantity,

a

A s 6
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and so we can form a t-ratio for testing whether Bj is different from some specific value, B, by:

Bj"'po

t [

(-I-l)_ A A
s.e.(ﬁ,)

For example, it is of special interest to see if Bj is different from 1; if not, it indicates that the previous

cumulative has littie predictive value for the following incremental paid loss, as discLJssed in Venter (1996). If
that is the case, analysing the incrementals will be much more informative, as well hlrving the added benefit of
enabling the introduction of parametei's to capture changing payment year trends. If Ihe analysis of the
cumulatives is retained, however, some smoothing of the development factors across years is necessary, most
simply by introducing curves for the changes in the development factors over time. This represents a blending of
information across years that allows the extraction of what little information there is in the cumulatives about the

subsequent paid losses.




5. Residuals and Standard Errors

Let ﬁ,-j =Y~ f3 ;x;; be the raw residual for accident year i, development year j. Recall that the variance of the

error term is x,_‘,saf This is often used (with estimated variance parameter) as the standard error of #;, though the

actual variance is always smaller than this — since (if the model is correct) the fitted model is closer to the data

than the true model is. The actual variance is:

Var(ii,) = Var(y, - Bx,)
= Var(y,) + x; Var(B,) - 2Cov(y;, B,%,)
= Var(y,) + x2Var(B,) - 2Cov(B,x, +ii,, B, x,)
= Var(y,) + x;Var(B,) - 2x; Var(B))

2
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We estimate this by:
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and so the standard error is:
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A standardised residual ( é,-j) can be calculated by dividing a residual by its standard error. In practice, unless

& is less than 2 and x;; is relatively large, the general appearance of a pattern in a reiidual plot will not be

appreciably affected by just using & ,xj'> for the standard error, though the relative

year will tend to be smaller in the later years that it should be.

spread against development

Residuals on the Paid Loss scale: We have just found the residuals and standard errors for cumulated data,

and it would be useful to know how the fitted model looks on the paid loss scale, especially since changing

trends against calendar years (which development factor models don't pick up) tend

cumulating the data. Let p;; = y;; - x;; be the paid loss in accident year i, developme
paid residual,
Py — Py =y = xy = Gy — x;)

=yij_ﬁlj

is the same as the cumulative residual.

6. Model Selection

We will use the Akaike Information Criterion, or AIC (Akaike, 1972) to choose

to be obscured by

nt year j (j = 1,...,{). Then the

the "best" model. The AIC is

a measure of fit that includes a penalty for the number of parameters, and a lower ALC indicates a better model.

In fact, if L is the likelihood, and p is the number of parameters,

AIC=-2logl. +2p.




For the models under consideration, we can write the log-likelihood as a sum over the log-likelihoods for the

individual development years:

logl. = %; logL;

and the log-likelihood for development year j can be written as:

logL, =n,(logG7 +1+log2m) + 8%, logx, .

where n; is the number of observations in development year j used in the estimation of ﬁj Since likelihoods are

only defined up to a multiplicative constant, the /+log(2x) term may be dropped from the log-likelihood.

In regression models, 6 is not usually counted as a parameter, and for the models we are dealing with here, &

may be regarded as another variance parameter, or just as an index parameter, indicating which of the three basic

models we choose. Consequently, it is only the number of development factor parameters that are counted for the

1
AIC. This will usually be n—1, but may be less if consecutive Bj's are set to be equal, for example.

7. Development factor estimates and variance parameter estimates in the tail

In the tail there are generally few observations, and at the same time the tail is us+ally quite flat. There is
often less need for different parameters for every development year, and the lack of Aata can make estimating
|
|
different parameters for every year in the tail risky. Indeed, in the case of estimating ple variance, in the last year

for a full triangle it becomes impossible. Consequently it becomes important to be abilc to have some combined

estimation in the tail. Murphy (1994) does this with the variance term in his data anaiysis, for example.
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There is no extra effort in combining years; it is just like doing computations for a single year. We will
assume that we will only wish to get a combined estimate of B when we are also gett‘ing a combined estimate of
o2, but that we may form a combined estimate of 62 when we are estimating individtflal Bj's. It would be unusual,
and generally inadvisable, to form a combined estimate of B with different 6%s. We omit the calculations for that
case, though they are not particularly complicated. |
i
|

Note that with cumulated data, it will not normally be the case that we want to cémbine estimates of P's
across years directly, though we may do so indirectly by introducing curves. Howevtlgr, if we analyse paid losses
instead, many data sets indicate nearly constant ratios in the tail (constant percentag%e decrease, or "exponential”

l
tails). A reduction in parameters like this will generally yield better forecasts and smaller standard errors.

Combined estimate of the variance parameter: Given some estimates of the Bj's, (whether these are

themselves combined estimates or not) we can form an estimate of a combined 62 parameter by treating the

residuals used in the calculation of the combined ¢2 as if they were all from a single year.
Combined estimate of the development factor: Given we are estimating a single variance parameter over the

years in the combined estimate, this is simply a matter of treating the separate sets of x's and y's as if they were a

single set of x's and y's, and using the usual formula.

10




8. Testing consecutive Bj's for equality

In this section, we will also make the assumption that the variances for the years being tested are already

equal. In the case of two consecutive development years, we get a test statistic of:

. - ﬁ] - ﬁj-ﬁ-l
et G T + 1T a)

where &%is the common estimate of 02, and the test statistic has a r-distribution with

nj+n;, ~2 degrees of

freedom. That is, the denominator is just the sum of the variances, but with the common estimate of 02 If f's are

estimated for blocks of years and consecutive blocks are tested, the formula is almo§

i
|

t identical, except that the

n's refer to the entire block, and the sums in the denominator are over all x's in the block.

9. Forecasts and Standard Errors

The first part of this section gives a reasonably concise generalisation of the appr

oach of Murphy (1994). In

the interests of space, the derivation for the forecasts has been omitted, but follows directly from the arguments

given by Murphy. All of these calculations are conditional on the data.

Forecasts:

¥ij = Bji,j-1r j=ipan-l

and y; given the data is y,, a result we use throughout the following derivations.

11




Standard Errors: Again, conditioning on the data,

Var(§,,p = Yiine) = Var(Q@p e = Bijer + Bigek = Yijor)
= Var(F, . = Bigar) + V(s = Hijar)

) e
=Viek t Vi 53y

The first term is what Murphy calls the parameter variance, and the second the process variance.

Var(y,,,, = Ky4) = Var BistFiisr-1)
= B VarQG, i) + Fiiss Var(By,,) + Var (B, IVar(§; jx1)

and

Var(yl,H-‘I - ”I.H-k ) = var(ﬁi*kyl.l‘ﬂ-k—] + ui,l+k)
=B :u Var(y, ;1) + Var(y,,,,)

) 2 8
=B, VarO e = Buase-0) + OiarXip

- R? 2 8
=B, Var( ey = Biser-1) + Oriniininn

It is easy to show that if X~N(}1,0%), and | x | indicates rounding down to the ime&er below x, then

42 ] k!

