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Abstract

This paper examines how financial frictions and policy uncertainty jointly influence firms’

investments in pollution abatement. Our data analyses suggest that financially constrained

firms are less likely to invest in pollution abatement and are more likely to release toxic pol-

lutants, with this pattern intensified by policy uncertainty surrounding future environmental

regulations, as measured by “close” gubernatorial elections or uncertainty revealed in firms’

earnings conference calls. We then develop a general equilibrium model with heterogeneous

firms, including both financially constrained and unconstrained firms, in which financially

constrained firms face increased marginal costs of finance from pollution abatement. These

costs are further amplified by policy uncertainty, reducing firms’ incentives to prevent pol-

lution. Therefore, the aggregate effect of environmental policies depends on the distribution

of financial frictions and policy uncertainty.
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1 Introduction

Under market and regulatory failures, production activities often result in excessive corporate

pollution, causing damage to human health, properties, and nature (Baumol, Baumol, Oates,

Bawa, Bawa, Bradford, et al., 1988). According to the 2005 Survey of Pollution Abatement

Costs and Expenditures, U.S. manufacturing sectors invested $5.9 billion in capital to reduce

pollution. They spent $20.7 billion in pollution abatement operating costs.1 This amount

is much less than other investments, such as research and development (R&D) and physical

capital. This suggests that corporate investment in pollution abatement is insufficient to

reach the social optimum, especially given recent estimates that pollution is responsible for

16% of all global deaths in 2015, according to a recent estimate by Landrigan, Fuller, Acosta,

Adeyi, Arnold, Baldé, Bertollini, Bose-O’Reilly, Boufford, Breysse, et al. (2018).

Corporate investment in pollution abatement is subject to economic, regulatory, and

other conditions.2 However, little is known about the extent to which this investment is

influenced by financial frictions and policy uncertainty. Corporate investment in pollution

abatement is vital for manufacturing firms’ long-term survival, as such firms must mitigate

potential penalties and reputation costs due to pollution (e.g., fines, legal liability, damage

to brand image.) However, firms may under-invest in pollution control because of financial

constraints and cash flow volatility (Lovei, 1995; Xu and Kim, 2022).3 Moreover, corporate

decisions in pollution abatement rely on the degree to which pollution-related costs must be

internalized (Hahn, 1989), which is subject to uncertainty in environmental regulation (Hsu,

Li, and Tsou, 2022). In this paper, we exploit rich microdata to examine how firms’ pollution

abatement investment is affected by financial frictions and policy uncertainty, rationalize such

an effect, and derive further implications with a quantitative model.

Our investigation is carried out in two stages. In the first stage, we construct empirical

proxies for pollution abatement and policy uncertainty. We examine how the cross-sectional

variations in pollution abatement, toxic emissions, and debt issuance relate to policy uncer-

1www.epa.gov/environmental-economics/pollution-abatement-costs-and-expenditures-2005-survey

According to the survey, pollution abatement even decreased from 1994 to 2005. Pollution abatement
capital expenditures totaled $5.9 billion in 2005 compared to $10.0 billion in 1994, and pollution abatement
operating costs totaled $20.7 billion compared to $24.7 billion in 1994, all in 2005 dollars. ”In both years,
pollution abatement operating costs are less than 1% of total output while pollution abatement capital
expenditures are less than 7% and 5% of total new capital expenditures in 1994 and 2005, respectively.”

2There is extensive literature on how firms’ physical and R&D investments are influenced by environmental
laws and policies (e.g., Jaffe, Peterson, Portney, and Stavins (1995), Jaffe and Palmer (1997), Becker and
Henderson (2000), and Greenstone (2002)).

3Aghion, Angeletos, Banerjee, and Manova (2010) and Aghion, Askenazy, Berman, Cette, and Eymard
(2012) show that firms’ long-term and R&D investments are limited by credit constraints under economic
fluctuations.
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tainty when firms face different financial constraints. In the second stage, we start with a

simple model to illustrate the underlying mechanism and then propose a full-blown general

equilibrium model that incorporates investment in pollution abatement as well as physical

capital, borrowing constraints, and policy uncertainty regarding environmental regulation.

This allows us to formalize our intuition and quantify the amplification effect of financial

frictions and policy uncertainty on pollution abatement across firms.

For our empirical analysis, we begin by collecting data from the Environmental Protection

Agency’s Toxic Release Inventory (TRI) database, which provides comprehensive information

on manufacturing firms’ pollution prevention activities (such as new materials, equipment, or

procedures) and their emissions of toxic chemicals at the facility-year level. With this data,

we can measure each facility’s investment in pollution abatement and its toxic emissions

on an annual basis since 1991 (Akey and Appel, 2021). To capture the production scale

of each facility, we also collect estimated revenue and employment data from the National

Establishment Time-Series (NETS) database. Finally, we gather financial and accounting

information for public manufacturing firms from the CRSP/Compustat database and use

measures of financial constraints following the methodology of Whited and Wu (2006) and

Hadlock and Pierce (2010). This data allows us to examine how the cross-sectional variations

in pollution abatement, toxic emissions, and debt issuance relate to policy uncertainty and

financial constraints across firms.

To measure policy uncertainty, we first use the occurrence of “close” state-level elections,

which are defined as gubernatorial elections in which the votes received by the first and

second-place candidates are within 5%. This proxy follows the design of prior studies, as

close election outcomes are likely exogenous to firms’ environmental decisions, and we refer

to this measure as election-based uncertainty.4 Additionally, we use a firm-level measure of

uncertainty based on the textual content of earnings conference calls, developed by Hassan,

Hollander, Van Lent, and Tahoun (2019), Hassan, Hollander, Van Lent, Schwedeler, and

Tahoun (2020a), and Hassan, Hollander, Van Lent, and Tahoun (2020b), as a robustness

check. We will refer to this alternative measure as text-based uncertainty.

Our regression analyses indicate that when firms are more financially constrained, their

facilities report fewer pollution prevention activities; more importantly, such a relationship is

more pronounced after a close gubernatorial election or an increase in firm-level textual-based

4There is extensive literature on the effect of tied elections on the real economy and financial markets,
which includes Lee (2008), Julio and Yook (2012, 2016), Çolak, Durnev, and Qian (2017), Jens (2017),
Girardi (2020), Akey and Appel (2021), and Bisetti, Lewellen, Sarkar, and Zhao (2021), among others. We
use the 5% margin for a close electoral outcome following Akey (2015), Brogaard and Detzel (2015), and
Bhattacharya, Hsu, Tian, and Xu (2017).
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uncertainty. This result supports the proposition that firms’ investment in pollution abate-

ment is adversely affected by financial frictions, especially under high policy uncertainty.

In addition, these facilities report a more significant number of released toxic chemicals af-

ter increased policy uncertainty. This finding confirms that reduced investment in pollution

abatement due to financial frictions and policy uncertainty can lead to an increase in released

toxic chemicals, emphasizing the potential negative consequences of unstable environmental

policies on society.

We further examined a crucial implication of our model that financial frictions are exac-

erbated under policy uncertainty. Our results show that firms’ debt growth decreases with

their financial constraints after taking into account both policy uncertainty measures. This

finding supports the financing mechanism proposed in our earlier results, which suggests

that increased borrowing constraints resulting from policy uncertainty cause firms to reduce

their investment in pollution abatement.

To jointly rationalize our empirical findings concerning pollution abatement, toxic emis-

sions, and debt issuance, we use a simple example to demonstrate how financial constraints

and policy uncertainty result in an equilibrium under-investment in pollution abatement.

The key mechanism is that financially constrained firms face additional shadow marginal fi-

nance costs when investing in abatement, which are further amplified by policy uncertainty.5

This results in a hindrance to pollution abatement caused by financial frictions, and this

relation is exacerbated by heightened policy uncertainty.

To provide a more detailed analysis of our mechanism and its policy implications, we

extend our simple model by building a quantitative heterogeneous firm macro-finance model

of corporate pollution abatement investment under financial frictions and policy uncertainty.

This model is based on Khan and Thomas (2013) and incorporates the investment decisions of

firms in physical capital and pollution abatement technology, taking into account borrowing

constraints and pollution penalty risks, as in Shapiro and Walker (2018). This modeling

approach allows us to investigate the effects of financial constraints and policy uncertainty

on pollution abatement investment, and to assess the potential impact of policy interventions

aimed at mitigating these effects.

We calibrated our model to capture important aspects of firms’ pollution emissions,

borrowing, entry-exit dynamics, and pollution penalty in the microdata. The model’s output

is consistent with empirical observations and reveals a range of heterogeneity in firm behavior

along productivity, net worth, and abatement technology dimensions. Unlike a representative

firm model, this heterogeneity leads to significant effects on aggregate pollution abatement.

5See Ottonello and Winberry (2020) for an analysis of the marginal cost of finance regarding investment.
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In equilibrium, less productive, dirtier, and more financially constrained firms invest less in

pollution abatement, and they are less responsive to environmental regulations.

In our final analysis, we sought to determine how changes in policy uncertainty could

affect the aggregate effect of environmental regulation on abatement and pollution. Our

findings indicate that a doubling of policy uncertainty regarding environmental regulation

leads to a negative 6% change in aggregate abatement investment. Interestingly, our calcula-

tions show that financially constrained firms are three times more susceptible to uncertainty

shocks than their less constrained counterparts. This highlights that the effectiveness of

environmental regulations may be hampered by financial frictions, policy uncertainty, and

their interactions.

Related Literature. This paper contributes to the literature on policy uncertainty and

general economic uncertainty by examining the effects of policy uncertainty on pollution

abatement investment. Previous studies have shown that policy uncertainty has adverse

effects on physical investment, cash flows, and innovation activities (Julio and Yook, 2012,

2016; Gulen and Ion, 2016; Bhattacharya et al., 2017).6 However, our study focuses on

a specific investment–pollution abatement–that is novel to this literature and has impor-

tant implications for the aggregate economy and society. Moreover, unlike previous studies

that examine aggregate policy uncertainty, we exploit cross-state variation in gubernatorial

elections in our empirical investigation. Our study also contributes to the literature on gen-

eral economic uncertainty by highlighting the effect of environmental regulation uncertainty,

which is a meaningful addition to this literature that has mainly focused on the effects of

uncertainty on aggregate productivity or idiosyncratic productivity shocks.7

Our study is also closely related to the recent literature on credit market frictions’ role

6Several previous papers study changes in firm behavior associated with general economic policy uncer-
tainty in the U.S. See Stein and Stone (2013) and Baker, Bloom, and Davis (2016), among others.

7Classic papers on general economic uncertainty include Romer (1990), Romer and Romer (2017), Leahy
and Whited (1996), Guiso and Parigi (1999), Bloom (2009), Bachmann, Moscarini, et al. (2011), Fernández-
Villaverde, Guerrón-Quintana, Rubio-Ramirez, and Uribe (2011), Fernández-Villaverde, Guerrón-Quintana,
Kuester, and Rubio-Ramı́rez (2015), and Alfaro, Bloom, and Lin (2022). One more closely related paper that
studies the causal impact of uncertainty shocks using a similar approach as in Alfaro et al. (2022) is Stein and
Stone (2013). Several other papers also investigate the consumption of financial implications of uncertainty
shocks (Bansal and Yaron, 2004; Segal, Shaliastovich, and Yaron, 2015). Ilut and Schneider (2014) introduce
ambiguity aversion as an alternative to stochastic volatility. Basu and Bundick (2017) and Fang (2020)
introduce uncertainty shocks in the New Keynesian model and study the aggregate implications. Gourio
(2012) shows that disaster can be regarded as a combination of uncertainty and financial shocks through
the learning channel by updating beliefs. In addition, Berger, Dew-Becker, and Giglio (2016) differentiates
uncertainty from the news. Moreover, He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014),
and Di Tella (2017) examine the impact of uncertainty shocks on aggregate outcomes through the financial
intermediary channel.
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in generating fluctuations in business cycles.8 In contrast to prior studies, we build upon

the idea that financial frictions amplify the effect of uncertainty shocks, and we present

the amplification effect as the combination of policy uncertainty and financial frictions,

highlighting why uncertainty shocks and financial frictions must be considered jointly (rather

than separately).9 Our study differs from prior research in two important ways. First, we

exploit microdata for facility pollution abatement activities and close elections to identify

causal inferences. Second, our model features a novel trade-off between marginal financial

costs and benefits of pollution abatement investment under policy uncertainty shocks.

