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Summary

It 1s common for actuaries to estimate percentile-based risk margins on the
assumption of a log normal distribution of liability, together with an estimate of
coefficient of variation (“CoV”). This can yield seemingly anomalous results,
with percentage risk margin decreasing as CoV increases. The mathematics of
this type of risk margin is explored.

An APRA risk margin is the maximum of this type and a multiple of CoV. Such
risk margins are studied in a more general setting than APRA’s, with both
percentile p and CoV multiple k free. The APRA risk margins form a special
case within this setting.

Particular attention is paid to risk margin transition points, values of the log
normal dispersion parameter at which the risk margin changes from one form to
the other as that parameter increases. For given values of p and k, the existence,
uniqueness and location of transition points is investigated. The direction of
change of a transition point in the presence of increasing p or k is also
investigated.

Various numerical examples are given.

Keywords: APRA, risk margin, risk margin transition point.

1.

Introduction

General insurance is regulated in Australia by the Australian Prudential
Regulation Authority (“APRA”) under the Insurance Act 1973. Associated
Prudential Standards govern certain financial aspects of the regulation.

Prudential Standard GPS 210 (soon to be replaced by GPS 310) stipulates that

provisions for insurance liabilities must include a risk margin over and above

the mean, or central estimate, of those liabilities. The risk margin in respect of

a particular liability must be the greater of:

e half of the estimated standard deviation of the liability; and

e that margin which would give the provision a 75% probability of adequacy
to meet the liability.

This will be referred to here as the “APRA risk margin”. It is common for
actuaries to estimate risk margins of this sort under an assumption that the
amount of liability, considered as a random variable, is log normally distributed.
This gives rise to some properties of the risk margin that have, from time to
time, been considered anomalous.

The purpose of the present note to is to explore some of the mathematical
properties of the APRA risk margin. It will be of some interest to do so in a
slightly more general setting in which the half standard deviation condition is
replaced by a general multiple k of standard deviation, and the 75% probability
of adequacy 1s generalised to p%.
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2.

Definition of risk margin

Let L denote the amount of the liability under consideration, and assume that

L~ 10gN([.L,02)
Then
E[L]=exp(n+ic?)

Var[L]=exp (2;.1 + 02)[exp o - 1]

1
2

CoV|L]= [exp o’ —1]
Let
o, (L) denote the 100p-percentile of L, ie
Prob[L <o, (L)] =p
Then
p= Prob[log L<logo, (L)
ﬂb([logap (L)—u]/c)
where @(.) is the unit normal d.f.

It follows that

o, (L)= exp(u+ zpc)

where z, 1s the normal standard score associated with probability p.

Note that, by (2.2), o , (L) may be expressed in the form
o, (L)= E[L]exp(zpc —-%62)

which is independent of the log normal location parameter p.

Suppose the provision made in the company accounts for the liability L is

p(L;p,k) = max{OLP (L)’E[L][H' kCOV[LH}

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
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for some constant k > Q.

Substitution of (2.4) and (2.8) into (2.9) gives

P(L;p.,k)=E[L] f(L;p,k) (2.10)
where

(L p.k) =max[ £, (o: p), f, (k)] (2.11)
fi(o:p)=exp(z,0-10%) (2.12)
fy(o:k) =1+ k(expo? 1)’ (2.13)

Result 1. The quantity f(L;p,k) given by (2.11) — (2.13) is the multiplier that
converts the central estimate E[L] to the provision P(L; p,k). ]

It is of interest to examine how this multiplier varies with G .