EXH)=y ————
= rik—-2ry2’

WY, k=0,1,2, ..

12



Let f,.i. = E(yf - We estimate the process variance as:

A A A A
2 a2 5
Var(y, ;)= B ik Var(y, iy -1) + Ok EOpar-
~ A ~
B*  Var( )+ 6%, 8 say
=P Yii+k-1 ik iivk-19 »

where

1, 6=0
f;?: 9”, o=1

/]

A
3 +Var(y;), 6=2

just as with Murphy (1993); simple substitution yields values for any other non-negative integer 8. Of course, to

obtain estimated standard errors, we take the square roots of these estimated variancfs.

|
|
1
|

i
i

Additionally, approximate results for non-integer d are possible, viaa Taylor-ser%es expansion,

E(g(T)) = g(u,) + + 038" (i;) , see, for example, Cox and Hinkley (1974). Expansion to further terms is

possible. If a distribution other than the normal is chosen, such as the gamma, computations for non-integer d are

much simplified, but then the regression results are no longer optimal. We will not ersue these considerations in

this paper.

13




10. Forecasts and Standard Errors of Development Year Totals

Forecasts:

Let D; be the unknown future development year total forecast, so:

j-1
Dj =D V> and
i=0
~ i1
D;= i
i=0
Standard Errors:

Iy Vit
Var(D, - D)= Var(}.5; - ¥;)
i=0

j-1
= var(29ij —-Mytu - ¥i)
i=0

Jj=1 j-1
= Var(z;’y = ﬂy)"‘ Var(zyij = ”u)
i=0

i=0
=VP €
=V/+V

again representing parameter and process variation.

J=1

v} = Var(3.3,)
i=0
J=1

= Var(z Bj.;’i,j—])

i=0
= Var(ﬁj[bj-l +Yjo1j-1D)
= B2Var(D,_) +[D,_, +y,., ;.1 Var(B,) + Var(B,)Var(D,_,)
=[B? + Var(B )7, +[D,_, +y,_, ;. Var(B))

which we estimate by

~ ~ A - Ly N A A -
VP = (B2 + Var(B)IV?, +[D,_, + y,., ;T Var(B)).

14




Also,
Jj-1
vy =Var(§y,-,)

j-1 i-1
= val'(ﬁjzyi_j—l + Zui.j)
i=0

i=0
j=1
= Var(B,[D;_, + ¥, ;D) + Var(F,u; ;)
i=0

j-1
=BVar(D, ) +03 Y x}
i=0

j-2

— R2y7e 2,8 ]

=BV +0;05 0t 20.)’-'.;'—1) .
i=

Noting that, due to independence across accident years,

@ 5 o s
E(Z¥i1) = ZEGL.0 =X fij

the process variance term is estimated by
Se _ AGe A2, 8 L]
Vi=BVii+050 0+ L fij) -

The estimated standard error of D i is then "‘7," + ‘7;

15




11. Forecasts and Standard Errors on the Paid Scale

It is often important to have forecasts and standard errors on the uncumulated pai
forecasts of cumulated data. For example, if there is an anticipated change in future i

for matching of cash flows, or for certain kinds of reinsurance.

Val'(ﬁ,-, - P,j) = Var(f’ii =Yi~ 9.',,'-1 + yi.j—l)

= Va-l'(j’ij -y)+ Var(f’x,j-l = Yij-1)— 2C°V(f.y - yuaii.j-l =Y

= Var(y,) + Var(y, ;_;) + Var(y;) + Var(y, ;_,)

- 2COV(i3,5’i, o001 ) +0+0—2Cov(B,Y, ;11 Y, j-1)
= Var(§;) + Var(§, ,_,) + Var(y,) + Var(y,,_,)

2B, Var(5,,.,) - 2B Var(y, ;..
= Var(§,) - (2B, - DVar(§,;_,) + Var(y,) - (28, = ) Var(y
=v] = @B, - Wi +v - 2B, - v},

where to estimate these quantities we replace the vs by their estimates, remembering
|

d loss scale, rather than

nflation or discount rates, or

1./-1)

again that we must take

|
square roots to obtain standard errors. Note that for the first forecast in a given accident year (i=j+1), the

variance is the same as the variance for the cumulative forecast at that point, since

(conditional on the data), v* and v for the previous accident year are zero.

16




12. Models with an intercept term

Murphy (1994) gives an argument as to why having an intercept term makes seane in this context, and the

data of Mack (1993) definitely indicates a need for an intercept term, as we shall see

Assume y; = o + Bjxu + uy;, and that Var(uy) = xg i

This corresponds to a weighted linear regression model. The parameter ,Bj no lon:jger represents an underlying
development factor in the usual sense, though it may be regarded as a (weighted) dejvelopment factor calculated
after the data have all been adjusted by their own weighted means, as we shall see. Tj’he results for this section

may be obtained from standard weighted regression results.




13. Estimates of the parameters, their variances and covariances

Let
-8
57 = Z,W,f)’,, _ ZJ’.-,XU
A - -8
ZIW; er,'j

4

that is, the weighted average of the y's for development year j, and define Yj“' similarly. Also, let

R._2

w_ IWiXg  —we

vy =2 )
zwy

as a kind of weighted variance. Then we have

B = Wiy =) = X))
! Twy (x, - %)

bl

2 ~2

A Swix; 03
Var (al) = R w R
Twy ViIwy

z,wfx,z A A
= —’—Rl - Var(B,)
Twy
N - -xX"6?
A J
Cov(a,,B))=——+
FAXab) Vj‘l zlw:

=-x" VAal'(B,)

We can form #-ratios for testing specific values for o; and ﬁj in the same way as b.efore. In particular, we will

often be interested in testing @; = 0, or ﬁj = ], especially in the tail. If we find that r+my of the a’s or (B-1)'s are
|

not significant, we should take it as an indication that more information will be gainetd from a different kind of

model, such as from analysing paid losses instead of cumulative values.

18




Estimating 0'3

We use an unbiased estimate for 03

52 = Ziw'.';(y'l - 5’0)2
j n; -2 )

Testing consecutive parameter values for equality.
The test statistics are formed in the same way as before, as a difference of consecutive values, divided by the

sum of the variances (as estimates of B or a for different years are independent).

The degrees of freedom are n;+n;, ,—4, assuming B and o parameters are estimated for both years being tested.