Our paper also adds new evidence highlighting the conditional effectiveness of environ-

mental policies and regulations concerning pollution control. It is well documented that

governments’ environmental initiatives do not always deliver satisfactory outcomes (e.g.,

Cohen (1987), Baumol et al. (1988), Magat and Viscusi (1990), and Eskeland and Jimenez

(1992)).10 Our empirical evidence suggests that such ineffectiveness may be attributed to

financial frictions and policy uncertainty. This research is also related to prior studies ex-

amining how government policies influence firms’ investment in green technologies.11 More

8Quadrini (2011) and Brunnermeier, Eisenbach, and Sannikov (2012) provide for extensive reviews. The
papers that are most related to ours are those emphasizing the importance of borrowing constraints and
contract enforcement, such as Kiyotaki and Moore (1997, 2012), Gertler and Kiyotaki (2010), He and Kr-
ishnamurthy (2013), Brunnermeier and Sannikov (2014), and Elenev, Landvoigt, and Van Nieuwerburgh
(2021). Gomes, Yamarthy, and Yaron (2015) studies the asset pricing implications of credit market frictions
in a production economy. Dou, Ji, Tian, and Wang (2021) study asset pricing and welfare implications
of misallocation driven by distorted investment decisions, in which leased capital is explicitly incorporated
into their general equilibrium model and empirical analysis. Alessandri and Mumtaz (2019) and Lhuissier,
Tripier, et al. (2016) use VAR approaches to estimate the strong interaction effect of financial constraints
on uncertainty. More generally, Gilchrist and Zakraǰsek (2012) and Jermann and Quadrini (2012) show that
financial frictions are essential in explaining aggregate fluctuations during the most recent financial crisis.
Caggiano, Castelnuovo, and Figueres (2017) find that uncertainty shocks trigger a sizable impact during
economic downturns. Giroud and Mueller (2017) show that establishments with higher financial leverage
tend to cut employment in response to adverse local consumer shocks.

9Recent works that link uncertainty and financial frictions include the following: Gilchrist and Zakraǰsek
(2012) study the reciprocal link between uncertainty, investment, and credit spreads to show that financial
frictions amplify the effects of uncertainty through changes in credit spreads. Christiano, Motto, and Ros-
tagno (2014) document that volatility shocks drive business cycles. Arellano, Bai, and Kehoe (2019) show
that uncertainty shocks lead to higher default risk and credit spreads, further driving firms to cut employees.
Alfaro et al. (2022) show how real and financial frictions amplify the impact of uncertainty shocks.

10On the other hand, pollution control is costly. For example, Jorgenson and Wilcoxen (1990) show that
the related cost amounts to more than 10% of government purchases of goods and services and is responsible
for a drop in annual GNP growth of 0.19 percentage points. In addition, Palmer, Oates, and Portney (1995)
show that annual U.S. expenditures for environmental protection, net of any offsets, are at least 100 billion
dollars.

11Brunnermeier and Cohen (2003) explore the determinants of manufacturing firms’ environmental inno-
vation. Acemoglu, Aghion, Bursztyn, and Hemous (2012) and Acemoglu, Akcigit, Hanley, and Kerr (2016)
discuss how policy interventions, including taxes and subsidies, promote the adoption of clean technology.
Aghion, Dechezleprêtre, Hemous, Martin, and Van Reenen (2016) find that cost-saving motivations encour-
age firms to develop clean technologies in the automobile industry. In addition, Jaffe and Palmer (1997)
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importantly, we illustrate the advantages of the comprehensive and publicly available TRI

database in researching corporate pollution control and outcome.

Finally, our work contributes to the broad literature on the determinants of corporate so-

cial responsibility (CSR) and environmental, social, and governance (ESG) practices. Prior

studies have mainly focused on investors’ preferences and their attention to environmental

issues.12 In contrast, our analysis examines the firms’ optimization behavior under financial

constraints in a general equilibrium setting. Our model highlights that due to the amplifica-

tion effects of policy uncertainty on the shadow costs of finance, firms may rationally choose

to reduce their pollution abatement investment, leading to higher pollution emissions.

The remainder of this paper is structured as follows. Section 2 presents our empirical

findings, which demonstrate that financially constrained firms are less likely to invest in

pollution abatement and that policy uncertainty exacerbates this pattern. In Section 3, we

provide a theoretical explanation for our empirical results and illustrate the mechanism using

a simple example of firms with financial frictions and policy uncertainty. We then develop

a quantitative heterogeneous firm equilibrium model in Section 4 to further interpret our

findings. In Section 5, we are currently working on calibrating the full model, validating the

mechanism, and analyzing firm behavior and aggregate implications. Finally, we conclude

our paper in Section 6. Additional information regarding data construction and additional

empirical evidence can be found in Sections A and B of the Internet Appendix, while details

about our computational methods are provided in Section C of the Internet Appendix. Our

analysis is centered on firms’ optimization under financial constraints in a general equilibrium

framework. Our model demonstrates that policy uncertainty can amplify the shadow costs

of finance, prompting firms to rationally reduce their investments in pollution abatement

and increase their pollutant emissions.

and Brown, Martinsson, and Thomann (2021) show that environmental regulations substantially increase
polluting firms’ R&D spending.

12Such preferences may be due to social norms, reputation concerns, or liquidity issues. Hong and Kacper-
czyk (2009) argue that firms in “sin” industries are subject to funding constraints due to social norms. Krüger
(2015) show that investors react negatively to negative CSR news. Hong, Li, and Xu (2019) meanwhile show
that food firms of drought-stricken countries under-perform those of countries that do not experience droughts
in stock returns, which can be attributed to investors’ inattention. Chen, Kumar, and Zhang (2019) find
that investors’ social sentiment and attention to CSR explain stock returns. Bansal, Wu, and Yaron (2019)
propose that households and institutional investors have stronger preferences for socially responsible invest-
ment. A growing body of literature documents that both retail and institutional investors are more willing to
hold socially responsible firms and funds (Renneboog, Ter Horst, and Zhang (2008), Starks, Venkat, and Zhu
(2017), Riedl and Smeets (2017), Dyck, Lins, Roth, and Wagner (2019), Hartzmark and Sussman (2019),
Cao, Titman, Zhan, and Zhang (2019), and Gibson, Krueger, and Mitali (2020)). Hsu, Liang, and Matos
(2021) show that state ownership enhances firms’ environmental engagement.
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2 Empirical Analysis

In this section, we begin by outlining our data sources and identification strategy for

measuring policy uncertainty. We then describe our measures of facility-level investment

in pollution prevention and toxic emissions. Using these measures, we empirically investi-

gate whether shocks to policy uncertainty affect pollution abatement investment and toxic

emissions at the facility level, as well as firm-level debt issuance. Our data analyses not

only shed light on the drivers of corporate investment in pollution prevention in the face of

policy uncertainty but also serve as a motivation for our subsequent model development and

derived policy implications.

2.1 Data

2.1.1 Facility-Level Emissions and Pollution Prevention Activities

In this section, we describe our main data source, the Toxic Release Inventory (TRI)

database, which is maintained by the United States Environmental Protection Agency (EPA).

The TRI database was established in response to the Community Right to Know Act

(EPCRA) of 1986, which requires certain facilities to report their emissions of toxic chemi-

cals that pose a threat to human health and the environment.13 Specifically, facilities in the

mining, utility, manufacturing, publishing, hazardous waste, or federal industry that use or

produce a TRI-listed chemical in quantities above certain thresholds and have ten or more

full-time equivalent employees are required to report their emissions to the TRI database.

The TRI database contains detailed information on all chemical emissions at the fa-

cility level, including the amount of chemical pollutants, the name of chemical categories,

the location FIPS/ZIP code, facility name, and parent company name. Although the TRI

database has been publicly available since 1986, its coverage is incomplete and contains ob-

servable data errors up to 1990. Therefore, we start our sample from 1991 to construct our

emission-related variables. Our analysis focuses on the relationship between policy uncer-

tainty and facility-level pollution abatement and toxic emissions, using the TRI data as a

primary source.

To capture corporate investment in pollution abatement, we also collect information

13The U.S. Congress enacted the Emergency Planning and Community Right-to-Know Act (EPCRA) in
1986, in response to public apprehension over the release of toxic chemicals from various environmental
mishaps, both within the country and abroad. The EPCRA mandates that each firm make a mandatory
disclosure of its chemical emissions to the environment, including the release of listed toxic substances.
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from the EPA on facilities’ new source reduction activities.14 By implementing more source

reduction activities, a facility can reduce the pollutants it generates during the production

process. The EPA requires each facility covered in the TRI database to report details

of new source reduction activities for each chemical. This information is included in the

Pollution Prevention (P2) database. The new source reduction activities are classified by

W-codes, which fall into eight categories: raw material modifications, product modifications,

cleaning and degreasing, surface preparation and finishing, process modifications, spill and

leak prevention, inventory control, and good operating practices.

To calculate a facility’s total emissions, we add up the amounts of all chemicals that

were released by the facility in pounds for a given year. In contrast, to measure a facil-

ity’s investment in pollution abatement, we sum up the number of new source reduction

activities across all chemicals implemented by the facility in that year. For instance, Alcoa

Corporation reported implementing 71 abatement activities across 28 states in the United

States in 1993. As an example, one of its facilities located in Iowa State (TRI Facility ID:

52808LMNMCHIGHW) implemented two activities with code W58 to reduce other process

modifications and one with code W81 to change product specifications. Based on this in-

formation, we assigned an abatement investment value of 3 for this facility in 1993. To

view a comprehensive list of abatement activities, please refer to Table IA.1 in the Internet

Appendix.

It is important to note that while the TRI and P2 databases provide valuable information,

they are not without limitations. One major limitation is that the data is self-reported by

facilities, which may result in some reporting errors or failures to report. However, the EPA

does conduct quality checks and analyses to ensure report accuracy and correct any mistakes.

In fact, according to a quality check report by the EPA in 1998 (i.e., EPA (1998)), most

industries had reporting errors within a 3% range. Furthermore, researchers such as Akey

and Appel (2019, 2021) and Kim and Kim (2020) suggest that the potential criminal or civil

penalties, as well as reputation costs associated with misreporting to the EPA, incentivize

facilities to provide accurate data and maintain strong data quality in the TRI database.

As a robustness check, we consider an alternative measure of pollution abatement activ-

ities that is adjusted for emission reductions. We aim to differentiate these activities based

14The EPA has established a waste management hierarchy that prioritizes different methods of man-
aging and reducing waste. At the top of the hierarchy is source reduction, which involves eliminat-
ing or minimizing waste at the point of generation. This is considered the most effective way to re-
duce waste and is preferred by the EPA. Next in the hierarchy is recycling, followed by energy recovery,
treatment, and finally disposal/release. The EPA views disposal as the least preferred method of waste
management, as it is seen as the least effective way to reduce the environmental impact of waste. See:
https://www.epa.gov/trinationalanalysis/pollution-prevention-and-waste-management
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on their effectiveness in reducing emissions. Specifically, we track the lump sum of reduc-

tions in chemical emissions from 1992 to 2017 for each pollution abatement activity category

(i.e., W Code in the P2 database). A larger reduction in emissions indicates that a given

pollution abatement investment is more effective in reducing chemical emissions. However,

we cannot directly use the corresponding reduction of emissions to construct our adjusted

abatement investment due to concerns about outliers in reductions or counter-intuitive non-

negative reductions.15 To address this issue, we sort all abatement activities into five groups

based on their non-negative reductions of emissions, and assign an adjusted score ranging

from 6 for the highest quintile to 2 for the lowest quintile, with a score of 1 indicating all

remaining categories with missing or negative reductions. This adjusted scoring ensures that

our weighting is less affected by outliers. Finally, we calculate a facility’s adjusted pollution

abatement activities by multiplying the number of each pollution abatement activity by the

corresponding adjusted score in a given year and summing across all categories.

2.1.2 Facility-Level Production Activities

We collect production activities at the facility level from the National Establishment

Time-Series (NETS) database (2017 version) of Walls & Associates. This database covers a

comprehensive record of establishments in the U.S. since 1990, which includes facility iden-

tifier (dunsnumber), facility name, facility location, parent company name, parent company

identifier (hqduns), location, employee number, and estimated revenue at the annual fre-

quency. In addition, the NETS database is free from survivorship bias. For example, we can

trace a facility’s historical path, such as its birth year and last year of active business (i.e.,

year of relocation), even if an establishment changes location or is shut down. Moreover,

the literature has provided several justifications for the quality of the NETS database.16 To

measure a facility’s production scale, we use its number of employees or estimated annual

revenue.

15All pollution abatement activities are designed to reduce the amount of released chemical pollutants.
However, in some cases, we may find that the reduction amounts and percentages of a W-code activity are
negative, indicating that the activity did not effectively prevent pollution. Alternatively, negative reductions
may be due to measurement errors or data limitations.