3. Variation of log normal coefficient of variation with
dispersion parameter

By (2.13),
sz/aozko(expoz)(expoz—1)_% (3.1)
9’ f,/90> =k (expo® ) (expo? —1)‘3 [(1+6%)expo’ —(1+202)] (3.2)

0’ f,/00° = ko(exp o’ ) (exp c’ —1)—%

x(:(3+02)(exp202)~(9+202)(exp02)+2(3+ 202)} 9
For small ¢, expo” —1 is approximated by ¢°, so that as 6 — 0
df, /90 ~ kexpo® >k (3.4)
9*f, 190 ~ kexp o> [(1+ o) —(1+252)]/c3 ~ kG =50 (3.5)
3’f,130" ~ k| (3+0")(1+20%)—(9+20% )(1+6%) +2(3+20%) + 0(0*) [1o* -0 (3.6)

By (3.1) and (3.4),
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df, /06 >0 for all © (3.7)

Moreover, it is shown in Appendix A that

Bzleacs2 >0 (3.8)
83f2/8c73 >0 (3.9)
forall 6>0.

Hence the following result.

Result 2. The function f,(0;k) has positive gradient k at 6 =0, and positive

curvature everywhere except at 6 =0, where the curvature is zero. Its gradient
therefore is positive everywhere, increasing without limit as ¢ — . .

Variation of log normal quantile with dispersion
parameter

The function f,(o; p) may be recognized as representing a Gaussian curve (in
variable ©) with mean z,, unit variance, and scaled to assume a value of unity

at 0=0.

By (2.12),
df, /06 =(z, -5)exp(z,0-157) (4.1)
9’ f, 196" :[(zp —G)z—lJexp(sz-écsz) (4.2)
83f1/8cs3=[(zp—0)3—3(zp—0)]exp(zpc—§cz) (4.3)

It follows that f; (G;p) has a maximum of exp%zi atc=z,.
Further

0*f,/00® <0 forz, —~1<o<z,+1

4.4
>0forcs<zp—lor0>zp+l (44)

90°f,/190’ <0ifz, ~3<o<z, (4.5)
Note also, from (4.1) to (4.3), that, at =0,

df,/do =z, (4.6)
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3’ f, /90" =22 -1 (4.7)
9 f,/190° =z, (z2 -3) (4.8)
Equations (2.12) and (4.1) imply the following.

Result 3. The function f (G; p) increases as © increases from Q to Z,, and
then decreases as O increases from z, to oo, The latter occurs because, for

0> z,, the right-hand tail of the distribution of L lengthens sufficiently rapidly

that, with its mean held constant, the probability mass below a fixed quantile
must compensate by concentrating more to the left. []

Figure 4.1 plots the p.d.f of L for the three cases 6= %zp,zp and 2.2 2, where
p = 75%, and shows the value of ﬁ(G; p) in each case. Consistently with
Result 3, it shows that f, (G; p) increases as ¢ goes from %zp to z,, but then

decreases as o0 goes from z, to 22z, . Note also that in the last case

f (0; p) <l.
Figure 4.1
Variation of 75-percentile with log normal dispersion parameters
" U=0,52 ——
o =7
0=22z__, \\-__
? 0.5 1 1.5 2 25

Liability (multiples of central estimate)

These are not properties of the log normal distribution particularly, nor
properties of heavy tailed distributions, of which the log normal is one. They
are rather properties of the boundedness of L below, and its right skewness. As
will be seen in Section 7, they persist in the case of the gamma distribution,

which is short tailed.
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S.

51

Risk margin transition points

Define the function

g(o;p.k)=f,(o:p)~ £, (0:k) (5.1)
Note that

f=f wheng20
= f, when g <0

Call 6 =0*>0a risk margin transition point if g(o; p,k) changes sign at
o=0*. This means that f = f; for ¢ on one side of 6*, and f = f, on the

other side.
Ato=0c*

g(c)=0 (5.2)

Existence and uniqueness of transition points

It is of interest to enquire into the existence and uniqueness of transition points
for various values of p,k. A few basic properties of g are obtainable from
Sections 2 to 4.

By (2.12) and (2.13)

g(0)=0 (5.3)

By (4.6) — (4.8) and (3.4) —- (3.6), the derivatives of g take the following values
at 6=0:

ogldo=7-k (5.4)
0'gloo0’ =22 ~1 (5.5)
9°g/90° = z(2* -3) (5.6)

where, for brevity, the subscript p has been suppressed.