19




14. Residuals and standard errors for the intercept model

iy =3y =3y =35 = @+ Byxy)
Var(i; ) = Var(y; — 3;)
= Var(y,) + Var(y;) - 2Cov(y;, ;)
= Var(y,) + Var(j;) — 2Cov(§; + i, 3;)
= Var(y,) - Var(j;)
=o’x] - Var(@, + B )

= 07xf — [Var(@,) + x}Var(B,) + 25,Cov(é,, B,)]

2 R_2
_ 2.8 o) | Iwyxy —w 2
=0X; ~ -2x, X +x
% T T R R g% T Xy
ViZwil Xwy

w (x; - X7
=a}xg[1—2“’)k 1+ ==
Wiy i

which we estimate by replacing 03 by its estimate. We obtain standard errors by tak

20

Ing square roots.




15. Forecasts and Standard Errors for the intercept model

The forecast is Jj; = &; +B;3: j-1, where, again, given the data, 3;

Similarly to the derivation above, the variance of the forecast splits into two parts,

Var(F; jok = Yijrk) = Var(P; ik — Mijrk )+ Var( Yok = Hijvk)

— P e
= Vii+k TVii+k

where
p ..
Vi =Var(y; .,)

=Var(@,,; + Bt Fiire-1)

= Va"(&nk) + 29i.l+k—lcov(&l+k'ﬁi+k) +Var(B,,, 1111

Z

:Wl,

+5'i2.i+k-lvar(ﬂi+k )+ ﬂfuva"@i.m—n) + Var(B;,, )Var(y, ;.,-1)

W uxo

=V
ar(ﬁn»k )[ z

L)

We estimate this by substituting the estimated variance of f;,; in for the variance ab

models without an intercept, v} is zero.

Viger = Var(y; ;= Bijr)
=Var(@,,, + B Yiser-1 + Wiiar)
= ﬁf " Var(y; ;.5-1) + Var(y;;.,)
s
= ﬁ: g VA Ohpermt = Bijr-) + O et Xt

-p

e 2 8
v Viiek-1 F O Xiiop

which we estimate as:

A
ﬁ1'.i+lt =Var(y;;..)
a2 A ~2 Hi 8
=p . Var(y, jpi-1) + O it EQOiar—p

I+,

A ~
2 Ae A2 ]
=p i Videk ¥ O Y YRRE

with f defined as before.

ud uV (»B.u) 2x:+k5'\1t+k Var(B,,,)

21

= Yii -

-2x i+l:5’t k-1 T )’, i+k-|:| + [ﬂnk + Var(ﬁ,ﬂ )] i+

k-1

ove. Note that, as with the




16. Forecasts and Standard Errors of Development Year Totals for the Intercejbt model

Forecasts:

Let D; be the unknown future development year total forecast, so:

-

D; =3 y;,and
i=0

P e

D;= Zyij
i=0

Standard Errors:
A -1
Var(D; - D))= Var(}. 3, - y;)
i=0
j=1 j=t
= Var(} 3, = ) + Var(Y y; = 1)
i=0 i=0
=V/ +V] , asbefore.
j-1
v =Var(S.5,)
i=0
-t n
= Var(zaj + ﬂ]yi_j-l)
i=0

= Var(n,&; + B ,[5,--1 +Yjorja))
=n’Var(@,) + 2”1[151-1 +Yj-15-11Cov(&; 'B Nt Var(ﬁ,- [éj SRECGL
= nl?Var(& D+ 2n,-[b,~-x +¥j.1-11CoV(&; B )

HD, + ;T Var(ii,-) +(B i+ Var( VarD;..)
=n}Var(@)+2n,[D;, +y;.,;.4,]Cov(&; B )

+1B} + Var(B)WVE, +1D,., + 3,101 Var(B))

22




which we may simplify further by writing the variance of the a estimate and the covariance of the o and

estimates in terms of the variance of the P estimate. We estimate this by

~ A P’ ~ A A ~
VP =nj Var(&,)+2m,[D, +y;.,;11Cov(@,.B))
- A s . . A A
+ [ﬁ; + Var(ﬁj )]V,p.l +[D; + yj-l.j-l]2 Var(ﬁj)
Also,

j-1
Vi =Var,y,)

i=0

-1 -1
=Var(n,a; + ﬂjzyi.j-l + Z"u)
i=0 i=0

j=1
= Var(ﬁj[Dj—l + Yi-1j-1 D+ Va"(z ulJ)
i=0
j-1

- A2 2 &
—ﬂjVar(Dj_,)+aj§x,j

j-2
— A2yse 2,68 L]
=BViu+o;(at Zyl.f—l) .
i=0

Due to independence across accident years,
=2 5 j-2 5 i=2 s
E(l_zo y:,j.]) = I_ZOE()’,;].;) =:.Zo f;'.]-l
so the process variance term is estimated by
A AL A A i-2 A
Vi= pfvf-l + 0?()'};—1,;-1 + ;f;i-x) .

The estimated standard error of D ; is then 1"7 j" +Vj’ .
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17. Forecasts and Standard Errors on the Paid Scale

Var(p, — p)=Var(F; = y; = Vi1 + Vi) 3
= Var(j;ij - }’,-,-) + Var(j’i.j-l - yi.j-l) - 2C°V(5’g - yij’.;,i.j—l - };’i.j-l)
= Var(y,) + Var(y, ;_,) + Var(y;) + Var(y, ;_,)

- 2COV(&j + Bjj\’,"j_pj',"j-l) - 2C°v(aj + ﬁjyi,j-l’yi.j—l)
= Var(§,) + Var(§, ,_,) + Var(y,) + Var(y, ,_,) ‘

- 2C0V(ﬁj9i.j-l'§i.j-l )+0+0- ZCOV(ﬂjyl.j—l’yi.j-l)
= Var(y;) + Var(j,\i,j-l )+ Var(y;)+ Var()’i.j-l)

- 2ﬁjvaf(9t.j-l) - 2pjvar(yi.j-l) :
= Var(9,) ~ (2B, - )Var(§, ,_,) + Var(y,) - (2B, - DVar(y,;_,)
=vE = (2B, = WP, +vi - (2B, - ¥}, |
just as before. To estimate these quantities we replace the V's by their estimates, and of course we take square

roots to obtain standard errors.
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18. Examples

Example 1: The data for the first example is taken from Mack (1994). The data is in Table 1.

<Insert Table 1 about here>

In any analysis, the first step should always be to plot the data The values corresponding to the 1982 accident

year are marked. Note that the 1982 values sit below the other years in the plot agaiﬁst development year.

<Insert Figure 2 about here>

In order to decide which of the models discussed is appropriate, we calculate the AIC for the models with

|

and without intercept, for values of § of 0, 1 and 2. These figures are presented in Ta:blc 2.

<Insert Table 2 about here>

The models with the intercept term are all better than the corresponding models through the origin. The best

value for & is zero in each case. The fit for the first pair of development years for models with and without

intercept with 8=0 are shown in Figure 3.