16As documented in Faccio and Hsu (2017), facilities tend to reveal accurate information to obtain lines
of credit from suppliers or financial intermediaries. Moreover, Barrot and Nanda (2020) show that business
entities report their information precisely to enhance their odds of bidding for government contracts. Finally,
NETS gathers information from independent sources, including phone calls to suppliers and customers, legal
and bankruptcy filings, press reports, and government records (e.g., Heider and Ljungqvist (2015)).
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2.1.3 Gubernatorial Elections

The gubernatorial election results and party affiliations of governors are sourced from

the Stateline database and the CQ election Electronic Library. These databases provide

comprehensive details on each gubernatorial election, including the victorious candidate,

election date and party, incumbent governor participation, term limit status, and election

vote margin. Typically, gubernatorial elections are held on the first Tuesday of November,

but the specific election year may vary between states. By leveraging these gubernatorial

election data, we can create our key measures for assessing the impact of state-level policy

uncertainty shocks.

The study assumes that election outcomes at the time of firms’ environmental decisions,

such as pollution abatement investment and toxic emissions, are exogenous, and uses the

occurrence of “close” gubernatorial elections as an increase in policy uncertainty for facili-

ties and firms. This assumption is reasonable for several reasons. First, firms cannot predict

close-election winners when making environmental-related decisions. Second, corporate deci-

sions are unlikely to materially affect a candidate’s chances of winning an election.17 Finally,

the occurrence of a close election is only known on the election day or can be more accu-

rately predicted as the election day approaches, making it easier to identify the effect of

policy uncertainty on firms’ responses. Therefore, tied election outcomes generate diverse

impacts on endogenous corporate policies, facilitating the identification of the impact of

policy uncertainty.

In our empirical analysis, we measure environmental policy uncertainty by creating a

binary variable that takes the value of one if the most recent state gubernatorial election had

a vote differential of within 5%, and zero otherwise. This approach is consistent with previous

studies by Akey (2015), Brogaard and Detzel (2015), and Bhattacharya et al. (2017).18 For

the sake of clarity and convenience, we refer to this type of uncertainty measure as election-

based uncertainty.

17As a robustness check, we also include firms’ donations as a control variable to account for the possibility
that firms may be politically connected or attempting to promote a specific candidate. This allows us to
examine whether the effects of close gubernatorial elections on policy uncertainty and environmental decisions
are robust to controlling for firms’ political activities.

18For instance, if a state experienced a close election in 2000, the uncertainty of all facilities in this state
is set to one from 2001 until the next election year, which is 2004.
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2.1.4 Firm-Level Uncertainty

To obtain firm-level uncertainty, we utilize a textual analysis method developed by Hassan

et al. (2019), Hassan et al. (2020a), and Hassan et al. (2020b). This approach involves

analyzing quarterly earnings conference calls held by over 11,000 listed firms in 81 countries

to construct a local index that separates firm-level uncertainty from aggregate uncertainty.

Computational linguistics tools are used to extract information on risks in general, risks

associated with politics, and risks associated with specific political topics, such as healthcare

and economic policy. The textual analysis calculates the percentage of the conference call

conversation that pertains to uncertainty.19 This firm-level index is then assigned to all

facilities of a firm each year and serves as an additional proxy for policy uncertainty in

our empirical analysis. For convenience, we refer to this alternative uncertainty measure as

text-based uncertainty.

2.1.5 Financial Constraints and Other Data

We collect publicly listed firms’ financial information from the Compustat database.

These data allow us to construct firm-level proxies for financial constraints, such as the WW

and SA indexes of Whited and Wu (2006) and Hadlock and Pierce (2010), respectively.

Other firm-level variables we construct include market capitalization (ME), book-to-market

ratio (B/M), investment rate (I/K), return on assets (ROA), a WW index (WW), and an

SA index (SA), book leverage (Leverage), leased capital ratio (Lease), and Tobin’s q in our

sample of firm-year observations.20

19For more information on the firm-level uncertainty measure, please visit the website ”FIRM-LEVEL
RISK.” The data source we used to construct the firm-level measure of uncertainty can be found at the
following link: https://www.firmlevelrisk.com/home

20The ME variable represents market capitalization deflated by CPI and measured in 2009 million USD
at the end of the fiscal year. B/M is the ratio of book equity to market capitalization. I/K represents
the investment rate and is calculated as capital expenditure (item CAPX) divided by property, plant, and
equipment (item PPENT). ROA stands for return on assets and is calculated as operating income after
depreciation (item OIADP) scaled by total assets. Debt growth is the annual log growth rate of total
liability, which is the sum of current and long-term liabilities (item DLC and DLTT). WW index (WW) is
the index developed by Whited and Wu (2006) and used to measure financial constraints. SA index (SA)
is the size-age index used to measure financial constraints, following Hadlock and Pierce (2010). Detailed
information regarding the construction of the SA and WW indexes can be found in the Internet Appendix
of Farre-Mensa and Ljungqvist (2016). Book leverage is the ratio of total liability to total assets. Following
Eisfeldt and Rampini (2009), the lease capital ratio is calculated as the ratio of leased capital over the sum of
the leased capital and owned capital (item PPENT), in which the leased capital is ten times rental expense
(item XRENT). Finally, Tobin’s q is calculated as the sum of market capitalization at the end of the fiscal
year and the book value of preferred shares, deducting inventories over total assets (item AT), following
Eisfeldt and Rampini (2006).
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Our sample includes firms that are present in the TRI(P2), NETS, and Compustat

databases. Specifically, we consider firms with non-missing TRI data. To link facility-level

data in the TRI/P2/NETS databases to public firms’ financial data, we adopt a two-step pro-

cedure. First, we use the facility identifiers (dunsnumber) to link the TRI and P2 databases

to the NETS database. Second, we use the approach of Chen, Hsieh, Hsu, and Levine

(2022) to connect the facility identifier and the Compustat firm identifier (gvkey). This link

is established by manually verifying the facility names and parent company names in the

TRI database with firms’ names in the Compustat database and the Center for Research in

Security Prices (CRSP) database.

We also collect state-level economic data, such as income per capita and population,

from the Bureau of Economic Agency (BEA) and the Bureau of Labor Statistics (BLS),

respectively. Aggregate-level macroeconomic data are collected from the Federal Reserve

Economic Data (FRED) maintained by the Federal Reserve in St. Louis.

2.1.6 Summary Statistics

In our analysis of the financing frictions-induced amplification effect of uncertainty on cor-

porate environmental-related policies, we use panel regressions and report summary statistics

of our sample. The primary variable of interest is Abatement Investment, which captures

the total abatement activities undertaken by a firm’s plant in a given year. We also consider

Abatement-adj. Investment, which adjusts Abatement Investment for emission reductions.

Emission reflects the total amount of emissions (in pounds) produced by a firm’s plant in a

given year. Other firm-level variables include ME (market capitalization deflated by CPI),

B/M (book-to-market ratio), I/K (investment rate), ROA (return on assets), WW and SA

indexes (to proxy for financial constraints), book leverage, leased capital ratio, Tobin’s q,

and debt growth.

[Place Table 1 about here]

Panel A of Table 1 presents the pooled summary statistics of all variables in our sample

for the facility-year panel, which includes 152,621 facility-year observations with non-missing

TRI information in the U.S. from 1991 through 2017. The mean of pollution abatement

activities is 0.85, and the mean of emissions is 268,332 pounds. The average facility in

our sample employs 575 workers and generates revenue of $144 million. In Panel B, we

report the pooled summary statistics of all variables in our sample for the firm-year panel,

which includes approximately 23,000 firm-year observations with facilities covered in the TRI
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database.

2.2 Empirical Analyses

2.2.1 Pollution Abatement Activities

We employ a differences-in-differences framework to analyze the impact of policy uncer-

tainty and financial frictions on firms’ environment-related decisions:

xp,i,s,t = β1 στ |s,t + β2 στ |s,t × ηi,t + β3 ηi,t

+β4 Γi,t + β5 Xs,t + β6RepRatios,t + ψp + πt + εp,i,s,t, (1)

for which equation (1) estimates the effect of policy uncertainty and financial frictions on

(adjusted) pollution abatement activities for a facility (denoted by p) in a particular state

(denoted by s), belonging to a parent firm (denoted by i) at time t. The variable of interest

is the number of pollution abatement activities, and we estimate this equation using both

Poisson and OLS regressions. In our Poisson regression, the dependent variable is the number

of pollution abatement activities, while in our OLS regression, we use the logarithmic number

of one plus the number of pollution abatement activities as the dependent variable.

In our regression analysis, στ |s,t is a measure of election-based policy uncertainty. ηi,s,t

represents the financial constraint of facility p’s parent firm i in year t, measured by the WW

index (Whited and Wu (2006)) and SA index (Hadlock and Pierce (2010)). We also include

an interaction term between ηi,s,t and στ |s,t to investigate whether financially constrained

firms are more affected by increases in policy uncertainty. In addition to these variables, our

model includes a set of firm-level controls denoted by Γi,t, such as size, book-to-market ratio,

investment rate, and profitability. We also include state-level controls, denoted by Xs,t, such

as income per capita and population. Finally, we include RepRatios,t, which is the number

of Republican party wins in the past four gubernatorial elections, as an additional control

variable.

Our main objective is to examine how environmental policy uncertainty, generated by tied

elections, affects pollution abatement activities. In addition, we consider the role of political

party affiliation on our outcomes by adding RepRatios,t, which measures the frequency of

winning gubernatorial elections by a particular party in the past four cycles. We also control

for facility-level heterogeneity that does not vary over time using facility fixed effects ψp and

time-varying factors by adding year fixed effects πt. To address estimation errors associated

with facility-level correlation and potential autocorrelation, we cluster standard errors at the
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facility level.21

Panel A1 (Panel A2) of Table 2 presents the estimation results of equation (1) for (ad-

justed) pollution abatement activities. Specifications 1 to 4 (5 to 8) correspond to Poisson

(OLS) regressions. Specifications 1, 2, 5, and 6 are estimated using the WW index, while

Specifications 3, 4, 7, and 8 are based on the SA index. Additionally, we report results with

and without firm- and state-level control variables in Specifications 1, 3, 5, and 7 (2, 4, 6,

and 8).

[Place Table 2 about here]

Based on the results presented in Panel A1 of Table 1, the coefficient estimate (β̂1) for

the uncertainty shock is negative in general but insignificant. However, the estimated coef-

ficient (β̂2) for the interaction term between the uncertainty shock and financial constraints

is significantly negative across all specifications, indicating that financially constrained firms

experience a larger decline in abatement investment upon the realization of uncertainty.

The economic significance of the findings is also discussed. The Poisson regression estimates

suggest that a one-unit increase in the interaction term leads to a decline in abatement in-

vestments by a factor of eβ̂2 , ranging from 1.06 to 1.23 across different specifications. The

OLS regression estimates suggest an additional 1% drop in abatement investments on top of

the 5 to 6% decrease induced by financial frictions. These declines in abatement investments

are economically significant because the mean and standard deviation of abatement invest-

ments are relatively high, as reported in Panel A of Table 1. Finally, the results in Panel A2

indicate that the findings are consistent with those in Panel A1 when adjusted abatement

activities are used to account for heterogeneity in pollution abatement.

To cross-validate the findings regarding the effect of financial frictions on pollution abate-

ment activities, we implement an alternative specification that replaces the election-based un-

certainty measure στ |s,t with a firm-level text-based uncertainty measure στ |i,t. Specifically,

we estimate the following regression:

xp,i,s,t = β1 στ |i,t + β2 στ |i,t × ηi,t + β3 ηi,t + β4 Γi,t + β5 Xs,t + ψp + πt + εp,i,s,t. (2)

We present the estimation results of equation (2) in Panel B1 (B2) of Table 2 for (ad-

justed) pollution abatement activities. All model and regression designs are similar to Panels

21We also conducted additional estimations to ensure the robustness of our findings. Specifically, we
estimated our models with standard errors clustered at the state level and used a different measure of
pollution abatement activities based on the number of unique W codes. Our results, which are presented in
Section B of the Internet Appendix, confirm the robustness of our primary findings.
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A1 and A2. The negative and significant coefficient on the interaction of financial constraint

and policy uncertainty confirms the findings documented in Panels A1 and A2 of Table 2,

namely that financially constrained firms experience a more substantial decline in abatement

investment when they face greater policy uncertainty.

Our results are consistent with prior studies. According to Alfaro, Bloom, and Lin (2022),

firms subject to higher financial frictions are more sensitive to uncertainty shocks. The differ-

ential exposures to uncertainty shocks across firms reflect different effects of firms’ financial

constraints. In addition, external financing frictions depress firms’ investment through the

amplified real options effects inducing greater inaction regions with respect to corporate

investment.22 Overall, the effect of policy uncertainty on financially constrained firms’ pol-

lution abatement investment is thus a robust pattern in our sample.