These relations create 5 cases according to which the behaviour of g(G) is

investigated. These are labelled Cases la, Ib, Ila, IIb, III, which are
combinations of those set out in Table 5.1.
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Table 5.1
Cases of behaviour of g (o)

Case Description
I z<1

II l<z< \/g
I >3

a <k

b 2>k

Note that the APRA case (z=0.67,k =%) is Case Ib. Note also that, by (2.12)
and (2.13),

g (o) <0 (5.7)
and, by (4.1) and (3.1),

dg/do<0foro=z (5.8)

The behaviour of g (G), and the solutions of (5.2), are studied in Appendix B,

whose results are summarised in Table 5.2.

In the table, the function &(z) is defined as

exp%(zz —3)—1

&(z) = — (5.9)
exp(a—3) 1|
Table 5.2
Existence of transition points
Case Transition points
Ja: z<1,z<k None
Iband [b: z<+/3,2>k Unique
Ma: 1<z<+3,2<k None or 2
I z>+3 Indeterminate for values < z—~/3

For values >z —\[?_a :
0or2if k>E&(z)

1or3if k<§(z)
< 3if k=&(z)

Note that, as z 4 /3, E(z)— %(2 +\/§) —> z. Thus, the conditions k >(<)&(z)
in Table 5.2 merge with the conditions z < (>) k as z ) \/5 .

Figures 5.1 to 5.8 illustrate the cases listed in Table 5.2
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Figure 5.7 Figure 5.8
Case lll: z=1.75,(§(z) =1.77), k=15 Caselll: z=2.32,(&(z) =3.60),k=3.5
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The case of no transition point is illustrated in Figure 5.3. The alternative Case
Ia of 2 transition points occurs for z = 1.28 (p = 90%), k = 1.32. The transition
points are 0.21 and 0.26, but the functions f, and f, are visually

indistinguishable in this region, so have not been illustrated here.

In Figure 5.8 two transition points occur, but only one > z -3, as predicted by
Table 5.2.

Numerical testing of Case Il with k < @(z) found no examples of 3 transition

points, and such examples may not exist despite the failure here to exclude them.
5.2 Location of transition points

The equation characterising a transition point 6=0* is g(o)=0, or

1
exp(zo—%&):14—]((3)(p02—1)2 (5.10)
It is shown in Appendix C that this implies

1ko’ —(kz—1)o—(z-k)<0 (5.11)

2

This inequality can be satisfied only if the discriminant of the quadratic,
(kz +%)2 —2k* is non-negative. A sufficient condition for this is that z >k

(which includes Case b from Section 5.1). Hence the following result.

Result 4. Suppose that z+1/2k = /2, for which a sufficient condition is z >k .
Then any transition point
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1

0% <(z=1/2k)+| (z+1/2k) =2 |

(5.12)

L]

It is evident from the development of (5.11) in Appendix C that it is tight for
small . Note that the right side of (5.12) 1s small for z,k in the vicinity of

z=k=1/+/2. Hence Result 4 will be ti ght in this vicinity.

Table 5.3 gives a few sample values of o*, in each case compared with the
upper bound (5.12). Blanks in the table indicate non-existent values. Note that
there are a couple of examples in which the transition point does not exist, but

the upper bound (5.12) does.

As predicted, the upper bound performs better for small ¢* than for large.

Table 5.3

Values of transition points for various z and k, compared with upper

bounds (in parenthesis)

z= Value of transition point for k =
0.45 0.70 0.95 1.20 1.45 1.70

0.5 0.121

(0.161)
0.75 0.633 0.167

(0.849) (0.415)
1.00 1.057 0.734 0.290

(1.456) (1.255) (1.048)
1.25 1.422 1.157 0.893 0.538

(2.030) (1.899) (1.799) (1.715) (1.642) (1.576)
1.50 1.740 1.512 1.311 1.102 0.851

(2.584) (2.490) (2.425) (2.377) (2.340) (2.310)
1.75 2.030 1.822 1.653 1.497 1.340 1.169

(3.126) (3.054) (3.007) (2.975) (2.951) (2.932)

5.3  Variation of transition point with p and k

For the present sub-section, let 6* denote the maximal transition point, when at

least one transition point exists.