<Inseﬁ Figure 3 about here>

As can be seen, the line through the origin is a poor fit to the data.
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If we fit the no intercept model, and examine the residuals, we obtain the plots in Figure 4.

<Insert Figure 4 about here>

Note that the residuals for 1982 are a little high on average. Also note the strong downward trend in the plot
|
against fitted values, indicating that forecasts of smaller values are too low, and fore#:asts of higher values are too
l
high. This is because of the way the model forces a low value to be followed by a low value and a high value by

a high value, whereas with the actual data, values move up and down in a more random fashion. The model

cannot capture this. There is also some indication of changing trends in the payment fyear direction.
Consequently, we fit the model with intercepts and 8 = 0. The results are presented in Table 3.

<Insert Table 3 about here>

Note that we don't fit an intercept for the last two regressions. The intercept for tliie first pair of years is
|

highly significant, but the intercepts for the remaining years seem less important. This is typical of many data

sets, and a better model might set some of the intercepts to zero. Note also that none of the slope parameters are
1

significantly different from 1. This means that the previous cumulative is not really o1f much help in predicting

the next incremental paid loss.
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Recalling that the regressions are independent, we eliminate some parameters froi"n the model. Note that

1

sometimes when we eliminate either the slope or the intercept, the remaining paramcfer becomes significant at

the 5% level. Consequently when both together are non-significant, we try removing ?them one at a time,

1

retaining whichever of the slope or intercept parameters is more significant. We find Plat in each case the
1

intercept is the parameter retained; it is only non-significant for two parameters: for years 5-6 and 7-8. These are
!

retained, however, in order that the forecasts continue to track upward, but is an indi(::ation that these kinds of

models, even when supplemented with different weighting schemes and intercept ten+1s, aren't particularly suited
|

to the data. For consistency, we will estimate an intercept for the last year rather thanj a slope - note that due to
there only being a single data point, we can't get standard errors or p-values unless w{ia get a combined estimate
of the variance for the latter years, an issue we'll leave aside in these examples. The r%esults are presented in

Table 4. :

<Insert Table 4 about here>

Note that the AIC is lower (746.35), due to a reduction in parameters without loss of fit. This model has a

substantially lower AIC than one that fits only slopes (from Table 2, 776.5), indicating that plain weighted chain
ladder models are inappropriate. Note that the model with all the intercepts estimate& and all the slopes set to
one is just taking the incremental forecast as the average paid in that development year. This model is related to

|

the Cape Cod approach.

The residual plots for the reduced model are given in Figure 5. Note that the fit to 1982 is much better than it
was, and there is much less trend in the plot of residuals against fitted values. The better fit has made the slight

changing trend against payment years more clear. This is not too bad a fit to the data.
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<Insert Figure 5 about here>

As discussed at the start of the paper, when d is 0, 1 or 2, the formulas don't require the assumption of
|

normality to be the best linear estimates of the parameters. However, if the data are %ufﬁcient]y non-normal, any
linear estimates can be very poor indeed. Consequently, some assessment of the norbmality of the residuals is
prudent. To that end, we look at a plot of the residuals against the normal scores (ex!pected normal order

1
statistics). If the plot deviates substantially from a straight line, a non-normal distribution of errors is indicated.

<Insert Figure 6 about here>

As can be seen in Figure 6, the plot is quite straight, indicating that the use of thei: regression formulae will be
appropriate. The squared correlation between the residuals and the corresponding n<eral scores is 0.9894. If we
use this as a test statistic for a test of normality, we obtain a p-value larger than 0.5. ;This is a Shapiro-Francia

test (Shapiro and Francia, 1972).

We proceed to forecast the paid losses. Table 5 shows the forecasts and standard errors of the cumulative

paid losses.
<Insert Table 5 about here>

Note that the standard errors are generally decreasing as a percentage of the accident year forecast totals as we
proceed down to the later years. This usually does not happen with models lacking any intercept terms, such as
the chain ladder. This happens because the model has pooled the information across accident years.
Consequently, the standard errors are substantially smaller than for the chain ladder model, though the mean

forecast is only a little higher.
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It is useful to also see the incremental paid losses, especially if we are interested in the future cash flow.

Consequently we also examine the table of forecast incremental paid losses.
<Insert Table 6 about here>

Standard errors of the payment year totals would be an important quantity, and meulae for these, as well as

for other calculations will be discussed in a subsequent paper by the authors.

Example 2: This is a real data set, but the values have all beén multiplied by a scaling constant to help

preserve confidentiality. The data array is presented in Table 7.
<Insert Table 7 about here>

Plots of the cumulated data in the three directions is presented in Figure 7. Thereiis some indication of
1

possible changing trends against accident years and perhaps even in the payment year direction. The AIC for 8 =

2 is better
<Insert Figure 7 about here>

than 0 or 1 across various models. A model with all the intercepts is better than a mtj)del without intercepts
(AIC = 1121.4 vs 1139.0), but only the first two intercepts are significantly differentj,from zero. The parameter
estimates for the model with 8 = 2 and intercepts for the first two years are presente& in Table 8. Again, the AIC
is a little higher for this model - the minimum AIC includes a few of the parameters r;ot significant at the 5%

level.

<Insert Table 8 about here>
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Examination of the residuals for this model in Figure 8 now reveal quite strong tirends in the payment year

direction, making the model completely inappropriate. There is little point in forecasting with this model in the

presence of these trends - the forecasts will be far too low, as they miss the fact that

than doubles from the early years to the end.

<Insert Figure 8 about here>

the inflation in the data more

Example 3: This is a simulated data set, generated from a known model. The paid losses are generated from:

In(py))=a+y+g;

or equivalently

=cpl
p; =crl.n

where r represents a proportional decrease in payments over time - the paids follow an exponential decay, with

some random variation.

Here, a = 10, y=-.3, and the €'s are normally distributed with a variance of 0.4.

Because the model generating the paid losses is known, "correct" forecasts and standard errors can be

i

I
calculated and compared with the answers from the chain-ladder type models. The c:umulated data are presented

Table 9.

- <Insert Table 9 about here>
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We select a model using a similar approach as in the other examples. The regressjion table for this model is

presented in Table 10, and the residual displays in Figure 9.
<Insert Table 10 about here>

The residual displays indicate that the model is a reasonable fit, though there is a little overforecasting at the

highest predicted values.
<Insert Figure 9 about here>

A check of the normality, in Figure 10 reveals a skewed distribution of errors. Tﬁe squared correlation is
|
.9776, with a p-value of .027. The test has correctly picked up that the data don't conile from a normal
distribution. This accounts for there being more significant slope parameters than thé single one we might expect

if the assumptions were correct.