2.2.2 Emissions

The results from Table 2 support the idea that policy uncertainty and financial constraints

lead to a reduction in firms’ pollution abatement investments, which in turn may contribute

to an increase in toxic emissions. In order to provide additional support for this causal chain,

we estimate the following ordinary least squares regression:

log(1 + Ep,i,s,t) = β1 στ |s,t + β2 στ |s,t × ηi,t + β3 ηi,t + β4 Γi,t + β5Xs,t (3)

+β6RepRatios,t + ψp + πt + εp,i,s,t, or

= β1 στ |i,t + β2 στ |i,t × ηi,t + β3 ηi,t + β4 Γi,t + β5Xs,t

+ψp + πt + εp,i,s,t,

for which the dependent variable in our analysis is denoted by Ep,i,s,t and represents the

total Toxic Release Inventory (TRI) emissions released by facility p in state s, belonging

to parental firm i, at time t. The independent variables used in this analysis are the same

as those in the empirical analysis presented in Section 2.2.1, including the key variables of

interest.

[Place Table 3 about here]

Table 3 displays the estimation results. Specifications 1 to 4 use election-based uncer-

tainty, and Specifications 5 to 8 use text-based uncertainty. Specifications 1, 2, 5, and 6 use

22See Bloom, Bond, and Van Reenen (2007), and Alfaro, Bloom, and Lin (2022), among others.
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the WW index, while Specifications 3, 4, 7, and 8 use the SA index. Firm- and state-level

control variables are excluded (included) in Specifications 1, 3, 5, and 7 (2, 4, 6, and 8).

Table 3 shows that increased policy uncertainty leads to a significant rise in emissions from

facilities belonging to financially constrained firms. Across all specifications, we consistently

observe positive and statistically significant coefficients on the interaction term β̂2, indicating

that such facilities experience an increase in emissions under conditions of high election-based

uncertainty. Notably, the significance level is higher when compared to the use of text-

based uncertainty. This finding supports and reinforces our earlier results that financially

constrained firms experience a further decrease in pollution abatement investment in the

face of heightened policy uncertainty, which in turn is expected to result in an increase in

toxic emissions.

2.2.3 Debt Financing

In this subsection, we aim to investigate the impact of policy uncertainty and financial

constraints on firms’ financing by examining whether firms with higher financial constraints

face greater difficulty issuing debt under heightened policy uncertainty. To this end, we

estimate the following regression to analyze the sensitivity of firms’ debt financing to these

factors:

∆ logBi,t+1 = β1 σi,t + β2 σi,t × ηi,t + β3 ηi,t + β4 Γi,t + ψi + πt + εi,s,t, (4)

for which the dependent variable ∆ logBi,t+1 represents the growth rate of total debt for

firm i from year t to year t + 1, calculated as the difference in the logarithm of the sum of

current and long-term liabilities (DLC+DLTT ) deflated by the CPI index. The independent

variables, including the variable of interest, are similar to those in the earlier analyses but

at the firm level, without state-level controls. The variable sigma represents environmental

policy uncertainty and is a binary variable that reflects the outcome of a close election in the

state where the firm’s headquarters are located in state s of year t or the text-based measure

of firm-level uncertainty.23 To ensure the robustness of our results, we include a broad set

of control variables at the firm level, including Size (the logarithm of market capitalization),

B/M (book-to-market ratio), I/K (investment rate), ROA (profitability), financial leverage,

23We adopt the approach of Bai, Fairhurst, and Serfling (2020) to identify the firm headquar-
ters state by utilizing the historical headquarters data available on John Bai’s personal website:
https://sites.google.com/site/johnbaijianqiu.
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leased capital ratio, Tobin’s q, and firm and year fixed effects.24

[Place Table 4 about here]

Table 4 presents the results of estimating equation (4) for various specifications. In

Specifications 1 and 2, the policy uncertainty measure is based on a binary variable that

captures a close election in the firm’s headquarters state, while in Specifications 3 and 4, the

text-based uncertainty measure is used instead. Firm-level control variables are included in

all specifications. The estimated coefficients on the interaction term are consistently negative

and significant at the 5% level, indicating that financially constrained firms have a harder

time raising debt financing under conditions of policy uncertainty. This decline in debt

financing supports the financing mechanism underlying our main findings, which suggest

that firms facing tightened borrowing constraints due to policy uncertainty are likely to

reduce their investment in pollution abatement.

Section 2 presents empirical evidence that demonstrates the substantial impact of policy

uncertainty and financial frictions on industrial pollution. The evidence suggests that envi-

ronmental policy uncertainty intensifies the relationship between emissions and abatement

efforts. These empirical findings highlight the need for further theoretical work. In Section

3, we present a simple model to illustrate the economic mechanism underlying these results.

In Section 4, we develop a general equilibrium model to formalize our intuition and provide

a quantitative explanation for these empirical observations.

3 Our Mechanism in a Simple Example

Before introducing the full-blown general equilibrium model, we will provide a simple

example to clearly demonstrate the underlying mechanism without considering capital in-

vestment. In this example, we will illustrate how financial frictions and policy uncertainty

regarding environmental regulations can lead to distortions that discourage firms from in-

vesting in pollution abatement.

We consider a hypothetical firm that faces a one-period problem with a unit discount

factor, fixed output of y, and initial debt of by, where the level of indebtedness is represented

24The existing literature, such as Eisfeldt and Rampini (2009), Rauh and Sufi (2012), Rampini and
Viswanathan (2013), Li and Xu (2020), and Li and Tsou (2022)), provides extensive evidence that leas-
ing contracts, which are a crucial component of a firm’s capital structure, can serve as a means of financing
corporate investments, particularly for financially constrained firms. Hence, we consider the leased capital
ratio as a control variable in our analysis.

17



by b < 1. The firm invests a portion a ≥ 0 (abatement intensity) of its output, which is

ay, in pollution abatement technology before the pollution tax is realized. The firm then

produces its output, repays its external debt of by, pays a pollution emission tax of τey,

where the emission intensity e is determined by ē
ϵ+a

and ē
ϵ
is the default emission intensity

without abatement investment, and maximizes equity payouts. After the period ends, the

firm either receives a continuation value of v if it relies solely on its internal resources (where

c ≥ 0 represents a positive flow of internal funds), or receives y(v−ϕ) where ϕ represents the

cost of being financially constrained if it relies on external financing (where c < 0 represents

a negative flow of internal funds).25

The pollution tax is subject to shocks drawn from a continuous distribution πτ (τ) up to

a maximum value of τ̄ with a volatility of στ . The firm solves the following maximization

problem:

max
a

∫ τ̄

0

[1− b− a− τe]︸ ︷︷ ︸
c

+[v − ϕ · 1(c < 0)]

 πτ (τ)dτ (5)

where the cutoff point, τ̂ , is determined by the zero dividend condition, which is given by

1 − b − a − τ̂ e = 0. When the pollution tax rate, τ , exceeds the cutoff point τ̂ , the firm’s

equity payouts become negative, and it incurs a loss of ϕ in the continuation value, reflecting

the cost of being financially constrained.26

We begin by examining how pollution abatement investment influences the cutoff point.

We introduce the term ã = a to denote the direct cost of abatement associated with the

investment, and define the cutoff point as τ̂ = 1−b−ã
e

. The cutoff point decreases as initial

indebtedness b, the debt burden from abatement cost ã, and the emission intensity e in-

creases. We assume, without loss of generality, that the maximum cutoff point τ̂max exceeds

the pollution tax rate τ̄ . When abatement intensity is low (a < ā(τ̄)), the firm has no

chance of incurring negative dividends and thus avoids triggering the costly external financ-

ing constraint represented by ϕ. Consequently, any abatement level a ∈ [0, ā] is financially

unconstrained. We observe a linear marginal cost of MCa≤ā = 1 and a downward-sloping

marginal benefit of MBa≤ā = −E[τ ] de
da

= ēE[τ ]
(ϵ+a)2

. Notably, neither of these factors is influ-

enced by the initial indebtedness b.

25To maintain the simplicity and intuitiveness of our example, we do not introduce the costly external
financing through equity or debt issuance. Instead, we assume that whenever the firm’s internal funds c fall
below zero, the firm must pay a cost of external financing, represented by ϕ, in the future.

26The non-negative dividend constraint is used in the model to capture two important observations in
the corporate finance literature. Firstly, issuing new equity incurs significant costs, both direct and indirect,
such as flotation costs and underwriting fees. Secondly, firms infrequently issue external equity. By imposing
the non-negativity constraint, the model is able to capture the realistic costs and infrequency of external
equity issuance while also simplifying the computational requirements of the model.
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When the firm chooses an abatement intensity larger than ā, the firm will trigger a

negative dividend and incur the cost of being financially constrained ϕ if the realization of

τ lies between τ̂(a) and τ̄ . As a result, any abatement a > ā is financially constrained and

incurs both financial marginal costs and benefits. The marginal cost of abatement investment

and the marginal benefit of abatement investment are as follows:

MCa>ā = 1︸︷︷︸
direct cost

+ (−ϕ) πτ (τ̂)

1− Πτ (τ̂)

dτ̂

dã

dã

da︸ ︷︷ ︸
financial cost

= 1 + ϕ πτ (τ̂)
1−Πτ (τ̂)

(ϵ+a)
ē

MBa>ā = −E[τ ]de
da︸ ︷︷ ︸

direct benefit

+ (−ϕ) πτ (τ̂)

1− Πτ (τ̂)

dτ̂

de

de

da︸ ︷︷ ︸
financial benefit

= ēE[τ ]
(ϵ+a)2

+ ϕ πτ (τ̂)
1−Πτ (τ̂)

(1−b−a)
ē

(6)

in which πτ (τ̂)
1−Πτ (τ̂)

is the hazard rate of the firm falling into the negative dividend region

τ ∈ [τ̂ , τ̄ ], dτ̂
dã

= −1
e
is the negative effect of the debt burden from abatement investment

on the cutoff, and dã
da

= 1 is the 100% pass through from abatement to debt burden in this

simple example; similarly, dτ̂
de

= −1−b−ã
e2

is the negative effect of emission intensity on the

cutoff, and de
da

= e2

ē
is the pollution reduction effect from abatement investment.27

The constrained marginal costs and benefits in equation (6) are influenced by the marginal

financial cost and benefit. The hazard rate of the firm falling into the negative dividend

region πτ (τ̂)
1−Πτ (τ̂)

, which is highly impacted by policy uncertainty in environmental regulation

στ , affects both of the marginal financial cost and benefit. Higher policy uncertainty typically

results in a greater hazard rate, leading to increased marginal financial costs and benefits

of constrained abatement. The marginal financial cost of constrained abatement increases

with abatement investment, while the marginal financial benefit of constrained abatement

decreases with both abatement investment and indebtedness. These relationships create a

non-linear interacted effect of financial frictions and uncertainty on corporate abatement

investment. We visualize such relationships in Figures 1 and 2.

We have two main points to highlight. First, financial frictions generally reduce pollution

abatement investment among financially constrained firms due to the additional marginal

costs of being constrained by the debt burden of such investment, as illustrated in Figure

1. Firms that are financially unconstrained have a low initial debt burden and, therefore, a

high cutoff for being financially constrained in abatement. Consequently, their unconstrained

optimal abatement investments lie at the intersection of MCu and MBu, without incurring

additional financial costs. However, financially constrained firms typically have a high initial

27The total marginal effect of abatement a on τ̂ is dτ̂
da = dτ̂

dã
dã
da + dτ̂

de
de
da = − (ϵ+a)

ē + (1−b−a)
ē = (1−b−ϵ−2a)

ē .
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Figure 1. Abatement Investment Subject to Financial Frictions

This figure illustrates the impact of financial frictions on corporate pollution abatement investment.
The x-axis represents firms’ choices of abatement investment (a), while the y-axis shows the cor-
responding marginal costs (MCa) and marginal benefits (MBa) of such investment, as defined by
equation (6). Specifically, MCu and MBu represent the marginal cost and benefit curves when firms
have low debt and are financially unconstrained, while MCc and MBc represent the corresponding
curves when firms have high debt and are financially constrained. Constrained firms have a smaller
range of unconstrained abatement choices, and their optimal investment choices lie at the inter-
section of MCc and MBc, where both the financial cost and benefit of abatement investment are
present.
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debt burden, resulting in a low cutoff for being financially constrained in abatement. This

leads to their constrained optimal abatement investments being at the intersection of MCc

and MBc, reflecting the increasing marginal cost in abatement and decreasing marginal

financial benefit in both abatement and initial debt. Therefore, the constrained optimal

abatement investments tend to be lower than the unconstrained optimal abatement invest-

ments. The interpretation of our model is consistent with the empirical evidence presented

by Xu and Kim (2022), which suggests that financially constrained firms tend to invest less

in pollution abatement. This finding underscores the importance of addressing financial

frictions in promoting sustainable corporate investment.