The parameters z and k will be referred to as control parameters. Let ¢ denote
either of them and consider how o* varies with ¢ while the other control

parameter is held constant.

To recognise the dependency of ¢* on ¢, write 0* (C) . Then
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g(o*(c))=0 (5.13)
whenever a transition point exists.

It is shown in Appendix D that

sgn(do*/dc) =sgn(dg/dc) evaluated at 6 = 5*(c) (5.14)

Variation with &

By (5.1), (2.12) and (2.13),

0g / 0k = —3f, / k =—(exp o’ ~1)° <0 for 6> 0 (5.15)
Then (5.14) gives

06*/dk <0 (5.16)
Variation with p

dg/dz =0f,/0z = exp(z6-167) >0 for 6 >0 (5.17)
Then (5.14) gives

06*/07>0 (5.18)
Since p and z, increase and decrease in sympathy, it follows that

06*/dp >0 (5.19)
Relations (5.16) and (5.19) yield the following.

Result 5. The maximal transition point 6* increases as p (or z,) increases, and
as k decreases. ]

This result is illustrated by Table 5.3.

Relative transition points

Since Result 5 shows that z, and maximal o* increase and decrease in

sympathy, it is of interest to study the behaviour of the ratio 6*/z,. For fixed
k, and with 0*(zp) having the same meaning as in Section 5.3, define the

relative transition point

B(ZP):G*(ZP)/ZP (61)
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By (5.10), it follows that

L1, log(lrky) (6.2)
G(z) 2 Iog(1+v”)
Where the subscript p has been suppressed again, and

1
vz(expo"‘2 —1) (6.3)
It follows immediately that
6(z)=2% forv=k (6.4)
6(z)— (2 +k/v) —0asc*—0 (6.5)

To examine the limiting behaviour of G(z) for large v (equivalently large c*),
note that

1/5(z) -+ +logkv/logv’ =1+%logk/logv

Hence
5(z)Tlaso* > wifk>1 (6.6)
S(z)dlaso* o wif k<l (6.7)

Together, (6.5) and (6.6) also imply that G(z) is not monotone in c*, therefore
not monotone in 7 (see Result 5), in the case (6.7).

In fact, Appendix E refines this result by calculating the gradient of 1/ c_s(z).

Result E.2, combined with the earlier results of the present section, yields the
following.

Result 6. In the case k21, G(ZP) is monotone increasing in z, from O at
z,= 0tolas Z, —>oo. In the case k< 1, E(zp) is monotone increasing from 0
at z, =0 to % at the value of z, corresponding to v = k. For larger values of

Z,, G(ZP) passes through at least one stationary point, and is eventually

monotone decreasing to 1 as z, —>co.

Figure 6.1 plots 'G'(zp) as a function of z, for k =0.5,0.7, 1.0, 1.3, 1.5. Note

the non-monotonicity for the cases where k < 1. It appears that there is a single
stationary point in each case.

Figure 6.2 is the corresponding plot of * ( Z, ) against z,,.
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Figure 6.1
Relative transition point as a function of z ’
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7. Gamma distribution of liabilities

It was noted at the end of Section 4 that a particular log normal percentile
increased as the dispersion parameter increased from zero but, for higher values
of the dispersion parameter, decreased as that parameter increased. This was
noted to be a property of right skewness rather than specific to log normal.