<Insert Figure 10 about here>
If we fit the chain ladder model and forecast it, we obtain a total forecast outstanéjling of 254130 with a
standard error of 62672. Moreover there is substantial variation in accident year totai forecasts, when all years
are the same under the model that generated the data. If we forecast the fitted model jabove, we get a forecast of
294319 and a standard error of 39497, and if we forecast the model that generated tl*’ie data we get a forecast of
284125 with a standard error of 30970. The chain ladder model underforecasts a litdjc and has an inflated
standard error because it is overparameterised and there is not enough pooling of infion'nation across years. The
|

fitted model has a forecast that is quite close, though the standard error is still a littlé high, for the same reasons.

I
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Figure 1. Triangular loss development array of size n, with accident years

labelled in reverse order.

Developmem‘ Year
0 [ ] L] L ] n- ]
n-] yr:—I,O
i -

Accident Year *
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Table 1. Cumulative paid loss array for the Mack data. Rows are accident years ;md columns are delays. .

0 1 2 3 4 5 6 7 8 9
1981 5012 8269 10907 11805 13539 16181 18009 18608 18662 18834
1982 106 4285 5396 10666 13782 15599 15496 . 16169 16704
1983 3410 8992 13873 16141 18735 22214 22863 @ 23466
1984 5655 11555 15766 21266 23425 26083 27067 ?
1985 1092 9565 15836 22169 25955 26180
1986 1513 6445 11702 12935 15852
1987 557 4020 10946 12314
1988 1351 6947 13112
1989 3133 5395
1990] 2063
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Figure 2. Plot of cumulative paid losses against the three time directions.
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Table 2. AIC for the two main model types, at several

values of &

Origin Intercept

0 776.5 756.3
1 791.8 760.8
2 817.9 766.8
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Figure 3. Plot showing cumulative paid losses for development year 1 against

development year 0, with lines through the origin, and with an intercept

term.
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Figure 4. Residual plot for =0, model with no intercept. The solid line ind

the 1982 accident year, and the dotted line joins mean residuals

licates values in
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Table 3. Fit of the model with intercept and & at 0. There is no intercept fitted for the last two

years.
Link Ratio Selection - Regression Table &=0

Develop. Intercept Slope
Period Estimate Std.Error p value Estimate Slope - 1 Std. Error p value
00-01 5113.37 1066.16 0.002 0.89114 -0. 16886 0.3486 0.764
01-02 4311.47 2440.12 0.128 1.04941 0.04941 0.3091 0.878
02-03 1687.18 3543.14 0.654 1.13100 0.13100 0.2831 0.663
03-04 2061.07 1164.74 0.152 1.04148 0.04148 0.0708 0.589
04-05 4064.46 2241.92 0.167 0.90044 -0.09956 0.1136 0.445
05-06 620.43 2300.87 0.813 1.01094 0.01094 0.1123 0.931
06-07 777.33 144.68 0.117 0.99189 -0.00811 0.0076 0.479
07-08 . - . 1.01589 0.01589 0.0149 0.240
08-09 - - - 1.00922 0.00922 - -

(AIC=756.29)
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Table 4. Fit of the model with 8 at 0, slopes set to 1 and all intercepts estimated.

Link Ratio Selection - Regression Table 3=0
Develop. Intercept . Slope (Link Ratio)
Period Estimate Std. Error p value Estimate | Estimate - 1 Std. Error p value
00-01 4849.33 611.66 0.000 1 0 0 -
01-02 4682.50 697.98 0.000 1 0 0 -
02-03 3267.14 883.07 0.010 1 0 0 -
03-04 2717.67 296.35 0.000 1 0 0 -
04-05 2164.2 551.45 0.017 1 0 0 -
05-06 839.50 400.27 0.127 1 0 0 -
06-07 625.00 24.03 0.001 1 0 0 -
07-08 294.50 240.50 0.436 1 0 0 -
08-09 172.00 - - 1 0 0 -
(AIC=746.35)




Figure 5. Residual plot for 8=0, model with intercepts and with slopes set to 1. The line joins

mean residuals.
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Figure 6. Normal Scores plot against standardised residuals.
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Table 5. Cumulative forecasts for the model with intercepts and slopes set

\
I
|

1

to 1. Above the

|
heavy line, the upper number is the paid amount, the lower numb|er is the model

prediction. Below the line, the upper value is the forecast, the lower value is the

standard error. The row totals are accident year outstandings, the

cumulative development year totals.

column totals are

0 1 2 3 4 5 6 7 8 9] _Total

1981 5012| 9861| 12952 14174 14523| 15703| 17020| 18634| 18902| 18834 0
5012] 8269| 10907| 11805| 13539] 16181] 18009] 18608| 18662] 18834 0

1982 106] 4955] 8968| 8663| 13384 15946| 16438| 16121| 16464] 16876 172
106] 4285] 5396| 10666]| 13782] 15599| 15496 16169| 16704 42 42

1983 3410] 8259f 13674 17140| 18859] 20899| 23054] 23488] 23760] 23932 466
34101 8992] 13873| 16141 18735] 22214 22863| 23466 417 419 419

1984| 5655| 10504| 16238 19033| 23984| 25589| 26922] 27692] 27986 28158 1092
5655] 11555] 15766| 21266 23425]| 26083} 27067 48 419 421 421

1985 1092y 5941 14248] 19103| 24887| 28119 27020| 27644] 27939| 28111 1931
1092] 9565]| 15836 22169| 25955]| 26180 895 896 988 989 989

1986 15131 6362 11128 14969| 15653] 18016] 18856| 19481 19775] 19947 4095
1513] 6445] 11702| 12935] 15852] 1351 16201 1621 1674 1674 1674

1987 557| 5406| 8702| 14213§ 15032| 17196§ 18035} 18660| 18955 19127} 6813
557] 4020] 10946 12314 784] 1562| 1800| 1801 1848 1849 1849

1988 1351 6200] 11630f 16379 19097} 21261| 22101 22726| 23020| 23192] 10080
1351 6947] 13112] 2498 2618]{ 2946| 3079] 30797 3107| 3107} 3107

1989| 3133| 7982] 10078| 13345] 16062| 18227| 19066| 196911 19986 20158f 14763
3133] 5395] 2094 3259) 3352] 3614] 3723\ 3724} 3747] 3747} 3747

1990] 2063] 6912} 11595| 14862{ 17580| 19744 20583] 21208 21503| ,21675] 19612
2063 1934} 2851 3790 3870] 4099] 4196| 4196] 4217| 4217§ 4217

Total - 6912 21672' 44586| 67770] 94443| 125660{ 157102] 182924 201176] 59023
St.Emr - 1934 3396i 5283| 5479| 6134] 6440] 6440] 6512] 6513F 6513
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Table 6. Incremental (paid scale) forecasts for the model with intercepts fitted and slopes set to 1.