Second, as illustrated in Figure 2, high levels of policy uncertainty in environmental regu-

lation exacerbate the reduction in pollution abatement investment of financially constrained
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Figure 2. Abatement Investment Subject to Policy Uncertainty

This figure illustrates how policy uncertainty in environmental regulation can affect corporate pollu-
tion abatement investment decisions. The x-axis represents firms’ choices of abatement investment
(a), while the y-axis shows the corresponding marginal costs (MCa) and marginal benefits (MBa)
of such investment, as specified in equation (6). The figure includes two pairs of marginal cost and
benefit curves. The first pair (MC0 and MB0) reflects the marginal cost and benefit when policy
uncertainty is low, while the second pair (MC1 and MB1) reflects the marginal cost and benefit
when policy uncertainty is elevated.
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firms due to the additional marginal costs incurred from being financially constrained by

debt. The increased policy uncertainty raises the hazard rate πτ (τ̂)
1−Πτ (τ̂)

, which amplifies the

existing asymmetry in the intersection of the marginal cost curve and the marginal benefit

curve by increasing the marginal financial cost of abatement and decreasing the marginal

financial benefit of both abatement and initial debt. In plot (a), the amplification does

not affect the unconstrained optimal abatement investments since firms are not financially

constrained. However, in plot (b), the asymmetric amplification resulting from the shifts

of MB0 and MC0 to MB1 and MC1 leads to reduced abatement investment. In line with

previous studies Alfaro, Bloom, and Lin (2022), our model emphasizes the role of policy un-

certainty in reducing pollution abatement investment, particularly for financially constrained

firms. Therefore, our model suggests that reducing policy uncertainty may be an effective

way to alleviate the negative effects of financial frictions on pollution abatement investment

by financially constrained firms.
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The underlying mechanism illustrated in the simple example aligns with the findings

from our empirical analysis in Section 2.2. Specifically, as shown in Figure 1, financially

constrained firms tend to decrease their abatement investment, leading to higher pollution

emissions, which is consistent with our findings in Tables 2 and 3. Furthermore, as demon-

strated in Figure 2, elevated policy uncertainty exacerbates this effect, causing financially

constrained firms to reduce their abatement investment even further and resulting in even

higher pollution emissions. As emphasized in Section 2.2, we find a strongly significant in-

teraction term between financial constraints and policy uncertainty. Finally, our findings on

debt growth in Table 4 are consistent with these patterns, as we observe a reduction in debt

growth for financially constrained firms when external debt is used to finance abatement

investment and policy uncertainty increases.

4 The Full Model

We next build a comprehensive model of heterogeneous firms that can help explain the

cross-sectional variation we have presented and explore its aggregate implications. The model

consists of two blocks: a production block that captures the varying responses of firms to

environmental policy uncertainty shocks, and a general equilibrium block that includes a

capital producer and a representative family of households, ultimately closing the model.

Our analysis takes place in a discrete and infinite time setting.

4.1 Production, Pollution, and Finance

In the production block, there is a fixed mass of heterogeneous firms that invest in

physical capital and carbon-intensity technology, taking into account the presence of financial

frictions. This model builds heavily on the heterogeneous firm framework developed by Khan

and Thomas (2013) and Ottonello and Winberry (2020). We extend these models in three

ways. First, firm production generates pollution emissions, which are proportional to the

product of output and firm-specific carbon intensity. Second, firms have the option to invest

in emission-reducing technology in addition to capital investment. Finally, we incorporate

idiosyncratic pollution regulation penalty shocks, modeled as implicit taxes, as in Shapiro

and Walker (2018).

Production In the steady state of the economy, there is no aggregate uncertainty. How-

ever, we introduce a policy uncertainty shock later in the form of an MIT shock (e.g.,

Boppart, Krusell, and Mitman (2018)), which is a one-time unexpected change in firms’
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pollution penalty. In the following subsections, we examine the transition path in response

to this unexpected environmental policy uncertainty shock. In each period, a fixed unit mass

of production firms exist, where each firm j ∈ [0, 1] produces an undifferentiated good yj

using the production function:

yjt = zjtk
α
jt, (7)

where α represents the capital share and less than one, zjt denotes an idiosyncratic total

factor productivity shock, ljt represents the firm’s labor input, and kjt represents the firm’s

capital stock. The idiosyncratic TFP shock zjt follows a log-AR(1) process:

logzjt+1 = ρlogzjt + ϵjt+1, (8)

where ϵjt+1 ∼ N(0, σ2).

Similar to the approach in Khan and Thomas (2013), our focus is on understanding

how financial constraints affect firms’ decisions regarding abatement investment. To avoid

having firms accumulate sufficient resources such that they never again face a binding bor-

rowing constraint, we introduce exit and entry into the model. Specifically, each firm has a

fixed probability πd of exiting the economy after production, debt repayment, and pollution

penalty in any given period. Before investment, firms learn whether they will survive to

produce in the next period. If a firm exits, it is replaced by a new entrant with n0 units of

net worth from the households, the lowest abatement technology (which will be introduced

later), and idiosyncratic productivity drawn from a time-invariant distribution. The new

entrant then proceeds as an incumbent firm.

Pollution and Environmental Policy A firm’s production results in the emission of

pollutants, which are determined by the firm’s emission intensity, pollution abatement efforts,

and production scale. In our model, we incorporate heterogeneity in emission intensity by

extending the existing pollution models for representative firms. This means that firms

can accumulate pollution abatement technology through past investment and result lower

emission intensity. Firm j’s emissions at time t is given by:

ejt =
ē

xjt
yjt (9)

where ē represents the default level of emission intensity, and xjt denotes the level of ac-

cumulated abatement technology. The firm can improve its abatement technology through

investment, which follows the law of motion:

xjt+1 = (1− δx)xjt + ajt+1, (10)
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where δx represents the depreciation of existing abatement technology embedded in current

capital, and ajt+1 is the firm’s current investment in abatement. As abatement technology is

highly specific and investment is irreversible, we assume that all firms have a non-negative

investment in abatement in each period (i.e. ajt+1 ≥ 0) to reflect the capital irreversibility.

Pollution can have regulatory consequences due to environmental policies. In our model,

firm j is subject to a pollution penalty, which is represented by τjtejt, where τjt is an id-

iosyncratic pollution penalty shock and ejt is the level of pollution emissions. This penalty

is modeled as an implicit tax, as in Shapiro and Walker (2018), and accounts for firm-level

heterogeneity, allowing the pollution penalty to differ by firms with idiosyncratic shocks. The

idiosyncratic pollution penalty shock τjt follows a specific probability structure T = {µτ , στ},
which reflects both the severity of environmental policy µτ and the uncertainty of environ-

mental policy στ . This uncertainty captures firms’ investigations, litigation, and penalties

variability. The idiosyncratic pollution penalty shock is assumed to be i.i.d. across firms.

Without loss of generality, we assume that τjt follows a truncated log-normal process.

Specifically, with probability pτ , there is no penalty to match the fact that firms may avoid

penalties at times. Otherwise, τjt follows a log-normal distribution with mean µ and standard

deviation σ.28 Here, µτ and στ represent the mean and standard deviation of the entire

distribution, respectively. At the steady state, both µτ and στ are constant for all firms.

However, during transition dynamics, shocks to the severity of environmental policy will be

reflected in changes to µτ , while shocks to environmental policy uncertainty will be reflected

in changes to στ .

Financial Frictions Firms may need to seek external financing to fund their investments

in physical capital and abatement technology. To model this, we assume that firm j only

has access to risk-free borrowing contracts without considering for state-contingent debt, as

in Rampini and Viswanathan (2010, 2013). The collateralized borrowing constraint is given

by:

b′j ≤ θkkjt. (11)

Firm j is assumed to have an opportunity to default on its contract and abscond with 1− θk

of its capital. Because lenders can retrieve a θk fraction of firm j’s capital upon default,

borrowing is limited by θk ∈ [0, 1] as the liquidation value of a firm’s capital stock. This

constraint limits a firm’s borrowing capacity by tying it to the value of its existing capital

stock. The second constraint is that equity issuance is prohibited, so all firms must maintain

28Therefore, the mean and variance of the log-normal distribution are µlog = e(µ+σ2/2) and σlog = (eσ
2 −

1)e2µ+σ2

, respectively. The mean and standard deviation of the distribution can be calculated from these
parameters.
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a non-negative dividend; that is, djt ≥ 0 holds for all firms.

4.2 Recursive Problem for Firms

The firm’s optimization problem is written recursively, where the state variables are the

firm’s total factor productivity z, abatement technology x, and net worth n. The net worth

n is given by the expression:

n = zkα + qt(1− δ)k − τe− (1 + rt)b, (12)

where k and b are predetermined from the last period decision, and τ represents the realized

pollution penalty tax rate. The term zkα represents the firm’s production revenue, qt(1−δ)k
represents the depreciation-adjusted investment return, τe represents the pollution penalty,

and (1 + rt)b represents the cost of borrowing.

Let vt(z, x, n) denote the equity value function before forced exiting, and Λt+1 denote the

stochastic discount factor, then the continuing equity value function can be expressed as:

vt(z, x, n) =πd · θnn+ (1− πd) ·
{
max
a′,k′,b′

d+ Λt+1Et [v
′(z′, x′, n′)]

}
(13)

subject to

0 ≤ d ≤ n− a′ − qt+1k
′ + b′, (14)

b′ ≤ θkk
′, (15)

0 ≤ a′, (16)

n′ ≡ z′k′α + qt+1(1− δ)k′ − τ ′e′ − (1 + rt+1)b
′, (17)

x′ = (1− δx)x+ a′, (18)

where θn represents the proportional liquidation value of exiting firms, Λt+1 is the stochastic

discount factor for the firm, z′ follows an AR(1) productivity process, τ ′ follows the log-

normal i.i.d. process specified previously, and the expectation Et is taken over the realization

of z′ and τ ′.
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4.3 General Equilibrium Block

In the general equilibrium model, we also include a unit mass of identical households that

determines consumption and the stochastic discount factor. The households derive utility

from consumption and own the economy’s capital stock. We assume that households supply

labor inelastically and receive a wage that is determined by the competitive labor market.

The capital goods producer determines the equilibrium price of capital.

Capital Good Producer The model assumes a representative capital good producer who

uses a technology Φ(It/Kt)Kt, which follows a constant-return-to-scale and convex function,

to produce new aggregate capital, where It denotes units of the final good used to produce

capital, Kt is the aggregate capital stock at the beginning of the period, and δ is the steady-

state investment rate. Namely, one unit of the capital good costs Φ(It/Kt)Kt units of

consumption goods. The function Φ(It/Kt) is given by:

Φ(It/Kt) =
δ/ϕ

1− 1/ϕ

(
It
Kt

)1−1/ϕ

− δ

ϕ− 1
, (19)

where ϕ is the elasticity of substitution between capital goods. The relative price of capital,

qt, is determined by profit maximization and is given by

qt =
1

Φ′(It/Kt)
=
It/Kt

δ

1/ϕ

. (20)

Representative Households The model assumes a unit measure continuum of identical

households who own all the firms and have preferences over consumption Ct. The households’

expected utility is given by

E0

∞∑
t=0

βt

(
C1−γ

t

1− γ
− ζEt

)
where β is the time discount rate, γ is the coefficient of relative risk aversion, and ζ is a con-

stant that captures the disutility of pollution emission (Such a setting could be rationalized

in the literature, i.e., Hsu et al. (2022)). The households face a budget constraint given:

Ct +
1

Rf,t

Bt ≤ Bt−1 +Πt,

where Rf,t represents the risk-free interest rate during the period from t to t+1. Bt denotes

the quantity of one-period risk-free bonds that households hold. Additionally, households re-

ceive capital income Πt from firms. Households bear the disutility of environmental pollution
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by internalizing the negative externalities of it from the total pollution emission Et =
∑

(e).