Figare 7.1 illustrates this in the case of the gamma distribution. The three
gamma distributions displayed have the same CoVs as the log normals in Figure
4.1.
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Denote the gamma p.d.f by
(ex) e /T () (7.1)
1 1
whose CoV is 1/y*. The log normal CoV in Section 4 is (exp o’ —1)2 . Hence
yz(expcz—l)—l (7.2)
where 6=1z,,z, and 2.2 z, for p =75%.
Figure 7.1
Variation of 75-percentile with gamma dispersion parameter
0 0.5 1 1.5 2 25
Liability (multiples of central estimate)
Appendix A. Derivatives of f, From (3.2),
-3
0*f, /90" > k(exp 02)(exp o’ —1) : [(H 02)2 -(1+ 20° )}
= ko* (exp 02)(exp o’ —1)-? (A.1)
>0 foro>0
From (3.3)
0'f,/96° =ko(expo?)(expa®~1)* { (o) (A.2)

where




APRA Risk Margins 15

{(0)=(3+0)(exp20®)~(9+20)(expc?)+2(3+20%)

oo

:(3+Gz)i(2cz)j/j!-(9+20 )Z( 2y /j!+2(3+202) (A.3)
—6+40”+ Y (3x2/ -9) 21/Jv+i( —2)6? !

With like powers collected,

cs):io“[(3x2f—9)/j!+(2f'1—2)/(j—1)!]

e (A4)
>0foro>0

since all bracketed terms in the summands are non-negative for j=2, and all are

strictly positive except (2""1 - 2) , for the case j = 2.

Appendix B. Behaviour of g (0') . The cases to be considered are set out in Table 5.1.
They will be considered according to the hierarchy depicted in Figure B.1.

Figure B.1
Hierarchy of cases

Behaviour of g(0o)

e

Cases I and 11

‘/ \ Case TI1

Case | Case 11

O TN

Case la Case Ib Case Ila Case IIb

Cases I and II: z <+/3 Relation (4.5) yields

0°f /96’ <0 for0<o<z (B.1)
Then (3.9) yields

’g/oc’ <0for0<o<z (B.2)
Casel: z<1. By (4.4) and (3.8),

9%g/0c* <0for0<o<z (B.3)
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Casela: z<1,z<k. By (54),

9g/95<0ato=0 (B.4)
Then (B.3) implies that

dg/do<0for0<o<z (B.5)
Combining this with (5.8) gives

dg/do <0 forallo>0 (B.6)
This, combined with (5.3), implies that

¢(6)<0 forallo >0 (B.7)
and so g(c)=0 has no positive solution.

Caselb: z<1,z>k. By (5.4),

dg/dc>0atc=0 (B.8)
This and (5.8) imply that dg/0c has at least one sign change for 0<o<z. By (B.3),
there cannot be more than one, and so there is exactly one. Moreover, by (5.8), there

are no further sign changes for 2 z.

By (5.3) and (B.8), g(0+)>0 and by (5.7) g()<0,s0 g(c)=0 has at least one

positive solution. Then the behaviour of dg/dc implies exactly one solution.

CaseIl: V3>z>1. By (5.5),

0’g/dc6*>0atc=0 (B.9)
By (4.2) and (3.8),

d°g/dc” <0ato=z (B.10)

Thus, d*g/dc* has at least one sign change for 0 <o < z and, by (B.2), there is exactly
one.

Case 1la: \/3 >z >1,z<k . Relation (B.4) holds, just as for Case la. The inequality is

strict unless z = k. Taken together with (5.8), this implies an even number of sign
changes of dg/do for 0<o < z. By (5.8), there are no further changes for 6> z.
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It follows from the behaviour of 9*g/dc” that dg/0dc has 0 or 2 sign changes and, in
the latter case, both occur for 0<o<z.

In the case of O sign changes, (B.4) implies that g(0)<0 for all 6>0, and so
g(0)=0 has no solution. In the case of 2 sign changes, (B.4) and (5.7) imply either 0

or 2 positive solutions of g(c)=0.

Case Ilb: 3>z>1,z>k. By the same reasoning as in Case Ib, dg/do has at least

one sign change for 0 <o <z. By the behaviour of d°g/dc’, there must be exactly
one. The remainder of the reasoning of Case Ib applies to the present case, implying
that g (G) =0 has a unique positive solution.