Above the heavy line, the upper number is the paid amount, the loyver number is the model

prediction. Below the line, the upper value is the forecast, the lowi}ar value the standard error.

The row totals are accident year total forecasts, the column totals are payment year totals.

|
0 1 2 3 4 5 6 7 8 9] Total
1081| so012| asao| ass2| 3267| 2ms| 2164| sa0| e28| 208| 172 0
5012] 3257| 2638| 898| 1734| 2642| 1828 599 s4f 172} o
1982| 106| 4849| 4682| 3267| 2718| 2164 840 624 294 172 1712
106| 4179] 1111] s270| 3116 1817] -103] 73] 535 42 42
1983| 3410 4849| 4682 3267| 2718 2164| 840 62{ 294| 172] 466
3410] 5582| 4881| 2268 2594| 3479| 649 eoi 417 2] 419
1984| 5655| 4849 4682| 3267| 2718 2164| 840 62% 294 172| 1092
|
5655 s5900| 4211] 5500 2159 2658 984] 48| 417 2] 421
1985| 1002 4849 4682| 3267| 2718| 2164| 840 624 294 172 1931
1092 8473] 6271 6333 3786] 225 895 ag| 417 42] 989
1986 1513| 4849 4682 3267 2718] 2164] 840 62§ 294 172] 4095
1513 4932 5257 1233] 2917] 1351 895 44 417 42] 1674
1987 557| 4849 4682| 3267| 2718 2164| 840 624 294 172] 6813
557] 3463 6926 1368] 784 1351] 895 48| 417 42] 1849
1988| 1351{ 4849 4682 3267| 2718 2164| 840 624 294|  172] 10080
1351] 5596 6165] 2498| 784 1351 895 48| 417 42] 3107
1989| 3133| 4849 4682{ 3267 2718| 2164| 840 szi 294| 172 14763
3133| 2262] 2094| 2498 784] 1351 895 gﬂf 417 42] 3747
1990| 2063| 4849 4682| 3267 2718 2164 840 624 294}  172] 19612
2063] 1934] 2094| 2498] 784| 1351] 895 a8 a7 42] 4217
Total| - | 19612| 14763| 10080| 6813| 4095| 1931] 1092| 46| 172} s9023
- - - - - - - - - - 6513




Table 7. Cumulative paid loss array for the second example

0 1 2 3 4 5 6 7 8 9 10
1977] 153638 342050 476584 564040 624388 666792 698030 719282 735904 750344 762544
1978| 178536 404948 563842 668528 739976 787966 823542 848360 871022 889022
1979| 210172 469340 657728 780802 864182 920268 958764 992532 1019932
1980 211448 464930 648300 779340 858334 918566 964134 1002134
1981] 219810 486114 680764 800862 883444 951194 1002194
19821 205654 458400 635906 765428 862214 944614
1983| 197716 453124 647772 790100 895700
1984 ] 239784 569026 833828 1024228
1985] 326304 793048 1173448
1986| 420778 1011178
1987 496200
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Figure 7. Plot of cumulative paid losses (in $000's) against the three time directions for the

second example.
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Table 8. Fit of the model with 8 = 2 and intercepts between the first two pairs pai;r of development

years.
Link Ratio Selection - Regression Table 8=2 :
Develop. Intercept Slope (Li;nk Ratio)

Period Estimate Std. Error p value Estimate Estimateji -1 Std. Error p value
00-01 -56437.4 17429.24 0.012 2.54586 1 545 86 0.082 0.000
01-02 -55141.5 16877.34 0.014 1.53215 0.531215 0.0366 0.000
02-03 - - - 1.19832 0.1 9;832 0.0065 0.000
03-04 - - - 1.11307 0.11 507 0.0045 0.000
04-05 - - - 1.07234 0.071234 0.0048 0.000
05-06 . . . 1.04741| 004741 0.0020 0.000
06-07 - - - 1.03380 0.03:?580 0.0022 0.000
07-08 - - - 1.02581 0.02,58 1 0.0014 0.001
08-09 - . . 102014|  002014| 00005 0.008
09-10 - - - 1.01626 0.01 1626 0 -

(AIC=1126.2) |
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Figure 8. Residual plot for 3=2, model with intercept between the first twofpairs of development
|

years. The line joins mean residuals.
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Table 9. Cumulated paid loss array for the simulated example.

49

0 1 2 3 4 s 6 7 8
1978 | 24307 68567 72467 85860 103591 109393 111368 117662 122420
1979 | 19122 26125 34272 37144 42783 45750 49205 51569 55574
1980 | 18082 45790 73691 79390 88687 91586 99047 105932 107786
1981 | 80451 91862 160489 167192 173622 176315 181875 182722 187428
1982 | 49099 56243 68222 71703 73982 79957 84429 86495 87004
1983 | 33475 88192 96966 101825 107633 128383 130286 132735 133672
1984 | 23070 72624 78283 88192 97315 106120 113128 121762 124815
1985 | 14324 22676 30631 38723 44767 53309 61009 63858 64988
1986 | 58785 75618 81686 86913 90189 106781 1b9188 110096 112604
1987 | 9017 17016 27812 40549 44429 50965 57744 60080
1988 | 12205 37185 51020 60901 65879 69259 76364
1989 | 17883 23077 34506 37275 46815 51922
1990 | 25584 40052 52595 58369 68783
1991 | 49089 71603 95678 105269
1992 | 24064 73336 76567
1993 | 17858 37547 ?
1994 | 24869 ;

9 10 11 12 13 1415 16
1978 | 123049 126332 126493 127253 127698 128338 1?8839 129094
1979 | 57603 58073 59691 60123 61405 61861 62093
1980 | 110467 111259 112597 113417 114119 114208
1981 | 188673 189962 190679 191433 191869
1982 89349 90104 91806 92402
1983 | 134468 135914 137185
1984 | 125308 127416
1985 | 66742




Table 10. Fit of the model with & = 2 and non-significant parameters removed.