The optimality of intertemporal saving decisions implies the Euler equation, which deter-

mines the stochastic discount factor (SDF) implied by households consumption:

Λt+1 =
βUc(Ct+1, Lt+1)

Uc(Ct, Lt)
= β

(
Ct+1

Ct

)−γ

, (21)

and the risk-free interest rate must satisfy:

Et[Λt+1]Rf,t = 1. (22)

Equilibrium Definition The equilibrium is a set of value functions vt(z, x, n); decision

rules k′t(z, x, n), b′t(z, x, n), a
′
t(z, x, n); a pollution penalty structure µτ , στ ; the measure of

firms µt(z, x, n, τ, k, b); and prices qt, Λt+1 such that (i) all firms optimize, (ii) households

optimize, (iii) the capital producer optimizes, (iv) the distribution of firms is consistent with

decision rules, and (v) the final good market clears, i.e., Y = C + I + A, where A =
∑

(a′).

4.4 The Roles of Financial Frictions and Policy Uncertainty

Before the quantitative analysis, we theoretically characterize the channels through which

corporate pollution abatement investment in our model is affected by financial frictions and

policy uncertainty as the mechanism illustrated in Section 3. According to Proposition 1,

financially constrained firms with lower net worth are more likely to hit the borrowing limits

when they pursue pollution abatement. This relationship between financial constraints,

net worth, and abatement is further intensified by policy uncertainty, as in Proposition 2.

Consequently, firms are more likely to hit the borrowing limits for pollution abatement when

policy uncertainty is high.

Proposition 1. Consider a firm at time t that is eligible to continue into the next period and

has idiosyncratic productivity z, abatement technology x, and net worth n. For any given

values of {z, x}, the firm’s optimal decision can be characterized by one of the following

cases.

(i) Unconstrained: there exists a threshold n̄(z, x) such that a firm is financially uncon-

strained if its net worth n exceeds n̄(z, x) (i.e., n > n̄(z, x)). For such unconstrained

firms, the optimal policies for capital accumulation, abatement investment, and bor-

rowing follow the frictionless case, denoted by k′∗(z, x, n), a′∗(z, x, n), and b′∗(z, x, n),
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respectively. The borrowing limit is not binding, and for any combination of real-

ized shocks {z′, τ ′}, the optimal borrowing for the next period is not constrained (i.e.,

b′′∗(z′, x′, n′) < θkk
′′∗(z′, x′, n′).)

(ii) Constrained and Binding: there exists a threshold n(z, x) such that the firm is

financially constrained and binding if n < n(z, x). Constrained and binding firms

follow the “binding” capital accumulation policy k′(z, x, n) = k′B(z, x, n), the “binding”

abatement investment policy a′(z, x, n) = a′B(z, x, n), and the “binding” borrowing

constraint b′B(z, x, n) = θkk
′B(z, x, n).

(iii) Constrained and Non-binding: firms with n ∈ [n(z, x), n̄(z, x)] are financially con-

strained but non-binding. Constrained and non-binding firms follow the ”constrained”

capital accumulation policy k′(z, x, n) = k′C(z, x, n), the “constrained” abatement in-

vestment policy a′(z, x, n) = a′C(z, x, n), and the ”constrained” borrowing policy b′C(z, x, n) <

θkk
′C(z, x, n). A constrained and non-binding firm does not borrow up to its collateral

constraints to avoid binding situations in the future. That is, for the optimal choices

of k′C , a′C , b′C, there exist some combinations of realized shocks z′, τ ′ such that the next

period optimal borrowing is binding (i.e., b′′C(z′, x′, n′) = θkk
′′C(z′, x′, n′).)

Proposition 2. Consider a firm with the optimal decision in Proposition 1. When pol-

icy uncertainty in environmental regulation increases to στ unexpectedly, the firm’s optimal

decision changes as follows.

(i) Unconstrained: the threshold n̄(z, x;στ ), which indicates the point at which the firm

becomes financially unconstrained if n > n̄(z, x;στ ), increases with στ . Even when

the firm is unconstrained, it still follows the ”frictionless” capital accumulation policy

k′(z, x, n) = k′∗(z, x, n), the ”frictionless” abatement investment policy a′(z, x, n) =

a′∗(z, x, n), and the ”frictionless” borrowing policy b′∗(z, x, n) < θkk
′∗(z, x, n). Regard-

less of the optimal choices of {k′∗, a′∗, b′∗} and the combination of realized shocks z′, τ ′,

the next period’s optimal borrowing will not be binding b′′∗(z′, x′, n′) < θkk
′′∗(z′, x′, n′).

(ii) Constrained and Binding: the threshold n(z, x;στ ) such that the firm is financially

constrained and binding if n < n(z, x;στ ) decreases with στ . Constrained and binding

firms follow the “binding” capital accumulation policy k′(z, x, n;στ ) = k′B(z, x, n;στ ),

the “binding” abatement investment policy a′(z, x, n;στ ) = a′B(z, x, n;στ ), and the

“binding” borrowing policy b′B(z, x, n;στ ) = θkk
′B(z, x, n;στ ).

(iii) Constrained and Non-binding: If n ∈ [n(z, x;στ ), n̄(z, x;στ )], the firm is finan-

cially constrained and non-binding. Constrained and non-binding firms follow the “con-
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strained” capital accumulation policies as in Proposition 1.

5 Quantitative Analysis

As the primary mechanism of this paper having been highlighted, we now proceed to apply

the full model to the data and quantify the mechanism. To do so, we first parameterize the

model to match both the dynamic and cross-sectional moments of US firms. We then present

the quantitative results of increased policy volatility on pollution abatement investment,

examining both cross-sectional and aggregate dynamics.

5.1 The Solution Methods

The critical challenge in solving the model is that the aggregate state includes an infinite-

dimensional object µt, which represents the cross-sectional distribution of firms. To address

this challenge, we adopt a methodology similar to that used in the MIT shock literature

(e.g., Boppart et al. (2018)). Specifically, we use a one-time unexpected shock around the

model’s steady state, which is known as a MIT shock. This shock provides a reasonably

accurate approximation and preserves the non-linearity of the transition path quite well.

The solution method for the model involves two parts. First, the Stationary Equilib-

rium at the steady state is solved, which delivers the value functions, policy functions, and

steady-state aggregate variables. The Stationary Equilibrium also provides the cross-section

moments for calibration. Second, the Transitional Equilibrium is solved, starting at the

Stationary Equilibrium, given a path of MIT shocks of policy uncertainty and a long enough

period for the model to transition back to the same Stationary Equilibrium. The Transitional

Equilibrium then provides the dynamic moments for calibration and impulse response func-

tions. This approach fully captures the non-linearity from the interaction between financial

frictions and policy uncertainty shocks, which is critical for the quantitative results. Section

C of the Internet Appendix provides further details on the solution methods.

5.2 Parameterization

Our parameterization proceeds in two steps. In the first step, we select a set of parameters

to match standard cross-sectional and macroeconomic targets in the steady state. In the

second step, we choose the remaining parameters such that the model can replicate additional
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cross-sectional moments observed in the data.

[Place Tables 5 and 6 about here]

Fixed Parameters The first part of Table 5 presents the parameters that are directly taken

from the literature. The model operates at an annual frequency, and the time discount rate

β is set to 0.96 to match the average real risk-free rate of 4% per year. The elasticity of

intertemporal substitution is set to unity (γ = 1) for log utility. The capital share α is set

to 0.65 to match a decreasing-return-to-scale of two-thirds. The annual depreciation rate

of capital is set to δk = 0.10 to match the average nonresidential fixed investment rate in

Bachmann, Caballero, and Engel (2013), consistent with the standard RBC literature (e.g.,

Kydland and Prescott (1982)).

Fitted Parameters The second part of Table 5 presents the parameters that we calibrated

to match the firm-level moments reported in Table 6. While all parameters are jointly

determined, we outline the rough relationships between the parameters and moments. The

first set of parameters pertains to output and finance. We set the productivity persistence

parameter, ρz, to 0.90 and the productivity volatility parameter, σz, to 0.03 to match the

auto-correlations of output across different horizons. To match the annual exit risk of 8.7%

and the size of entrants relative to average firms at about 30%, we choose the exogenous

exit risk parameter, πd, to be 0.087 and the net worth of the entry parameter, n0, to be 1.2.

Finally, we set the collateral constraint parameter, θk, to 0.40, which leads to an equilibrium

average firm-level leverage of 34%.

The second set of fitted parameters is related to pollution and abatement. The default

pollution emission intensity ē = 10 and the abatement technology depreciation rate δx = 0.02

are chosen to match the emission intensity distribution, which is measured as the emission-

to-sales ratio in the model. The emission-to-sales ratio is defined as pounds of toxic emissions

over millions of dollars of sales. Then, the probability of no pollution penalty pτ = 0.40, the

mean of pollution penalty µτ = 0.02, the volatility of pollution penalty during normal periods

σl
τ = 0.02, and the volatility of pollution penalty during elevated policy uncertainty periods

σh
τ = 0.04 are chosen to match the distribution of pollution penalty, which is measured as

the litigation-to-sales ratio. Currently, the monetary value of the direct costs of litigation

cases over the total sales of firms is used to measure the pollution penalty.29

Free Parameter There is currently one free parameter in our model, which is the disutility

29The data source regarding the pollution penalty is available on the website of the EPA at https:

//cfpub.epa.gov/enforcement/cases/. We also collected data on the number of settlements for each case
and found that the mean and median settlements for all cases are 8.27 and 0.8 million dollars, respectively.
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parameter of pollution, denoted as ζ. While this parameter does not affect our current

quantitative analysis of the firm side, it does have negative welfare effects on households, so

we must have ζ > 0. Our current data do not determine the exact value of ζ. The value

of ζ will impact the optimal degree of pollution penalty (regulation) and the optimal level

of abatement. In future versions of this paper, we will discuss the optimal regulation policy

and the optimal level of abatement based on the value of ζ.

5.3 The Effects of Financial Frictions and Policy Uncertainty

With the calibrated model, we demonstrate how financial frictions and policy uncertainty

influence firms’ investment in abatement. Our findings show that the quantitative model

effectively explains the empirical results and mechanisms observed in the illustration example

in Section 3.

The Effects of Financial Frictions Figure 3 illustrates how firms’ abatement investment

policies vary with net worth, emission abatement technology, and productivity. Although

the policy is a three-dimensional object, the figure shows only low versus high productivity

to simplify the presentation in a heatmap. The results indicate that abatement investment

is affected by productivity, abatement technology, and financial frictions. Holding net worth

and abatement technology constant, more productive firms tend to invest more in abatement;

holding productivity and net worth constant, firms with lower abatement technology tend

to invest more in abatement; and holding abatement technology and productivity constant,

less constrained firms (i.e., those with higher net worth) tend to invest more in abatement.

In equilibrium, the firms’ statuses in the three dimensions are positively correlated, with

more productive and less constrained firms being cleaner, while less productive and more

constrained firms are dirtier. Financial frictions have a particularly strong effect because

more constrained firms cannot move away from being dirty due to their lower productivity

and lack of external funding.

The Effects of Policy Uncertainty Figure 4 shows how the abatement investment poli-

cies in Figure 3 change when policy uncertainty in environmental regulation is elevated.

In Figure 4, we can see that the effects of elevated policy uncertainty on less constrained

firms are heterogeneous. Depending on their abatement technology and productivity, they

may choose to increase or decrease abatement investment. However, with elevated policy

uncertainty, more constrained firms with lower net worth tend to reduce their abatement in-

vestment, even with the same abatement technology. These firms trade off their investment

opportunities and choose to lower their abatement investment, particularly for the highly
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Figure 3. Abatement Policy at the Steady State

This figure depicts the differences in firms’ abatement investment policies based on their net worth,
emission abatement technology, and productivity. Due to the three-dimensional nature of the policy,
the entire heatmap cannot be displayed, and only the low vs. high productivity dimension is shown.
The results demonstrate that abatement investment is affected by financial frictions. Specifically,
when firms have equal abatement technology and productivity levels, those with higher net worth
and are less financially constrained tend to invest more in abatement.
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productive, constrained firms with limited internal net worth.
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Figure 4. Abatement Policy upon Elevated Policy Uncertainty

This figure shows the heatmap of firms’ abatement investment policies across the dimensions of
net worth, emission abatement technology, and productivity upon elevated policy uncertainty, com-
pared to Figure 3. The color scale represents the abatement investment policy, with darker shades
indicating higher abatement investment. The x-axis represents the net worth dimension, the y-axis
represents the abatement technology dimension, and the z-axis represents the productivity dimen-
sion. Due to the three-dimensional nature of the policy, we show only the low vs. high values for
the productivity dimension in the upper and lower plots. The figure reveals that policy uncertainty
certainly matters for abatement investment, as firms’ investment levels are lower when they face
elevated policy uncertainty, regardless of their net worth, abatement technology, or productivity.
Additionally, the effect of policy uncertainty is stronger on more constrained firms with lower net
worth.
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Figure 5. Impulse Responses of Abatement Investment

This figure displays the impulse response functions of abatement investment in percentage points
(IRF of Abatement Inv.(%) on the y-axis) for different groups of firms over a ten-year horizon,
following an elevated policy uncertainty shock. The economy begins in its steady state at time 1, with
normal policy uncertainty. At time 2, an unexpected shock to policy uncertainty in environmental
regulation occurs, doubling its volatility. Firms are categorized as either more constrained or less
constrained based on their net worth, with each group accounting for approximately half of the total
net worth of the economy.
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5.4 Impulse Responses to Policy Uncertainty Shocks

Figure 5 displays the impulse responses of aggregate abatement investment to a calibrated

policy uncertainty shock to environmental regulations. Additionally, the figure provides a

breakdown of abatement investment from two groups of firms - more and less constrained

- which each account for roughly half of the economy’s net worth. The aggregate impulse

response demonstrates that abatement investment would decrease by roughly 6% immedi-

ately following the policy uncertainty shock. Moreover, the decomposition shows that more

constrained firms are approximately three times more responsive than their less constrained

counterparts. These impulse responses demonstrate that both financial frictions and pol-

icy uncertainty have significant impacts on aggregate abatement investment and pollution

prevention.
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6 Conclusion

This paper explores the relationship between financial frictions and environmental policy

uncertainty on firms’ abatement investment. We address endogeneity concerns by utilizing

election- or text-based measures of uncertainty and leverage both time-series and cross-

sectional variations in these measures. Our analysis examines the impact of environmen-

tal policy uncertainty on firms’ abatement investment, toxic emissions, and debt issuance.