Case I1I: z>~/3. Relations (B.1) and (B.2) no longer necessarily hold. Instead, (4.5)
and (3.9) yield

9’g/95° <0forz~3<0<z (B.11)

This implies that dg/do at most 2 changes of sign over this range of &, and so, by

(5.8) has at most 2 changes of sign over the entire range ¢ >z 3.

Hence g(o)=0 has at most 3 solutions for >z ~/3. The behaviour of g (o) for

0<G<z—+/3 is undetermined.

By (5.7), g(e0)<0. If g(z—\/g) >0, there must be an odd number of solutions for
0>z—\/§, and therefore 1 or 3. The condition g(z—\/g)>0 is equivalent to
£i(z=v3)> £,(2=+3). By (2.12) and (2.13), this is

exp(z’ —3)-1

[exp(z—\/g)2 —1T

k< (B.12)

Appendix C. Location of transition points. Note that exp o®>1+0°, and so (5.10)
implies

exp(z0-10%)>1+ko (C.I)

Take logs and apply the inequality log(1+x)>x/(1+x) for x > 0 (Abramowitz and
Stegun, 1972, (4.1.33)) to obtain

6-+0* >ko/(1+ko) (C.2)
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A small amount of manipulation yields the result

tko® —(kz—-%)o—(z-k)<0 (C.3)

Appendix D. The derivative do*/dc

Consider 0*(c) defined by (5.13). If this is the maximal transition point, then g (0)

undergoes no sign change for 6> c* (c) . Then, by (5.7),
g(o*(c)+0)<0 (D.1)

Since a sign change in g occurs at a transition point,

g(o*(c)-0)>0 (D.2)
Hence
dg /00 <0 at o=0*(c) (D.3)

Now differentiate (5.13) with respect to c:

9 , dg do*

=Qato=0%
a 9o ac

and so

dor_ 9,9

D.4
dc dc do (D-4)

By (D.3) and (D.4)

sgn(do*/dc) =sgn(dg/dc) evaluated at 6 = 6*(c) (D.5)

Appendix E. Derivative of 1/5(z). From (6.2),

d(1/8(z,)) k(1+v*)log(1+v*)=2v(1+kv)log (1+kv)

_ 2 (E1)
dv (1+0)(1+9?) Tog (1+*)

Let y denote the numerator of this expression, and re-write it in the form
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y= v 1+kv [10g(
[ (1+v ) v(1+ )]10g(1+v )
(1+ 2

) —(v- k)log(1+v)

v)~2log (1+kv) |

(1+kv)10g

V

Case I: v >k. Here (E.2) yields

(1+kv)’
1+v?2

y<—v(l+kv)log

Then

2
y/v(1+kv)<—10g(1+v2 <—logl=0ifk>1
+v

Case IlI: v <k. Write (E.2) in the form

y:(k—v)log(1+v2)—v(1+kv)log (1+k\12)2

From Abramowitz and Stegun (1972, (4.1.33))

x/(1+x)<log(l+x)<x forx>-1,x#0

The first half of this inequality may be re-expressed as

(x—1)/x<logx forx>0

(E.2)

(E.3)

(E4)

(E.5)

(E.6)

Now apply the second half of (E.5) to the first member on the right side of (E.4), and

apply (E.6) to the second member, yielding

v[2k +(k2 —l)v]

(1+kv)*

<(k—v)v2—v(1+kv)

Then

y(1+kv) v < (k=v) (14 kv)=| 2k +(k* =1} |
=—k(1+v2)
<0

(E.7)
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Result E.1 From (E.3) and (E.7),

d|1/6(z D
m( (p))<0forallv>0ifk21,andforvSkifk<1.
v

By (6.3) and (5.18), v,c* and z, are all increasing functions of one another. This

yields the following.

Result E.2. Result E1 continues to hold if d/dv is replaced by d /do* or d/dz, .

]
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