Link Ratio Selection - Regression Table  8=2
Develop. Intercept Siope (Link Ratio)

Period Estimate Std. Error p value Estimate | Estimate - 1 Std. Error p value
00-01 - - - 2.00358 1.00358 0.1874 0.000
01-02 11467.02 1930.74 1 0 0 -
02-03 7445.34 1076.94 1 0 0 -
03-04 6834.29 897.78 1 | 0 0 -
04-05 - - - 1.10166 0.1(?166 0.0182 0.000
05-06 5523.82 638.15 0 1 0 0 -
06-07 - - - 1.03938 0.03;938 0.0078 0.000
07-08 2573.45 525.41 0.001 1 0 0 -
08-09 1837.34 208.28 0 1 0 0 -
09-10 1356.77 202.09 0.001 1 0 0 -

10-11 979.47 211.93 0.006 1 0 0 -
11-12 - - - 1.00619 0.00619 0.0006 0.000
12-13 1770.99 216.62 0.015 1 0 0 -
13-14 431.24 97.83 0.048 1 ‘ 0 0 -
14-15 - - - 1.00383 0.0({383 0.0001 0.007
15-16 - - - 1.00198 0.0({198 0 -
i
(AIC=2516.8)

50




Figure 9. Residual plot for the chosen model. The line joins mean residuals,
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Figure 10. Normal scores plot for the chosen model.
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#* ? «
#* SPLUS CODE FOR THE CALCULATION OF DEVELOPMENT FACTORS, *
#* DIAGNOSTIC DISPLAYS AND FORECASTING TAbLES *
#* *
#* FUNCTION: delsig(delta, model, cutoff) *
#* *
#* INPUT: delta can be 0,1,2 *
#* model can be: *
#* 0 => no intercept; *
#* 1 => intercept; or *
#* 2 => optimal model. *
#* OPTIONAL.: cutoff is the number of development penods that *
#* are cut-off at the right. By default cuioff 0 *
#* *
#* OUTPUT: Regression table containing parameter estimates, standard errors and p-values *
#* Four forecast tables that contain *
#* 1 observed and forecast values for cumulative data (CD) *
#* 2 expected values and standard errors of the forecasts forCD *
#* 3 observed and forecast values for incremental _paid losses (IPL) *
#* 4 expected values and standard errors of the forecasts for IPL *
#* Four residual displays contained within one window *
#* 1 versus Development periods; *
#* 2 versus Accident periods; *
#* 3 versus Payment periods; and *
#* 4 versus Fitted Values. *
#* Normality Plot *
#* Box-plot *
# * *
# N ootk ek ok e ok s ok ok o ok K - ok L ok ok

delsig_function(delta, model, cutoff=0)
{
if ((delta < 0) Il (delta > 2)) :
stop(message="Delta must take the value of 0, 1 or 2")
if ((model < 0) Il (model > 2))
stop(message="Model must take the value of 0, 1 or 2")
if (cutoff < 0)
stop(message="Cutoff must be positive")
# Read in and construct ocl Matrix

c1_scan("c:/prudmarg/abc.dat") # read data from file
Length_0O |
for(i in 0:cutoff)

Length_Length+i ;
n_(sqri(8*(length(c1)+Length)+1)-1)/2 #n is the triangles dimensions

n_as.integer(round(n))

ObsFor_matrix(NA, n, n-cutoff, T list(paste("A",1:n),paste("D" 0:(n-1 -cutoff))))
PLObsFor_matrix(NA, n, n-cutoff, T,list(paste("A",1:n),paste("D",0:(n-1 -cutoft))))
forecast_matrix(NA, n, n-cutoff, T, list(paste("A",1:n),paste("D",0:(n-1-cutoff))))
PLforecast_matrix(NA, n, n-cutoff, T, list(paste("A",1:n),paste("D",0: (n-l-cutoff))))
counter_( ’
if (cutoff < 0)

cutoff_0
tempCO_cutoff
for(iin 1:n)
{

if(i<=cutoff)



for(j in 1:(n+1-i-tempCO))

{
counter_counter+1
ObsFor(i,j]_c1{counter]
ifj=1)
forecast{i,j]_ObsForli,j]
}
tempCO_tempCO-1
)
else
{
for(j in 1:(n+1-1))
{
counter_counter+1
ObsFor(i,j]_c1[counter]
if(G==1)
forecasti,j]_ObsForli,j]
) :
}

}

PLObsFor[,1]_ObsFor[,1]

ratio_matrix(0, n, n-1-cutoff, T list(paste("Year",1:n), paste("Ratio",1:(n-1 -cutoft))))
meanr_1:(n-1-cutoff)

for(i in 1:(n-1-cutoff))

{ ‘
ratio[,i]_ObsFor[,i+1]/ObsFor[,i] # individual ratios
meanr{i]_mean(ratiof1:(n-i),i]) # mean of the ratios ie, Chain Ladder

} I

y_(ObsFor[ 1:n,2:(n-cutoff)])/(ObsFor[ 1:n,1:(n-1-cutoff)}*(delta/2)) #y

x1_1/(ObsFor[1:n,1:(n-1-cutoff)]A(delta/2)) # x1 (used for Alpha)

x2_(ObsFor[1:n,1:(n-1-cutoff)])/(ObsFor[ 1:n,1:(n-1-cutoff) j*(delta/2)) # x2 (used for Beta)
x_ObsFor[1:n,1:(n-1-cutoff)) # x is used for fitted values
res_matrix(NA n-1,n-1-cutoff, T) # Residuals
stdres_matrix(NA,n-1,n-1-cutoff, T) # Standised Residuals
fit_matrix(rep(0,n*(n-cutoff)), n, n-cutoff, T) # Fitted Values

results_matrix(0,3,(n-1-cutoff),T)
stddev_matrix(0,1,(n-1-cutoff),T)

regrout_matrix(0,2,4, byrow=T) # Regression output
CovCoeff_matrix(0,1,(n-1-cutoff),T) # Covariances of Coefficients
VarOfCoeff_matrix(0,2,2,byrow=T) # Variances of Coefficients

icrfsout_matrix(0,(n- 1-cutoff),6,byrow=T,
list(paste(1:(n-1-cutoff)), c("int.","st.err”,

# Performing Regressions

for(i in 1:(n-3))

{

"o

p-val" "slope","st.err","p-val")))

regress.ls_lsfit(cbind(x1[1:(n-i),i],x2[1:(n-i),i}),y[1:(n-i),i], mtercept-F)
regress.print_ls.print(regress.1s.4.F)
regress.diag_ls.diag(regress.Is) ;
regrout_regress.printScoef.table # Coefficient table
VarOfCoeff_regress.diag$cov.unscaled*((regress.diag$std.dev)A2)
CovCoeffli,_VarOfCoeff]1,2]
if (model == 0) regrout[1,4]1_1
if ((model != 1) && (regrout[1,4] > 0.05))
{
regress.Is_lsfit(cbind(x2[1:(n-i),i}),y[1:(n-i),i], intercept=F)
regress.print_ls.print(regress.ls.4,F)
regress.diag_ls.diag(regress.ls)



}

regrout_regress.print$coef.table
icrfsout{i,4]_regrout[1,1]
icrfsout[i,5]_regrout[1,2]
icrfsout[i,6]_regrout[1,4]
stddev(i] regress.diag$std.dev

}

else

{
icrfsout[i,1]_regrout[1,1]
icrfsout[i,2]_regrout[1,2]
icrfsout[i,3]_regrout{1,4]
icrfsout[i,4]_regrout{2,1]
icrfsout[i,5]_regrout[2,2]
icrfsout[i,6]_regrout{2,4]
stddev[i]_regress.diag$std.dev