Empirical findings indicate that environmental policy uncertainty decreases abatement in-

vestment, increases toxic emissions, and reduces debt financing activities, particularly for

financially constrained firms.

To formalize our intuitions, we develop a simple model with two essential components:

financial friction and environmental policy uncertainty. This model provides predictions that

the combination of financial frictions and uncertainty will negatively impact firms’ abatement

investment. Additionally, financially constrained firms will incur higher marginal costs of

pollution abatement, leading to reduced abatement investment and higher emissions. These

predictions align with our empirical findings.

To further quantify the dynamics among financial constraints, uncertainty, and abatement

investments, we develop a general equilibrium model with heterogeneous firms. This model

features the dynamics of financial constraints and abatement investments, allowing us to

match the evidence from U.S. firms in recent decades. Overall, our model and quantitative

analysis formalize our intuition and provide further support for the role of financial frictions

and policy uncertainty in firms’ abatement investment decisions.

With the empirical analyses and model development presented in this paper, we have

identified an interactive amplification effect between financial constraints and environmen-

tal policy uncertainty. This finding has important policy implications for the effectiveness

of environmental regulations and the role of external financing in mitigating environmental

externalities. Specifically, our results suggest that reducing policy uncertainty and improv-

ing access to external financing for financially constrained firms can lead to more effective

pollution abatement and mitigation. This highlights the need for policymakers to consider

the interaction between financial constraints and environmental policy uncertainty when

designing environmental regulations and financing programs.
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Table 1: Summary Statistics

This table provides facility-level summary statistics in Panel A and firm-level summary statistics in Panel B. The binary variable for election-based uncertainty equals one if the
most recent state governor vote differential is within 5%, as defined by Akey (2015), Brogaard and Detzel (2015), and Bhattacharya et al. (2017). The text-based uncertainty is
measured using computational linguistics to calculate the share of the conversation regarding uncertainty during conference calls, following Hassan et al. (2019), Hassan et al.
(2020a), and Hassan et al. (2020b). Abatement Investment represents the number of pollution prevention activities undertaken by a facility. Abatement-adj. Investment is the
number of pollution prevention activities adjusted for emission reductions. Emissions represent the total emissions produced in pounds by a facility. Employment denotes the
number of employees in a facility, while Sales refer to the facility-level sales revenue. ME is the market capitalization deflated by CPI and measured in 2009 million USD at the
end of the fiscal year. B/M is the ratio of book equity to market capitalization. I/K represents capital expenditure divided by property, plant, and equipment. Return on assets
(ROA) is operating income after depreciation scaled by total assets. Debt growth is the annual log growth rate of the summation of current and long-term liabilities. The WW
index measures financial constraints, following Whited and Wu (2006), while the SA index measures financial constraints using the size-age index, following Hadlock and Pierce
(2010). Book leverage (Leverage) is the ratio of the summation of current liabilities and long-term debt to total assets. The lease capital ratio is the ratio of leased capital over
the sum of leased capital and owned capital, where the leased capital is ten times rental expense. Tobin’s q is the ratio of the summation of market capitalization and the book
value of preferred shares to total assets, after deducting inventories. The table reports the mean, median, standard deviation (Std), 5th percentile (P5), 25th percentile (P25),
75th percentile (P75), and 95th percentile (P95) of the pooled data. Observations denote the valid number of observations for each variable. The sample period is from 1991 to
2017 at an annual frequency, except for the text-based uncertainty, which covers the period from 2004 to 2017.

Observations Mean Std P5 P25 P50 P75 P95

Panel A: Facility-Level Summary Statistics

Abatement Investment 152,621 0.85 3.38 0.00 0.00 0.00 0.00 4.00
Abatement-adj. Investment 152,621 6.37 12.75 1.00 1.00 3.00 6.00 22.00
Election-based Uncertainty 152,275 0.24 0.43 0 0 0 0 1
Text-based Uncertainty 64,681 3404.26 5963.95 0.00 619.97 1632.65 3667.26 12834.26
Emissions 114,953 268,332.32 2,170,260 0.00 15.00 3,000.00 39,205.40 945,144.1
Sale 152,610 144.03 467 2.2 13.73 38.19 105.76 562.43
Employment 70,260 575.51 1,417.28 12 75 200 505 2,100
ME 152,576 25719.88 64498.5 132.88 1120.2 4486.32 17505.55 141199.3
B/M 152,314 0.61 0.84 0.16 0.32 0.49 0.74 1.30
I/K 150,892 0.17 0.09 0.06 0.11 0.15 0.20 0.32
ROA 152,416 0.13 0.07 0.04 0.09 0.13 0.17 0.24
WW 150,219 -0.42 0.10 -0.58 -0.49 -0.43 -0.36 -0.25
SA 152,618 -4.19 0.56 -4.64 -4.64 -4.47 -3.83 -3.12
Leverage 152,514 0.27 0.15 0.04 0.17 0.26 0.36 0.54
Lease 152,366 0.26 0.18 0.00 0.13 0.25 0.38 0.56
Tobin’s q 141,047 1.58 0.77 0.91 1.12 1.38 1.80 2.84
Debt Growth (%) 146,797 5.20 55.37 -43.83 -12.29 -1.16 15.62 75.56
Income per Capita 152,621 32,591.72 9,802.37 18,989 24,503 31,474 39,454 49,738
Popolation 152,621 10,329,257 8,625,179 1,846,341 4,528,996 7,042,818 12,298,970 31,696,582
Rep Ratios 152,275 0.53 0.28 0.00 0.25 0.50 0.75 1.00

Panel B: Firm-Level Summary Statistics

ME 23,645 10757.37 32718.55 41.18 325.51 1423.31 6166.25 49444.42
B/M 23,555 0.68 0.91 0.15 0.34 0.53 0.82 1.59
I/K 23,353 0.18 0.12 0.05 0.11 0.16 0.23 0.39
ROA 23,585 0.13 0.09 0.02 0.09 0.13 0.17 0.26
WW 22,970 -0.36 0.11 -0.53 -0.44 -0.36 -0.29 -0.19
SA 23,662 -3.89 0.67 -4.64 -4.57 -3.97 -3.37 -2.76
Leverage 23,615 0.26 0.16 0.00 0.14 0.25 0.36 0.55
Lease 23,570 0.29 0.21 0.00 0.13 0.26 0.42 0.68
Tobin’s q 22,010 1.62 1.05 0.84 1.07 1.35 1.82 3.23
Debt Growth 21,613 4.39 71.39 -63.81 -15.26 -1.97 16.24 95.44
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Table 2: Abatement Investment and Environmental Policy Uncertainty

This table presents the findings of a Poisson regression (an OLS regression) that examines the relationship
between abatement investment and environmental policy uncertainty, as well as the joint link between
abatement investment, environmental policy uncertainty, and financial constraint. We estimate a Poisson
regression (an OLS regression) by regressing abatement investment (the logarithm of abatement investment),
abatement investment is defined as a count variable reflecting the simple or the emission-reduction-adjusted
total number of abatement activities for firm i’s facility p located in state s, on the measure of environmental
policy uncertainty, which denotes the election-based uncertainty in Panel A1 and A2 and the text-based
uncertainty in Panel B1 and B2, together with other firm characteristics, including the logarithm of market
capitalization (Size), book-to-market ratio (B/M), investment rate (I/K), and profitability (ROA) in year
t, and local economic fundamentals in year t, including the state-level income per capita and the logarithm
of population, as well as facility and year fixed effects. All independent variables are normalized to a zero
mean and unit standard deviation after winsorization at the 1st and 99th percentiles to reduce the impact
of outliers. t-statistics based on standard errors that are clustered at the facility level are reported in
parentheses. The sample period is from 1991 to 2017 in Panel A1 and A2 and 2004 to 2017 in Panel B1 and
B2, respectively.

Panel A1: Election-Based Uncertainty

Poisson OLS

(1) (2) (3) (4) (5) (6) (7) (8)

στ 0.00 0.01 -0.00 0.01 -0.00 -0.00 -0.00 -0.00
(0.21) (0.61) (-0.05) (0.38) (-0.17) (-0.12) (-0.27) (-0.25)

WW -0.01 -0.03 -0.01 -0.01
(-0.21) (-0.66) (-0.74) (-1.46)

WW × στ -0.06 -0.06 -0.01 -0.01
(-3.70) (-3.73) (-2.86) (-2.63)

SA -0.19 -0.21 -0.05 -0.06
(-4.41) (-4.57) (-4.46) (-4.51)

SA × στ -0.04 -0.04 -0.01 -0.01
(-2.52) (-2.61) (-1.72) (-1.69)

Log ME -0.04 -0.08 -0.01 -0.02
(-0.80) (-1.95) (-1.11) (-1.80)

B/M 0.02 0.00 0.00 0.00
(1.25) (0.16) (1.26) (0.94)

I/K -0.00 -0.00 0.00 0.00
(-0.47) (-0.07) (0.35) (0.59)

ROA 0.02 0.02 0.00 0.00
(1.38) (1.34) (1.22) (1.09)

Income per Capita 0.07 0.08 -0.05 -0.05
(0.82) (0.93) (-2.42) (-2.36)

Log Population 0.16 0.21 0.05 0.05
(0.71) (0.96) (0.76) (0.84)

Rep Ratios -0.01 -0.00 -0.01 -0.00 0.00 0.00 -0.00 -0.00
(-0.39) (-0.25) (-0.32) (-0.21) (0.06) (0.02) (-0.04) (-0.06)

Observations 91,433 89,990 93,096 91,351 149,882 148,130 152,272 150,150
Facility FE Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes Yes Yes Yes Yes

44



Panel A2: Election-Based Uncertainty

Adjusted Abatement Poisson OLS

(1) (2) (3) (4) (5) (6) (7) (8)

στ -0.02 -0.02 -0.02 -0.02 -0.07 -0.07 -0.08 -0.08

(-2.43) (-2.40) (-2.67) (-2.60) (-1.69) (-1.63) (-2.01) (-2.00)

WW -0.01 -0.01 -0.16 -0.09

(-0.45) (-0.81) (-1.78) (-0.94)

WW × στ -0.02 -0.01 -0.11 -0.11

(-2.44) (-2.20) (-2.96) (-2.72)

SA -0.03 -0.04 -0.52 -0.55

(-1.55) (-2.00) (-4.25) (-4.25)

SA × στ -0.02 -0.02 -0.12 -0.11

(-2.63) (-2.27) (-3.02) (-2.68)

Log ME -0.01 -0.02 0.07 -0.04

(-0.70) (-0.94) (0.60) (-0.32)

B/M 0.01 0.01 0.09 0.07

(1.83) (1.70) (2.59) (2.15)

I/K 0.00 0.00 0.04 0.04

(0.85) (0.60) (1.86) (1.63)

ROA 0.01 0.01 0.01 0.01

(1.65) (1.65) (0.26) (0.41)

Income per Capita -0.05 -0.05 -0.25 -0.25

(-1.60) (-1.61) (-1.25) (-1.22)

Log Population 0.13 0.12 1.03 0.97

(1.44) (1.35) (1.54) (1.47)

Rep Ratio 0.01 0.01 0.01 0.01 0.04 0.04 0.04 0.04

(1.23) (1.24) (1.20) (1.23) (0.96) (0.90) (0.88) (0.86)