}

for(j in 1:(n-i))

{
res[j,i]_regress.Is$res(j]
stdres[j,i]_(regress.Is$res[j])/stddev(il
fit[j,i]_icrfsout[i,1]+icrfsout[i,d]*x[j,i]
forecast[j,i+1]_fit{j,i]

)

if (cutoff <=1)

{

}

regress.Is_Isfit(cbind(x2{1:2,n-2]),y[1:2,n-2], intercept=F)

regress.print_ls.print(regress.ls.4.F)
regress.diag_ls.diag(regress.ls)
regrout_regress.print$coef.table
icrfsout[n-2,4]_regrou:{1,1]
icrfsout[n-2,5)_regroui[1,2]
icrfsout[n-2,6] regrout{1,4]
stddev[n-2]_regress.diag$std.dev
for(j in 1:2)
{
res[;.n-2]_regress.1sSres[j]
fit[j,n-2]_icrfsout{n-2,41*x[j,n-2]
forecast[j,n-1]_fit[j,n-2)
}
if (cutoff == 0)
{
icrfsout[n-1,4]_ObsFor[1,n}/ObsFor[1,n-1]
forecast{1,n]_icrfsout[n-1,41*ObsFor{1,n-1]
if (stddev[n-3]"2 < stddev[n-2]A2)
stddev[n-1]_ stddev[n-3]A2
else
stddev[n-1]_ stddev[n-2]*2
TempStd_(stddevin-2]74/stddev[n-3]A2)
if (TempStd < stddev[n-1])
stddev[n-1]_TempStd
“stddev[n-1]_sqrt(stddev[n-1])
}

for(i in 2:n-cutoff)

{
}

PLforecast[,i]_forecast,i] - ObsFor[,i-1]

# Matrix of output

# Beta

# Beta Std; Error

# Beta p-value

# Standard deviation

# Alpha

# Alpha Std. Error
# Alpha p-value

# Beta |

# Beta Std, Error

# Beta p-value

# Standard deviation

# Residuals

# Standised Residuals
# Fitted Values

# Fit. Val. for Matrix

# Coefficient table

|

# Standard deviation

# Residualg
# Fitted Values
# Fit. Val. for Matrix

# Coefficient
# Fit. Val. for Matrix

# Standard heviation



PLforecast{,1]_forecast[,1]

for(j in (n-i+1):(n-1-cutoff))

ObsFor[i,j+1]_icrfsoutj, 1 +icrfsout{j,4]*ObsForli,j]
if (first ==

# Forecasting
for(i in (2+cutoff):n)
{
first_1
PrevPara_0
PrevProc_0
{
{
}
else
{
"}
}
} _
for(i in 2:n-cutoff)
{

PLObsFor{,i]_ObsForl[,i] - ObsFor],i-1]

}

1)
if ((model == 0)li(icrfsout[j,1] == 0))
! parameter_(ObsForl[i,j]*2)*(icrfsout[j,5]2)
t}:lse if (model>0)
{ parameter_ (icrfsout[j,2]A2 + 2*ObsFor[i,j]*CovCoeff[j]
| + (ObsForfi,j]*2)*(icrfsout{j,5]*2))

process_(ObsFor[i,j]*delta)*(stddev[j]*2)
forecast|i,j+1]_(process+parameter)0.5)
PLfcrecast{i,j+1]_(process+parameter)(0.5)
first_0

PrevPara_parameter

PrevProc_process

if ((model == O)li(icrfsoutfj,1] == 0))
parameter__ ((ObsFor[i,j]*2)*(icrfsout[j,5]2)
+ parameter*(icrfsout[j,412 + icrfsout[j,5]72))
else if(model>0)
parameter_ (icrfsout[j,2]A2 + 2*0ObsFor([i,j}*CovCoefi[j]
+ (ObsForfi,j]A2)*(icrfsout[j,5]*2)
+ parameter*(icrfsout[j,4]1A2 + icrfsout[j,5]2))
if(delta==0)
fvalue_1
else if(delta==1)
fvalue_ObsForl[i,j]
else if(deita==2)
fvalue_ObsForl[i,j]*2 + process

else

fvalue_1 : #ERROR |

process_ (icrfsout[j,4]A2)*process + (stddevu]’\Z)*fvalué

forecast[i,j+1]_ (process+parameter)*0.5

PL forecast[i,j+1]_((process-(2*icrfsout{j,4] - 1)*PrevPrdc
+parameter-(2*icrfsout[j,4] - 1 )*PrevPara)’\O 5)

PrevPara_parameter

PrevProc_process




PLObsFor{,1]_ObsFor[,1]

cat("\n\n\f\t Regression Table \n\f\t: \n\n
options(digits=5)

print(icrfsout) _
cat("\n\n\{\t Observed and Forecasts\n\\{============= \n\n")
print(ObsFor) !
cat("\n\n\i\t Expected and Std. Errs \n\i\t== \n\n")
print(forecast)

print(PLObsFor) |
cat("\n\n\i\t Paid Losses Exp. and Std. Errs.\n\f\t s========\1\1")
print(PLforecast) :

# Diagnostic Displays

vecfitted_fit[1:(n-1),1]

vecstdres_stdres[1:(n-1),1]

dev_rep(1,(n-1))

acc_l1:(n-1)

pay_l1:(n-1)

for(k in 2:(n-1-cutoff))

{
vecfitted_c(vecfitted fit{ 1:(n-k) k]) # Fitted Values
vecstdres_c(vecstdres,stdres[1:(n-k),k]) # Std. Res. ‘
dev_c(dev,rep(k,n-k)) # Development Year
acc_c(acc,l:(n-k)) # Accident Year
pay_c(pay k:(n-1)) # Payment Year

}

# Residual Displays

win.graph()

par(mfrow=c(2,2)) |
plot( dev, vecstdres, main="Wtd. Std. Res. vs Dev. Yrs", ylab="Wtd. Std. Res ', xlab="Dev. Yr")
plot( acc, vecstdres, main="Wtd. Std. Res. vs Acc. Yrs", ylab="Wid. Std Res ", xlab="Acc. YI")
plot( pay, vecstdres, main="Wtd. Std. Res. vs Pay. Yrs", ylab="Wtd. Std. Res.", xlab="Pay. Yr")
plot( vecfitted, vecstdres, main="Wtd. Std. Res. vs Fitted", ylab="Wtd. Std Res.", xlab="Fitted")
# Box-plot Display . ,
win.graph()
boxplot(vecstdres, main="Box-plot")
# Normality Display
win.graph()
qgnorm(vecstdres, main="Normality plot")
stop()
}
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