Observations

Facility FE Yes Yes Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes Yes Yes

Cluster SE Yes Yes Yes Yes Yes Yes Yes Yes
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Panel B1: Text-Based Uncertainty

Poisson OLS

(1) (2) (3) (4) (5) (6) (7) (8)

στ -0.02 -0.02 -0.02 -0.02 -0.00 -0.00 -0.00 -0.00

(-1.71) (-1.73) (-1.71) (-1.78) (-1.13) (-1.05) (-0.91) (-0.83)

WW -0.10 -0.20 -0.01 -0.01

(-1.50) (-2.52) (-0.98) (-1.35)

WW × στ -0.03 -0.02 -0.00 -0.00

(-2.55) (-2.43) (-2.39) (-2.39)

SA -0.44 -0.47 -0.06 -0.06

(-4.21) (-4.43) (-3.85) (-3.83)

SA × στ -0.03 -0.03 -0.00 -0.00

(-2.91) (-2.89) (-2.25) (-2.22)

Log ME -0.19 -0.15 -0.01 -0.01

(-2.07) (-1.88) (-0.62) (-0.87)

B/M -0.02 0.00 0.00 0.00

(-0.61) (0.18) (0.04) (0.29)

I/K -0.01 -0.01 -0.00 -0.00

(-0.36) (-0.27) (-1.13) (-0.95)

ROA 0.08 0.08 0.01 0.01

(3.78) (3.77) (2.81) (2.67)

Income per Capita 0.27 0.26 0.01 0.01

(2.23) (2.18) (0.56) (0.59)

Log Population 0.50 0.60 0.01 0.00

(0.89) (1.07) (0.07) (0.03)

Observations 25,575 25,487 25,793 25,689 64,142 63,968 64,679 64,464

Facility FE Yes Yes Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes Yes Yes

Cluster SE Yes Yes Yes Yes Yes Yes Yes Yes
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Panel B2: Text-Based Uncertainty

Adjusted Abatement Poisson OLS

(1) (2) (3) (4) (5) (6) (7) (8)

στ -0.00 -0.00 -0.00 -0.00 -0.01 -0.01 -0.01 -0.01

(-0.81) (-0.77) (-0.78) (-0.72) (-0.54) (-0.45) (-0.62) (-0.55)

WW -0.01 -0.02 -0.09 -0.14

(-1.07) (-1.37) (-1.22) (-1.63)

WW × στ -0.00 -0.00 -0.02 -0.02

(-1.92) (-1.96) (-1.73) (-1.70)

SA -0.08 -0.08 -0.51 -0.52

(-3.40) (-3.37) (-3.76) (-3.82)

SA × στ -0.01 -0.01 -0.03 -0.03

(-2.67) (-2.65) (-2.56) (-2.54)

Log ME -0.02 -0.02 -0.11 -0.13

(-0.89) (-1.12) (-1.01) (-1.31)

B/M -0.00 -0.00 -0.01 -0.01

(-0.19) (-0.09) (-0.44) (-0.25)

I/K 0.00 0.00 0.00 0.00

(0.09) (0.17) (0.03) (0.14)

ROA 0.00 0.00 0.04 0.03

(1.26) (1.15) (1.63) (1.54)

Income per Capita 0.03 0.03 0.18 0.19

(1.18) (1.25) (1.18) (1.26)

Log Population 0.08 0.08 0.45 0.44

(0.72) (0.65) (0.63) (0.61)

Observations 63,144 62,956 63,725 63,494 64,142 63,968 64,679 64,464

Facility FE Yes Yes Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes Yes Yes

Cluster SE Yes Yes Yes Yes Yes Yes Yes Yes
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Table 3: Toxic Emissions and Environmental Policy Uncertainty

This table examines the relationship between toxic emissions and environmental policy uncertainty, as well as
the joint link between toxic emissions, environmental policy uncertainty, and financial constraint. We regress
the logarithm of the facility-level emissions on the measure of environmental policy uncertainty, which denotes
the election-based uncertainty in Specifications (1) to (4) or as the text-based uncertainty in Specifications
(5) to (8), together with other firm characteristics, including the logarithm of market capitalization (Size),
book-to-market ratio (B/M), investment rate (I/K), and profitability (ROA) in year t, and local economic
fundamentals in year t, including the state-level income per capita and the logarithm of population, as well
as facility and year fixed effects. All independent variables are normalized to a zero mean and unit standard
deviation after winsorization at the 1st and 99th percentiles to reduce the impact of outliers. t-statistics
based on standard errors that are clustered at the facility level are reported in parentheses. The sample
period is from 1991 to 2017 when we use election-based uncertainty, and from 2004 to 2017, when we use
text-based uncertainty, respectively.

Election-Based Text-Based

(1) (2) (3) (4) (5) (6) (7) (8)

στ -0.03 -0.03 0.39 0.37 -0.01 -0.01 -0.01 -0.01
(-0.95) (-0.82) (1.65) (1.56) (-1.06) (-1.03) (-1.39) (-1.33)

WW -0.06 -0.07 -0.01 -0.01
(-0.83) (-0.73) (-1.41) (-1.04)

WW × στ 0.08 0.08 0.02 0.02
(2.46) (2.46) (2.56) (2.62)

SA -0.13 -0.16 0.02 0.02
(-1.57) (-1.81) (4.06) (4.07)

SA × στ 0.18 0.17 0.01 0.01
(1.81) (1.71) (2.02) (2.09)

Log ME 0.03 -0.03 0.03 -0.02
(0.23) (-0.36) (0.64) (-0.61)

B/M 0.01 -0.00 0.00 -0.01
(0.60) (-0.01) (0.12) (-0.45)

I/K 0.01 0.02 0.01 0.01
(0.57) (0.85) (1.10) (1.16)

ROA 0.05 0.05 0.00 0.01
(2.19) (2.44) (0.36) (0.64)

Income per Capita -0.28 -0.27 0.05 0.04
(-1.64) (-1.64) (0.92) (0.90)

Log Population -0.06 -0.06 -0.02 0.02
(-0.69) (-0.71) (-0.04) (0.05)

Rep Ratios -0.01 0.00 -0.01 0.00
(-0.23) (0.04) (-0.21) (0.06)

Observations 112,894 111,893 114,746 113,649 64,280 64,142 65,028 64,853
R-squared 0.72 0.72 0.72 0.72 0.92 0.92 0.92 0.92
Facility FE Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes Yes Yes Yes Yes
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Table 4: Debt Issuance and Environmental Policy Uncertainty

This table examines the relationship between debt issuance and environmental policy uncertainty, as well
as the joint link between debt issuance, environmental policy uncertainty, and financial constraint. We
regress the debt growth on the measure of environmental policy uncertainty, which denotes the election-
based uncertainty in Specifications (1) and (2) or as the text-based uncertainty in Specifications (3) and (4),
together with other firm characteristics, including the logarithm of market capitalization (Size), book-to-
market ratio (B/M), investment rate (I/K), and profitability (ROA), financial leverage, leased capital ratio,
and Tobin’s q in year t, as well as facility and year fixed effects. All independent variables are normalized
to a zero mean and unit standard deviation after winsorization at the 1st and 99th percentiles to reduce the
impact of outliers. t-statistics based on standard errors that are clustered at the firm level are reported. The
sample period is from 1991 to 2017, when we use election-based uncertainty, and from 2004 to 2017, when
we use text-based uncertainty, respectively.

Election-Based Text-Based

(1) (2) (3) (4)

στ -0.59 0.07 -0.87 -1.13
(-0.19) (0.02) (-1.13) (-1.40)

WW -6.52 -15.87
(-1.92) (-0.55)

WW × στ -3.59 -1.71
(-1.23) (-2.11)

SA 1.41 -7.38
(0.45) (-1.11)

SA × στ -6.42 -1.57
(-2.11) (-2.00)

Log ME -14.9 -9.29 -11.44 -11.99
(-4.01) (-3.00) (-2.80) (-3.62)

B/M -2.84 -2.45 -9.43 -9.77
(-2.92) (-2.67) (-7.21) (-8.23)

I/K 5.54 5.27 3.40 3.85
(5.90) (5.71) (2.27) (2.68)

ROA 2.59 2.37 1.23 0.28
(2.26) (2.10) (0.42) (0.10)

Leverage -32.34 -32.82 -42.32 -43.43
(-28.00) (-28.66) (-28.87) (-29.83)

Lease -4.48 -4.69 -1.31 -1.98
(-2.99) (-3.17) (-0.52) (-0.80)

q 10.33 9.39 10.06 10.40
(4.04) (4.80) (4.26) (4.91)

Observations 14,299 14,313 15,562 16,196
R-squared 0.15 0.15 0.26 0.27
Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes
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Table 5: Calibrated Parameter Values and Sources

This table presents the parameters used in the model, including both fixed and fitted parameters. The model
operates at an annual frequency. The fixed parameters are based on existing literature and include the time
discount rate (β = 0.96), chosen to match the average risk-free rate of 4% per year, and the unit elasticity of
intertemporal substitution for log utility (γ = 1). On the firm side, the capital coefficient (α = 0.65) is set to
match an implied decreasing-return-to-scale of two-thirds, and capital is assumed to depreciate annually at a
rate of 10% (δk = 0.10), consistent with the average aggregate nonresidential fixed investment rate reported
in Bachmann et al. (2013). The fitted parameters are chosen to match targeted moments from the firm-level
data sample, which will be further discussed in Table 6.

Symbols Descriptions Values Sources

Fixed Parameters
β Discount factor 0.96 Annual Frequency
γ Elasticity of intertemporal substitution 1.00 Logarithmic Utility
α Capital share 0.65 DRS of Two-thirds
δk Capital depreciation rate 0.10 Bachmann et al. (2013)
ϕ Aggregate capital adjustment cost 4.00 Bachmann et al. (2013)
θd Exit liquidation value 0.40 Kermani and Ma (2023)

Fitted Parameters
ρz Productivity persistence (fixed) 0.90 Targeted Moments
σz Productivity volatility 0.03 Targeted Moments
πd Exogenous exit risk 0.087 Targeted Moments
n0 Net worth of entry 1.20 Targeted Moments
θk Collateral constraint 0.40 Targeted Moments
δx Abatement technology depreciation rate 0.02 Targeted Moments
ē Default pollution emission intensity 10.0 Targeted Moments
µ Mean of pollution penalty 0.005 Targeted Moments
pτ Probability of no pollution penalty (normal) 0.40 Targeted Moments
σ Volatility of pollution penalty (normal) 0.03 Targeted Moments
phτ Probability of no pollution penalty (elevated) 0.70 Targeted Moments
σh Volatility of pollution penalty (elevated) 0.075 Targeted Moments
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Table 6: Targeted Moments: Model and Data

This table presents the firm-level moments that are utilized to calibrate the fitted parameters of the model.
The emission intensity is measured in pounds/millions and is normalized. We start by selecting a default
pollution emission intensity of ē = 10 and an abatement technology depreciation rate of δx = 0.02 to
simultaneously fit the distribution of emission intensity, which is measured as the emission-to-sales ratio
in the model. Next, we select the probability of no pollution penalty as pτ = 0.40, the mean of pollution
penalty as µτ = 0.02, the volatility of pollution penalty during normal period as σl

τ = 0.02, and the
volatility of pollution penalty during elevated policy uncertainty period as σl

τ = 0.04, to simultaneously fit
the distribution of pollution penalty, which is measured as the litigation-to-sales ratio.

Moments Data Model

Output and Finance
1-year autocorrelation of output 0.89 0.90
3-year autocorrelation of output 0.69 0.71
5-year autocorrelation of output 0.53 0.56
Size ratio of entrant relative to average 0.28 0.28
Annual exit rate of firms 0.09 0.09
Mean of debt/asset ratio 0.34 0.34
Pollution and Abatement
Mean of emission intensity 5.38 4.16
Median of emission intensity 5.66 4.45
Standard deviation of emission intensity 3.05 1.82
P75/P25 of emission intensity 1.98 1.56
Ratio of zero pollution penalty 0.40 0.40
Mean of pollution penalty 0.02 0.02
Standard deviation of pollution penalty (normal) 0.02 0.02
Standard deviation of pollution penalty (elevated) 0.04 0.04
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A The Database and Supplementary Analyses

A.1 The TRI Database

The Toxic Release Inventory (TRI) program and the resultant database are maintained

by the United States Environmental Protection Agency (EPA). In 1986, the U.S. Congress

passed the Community Right to Know Act (EPCRA) in response to public concerns over

releasing toxic chemicals from several environmental accidents in the U.S. and overseas. The

EPCRA entitles residents in their respective neighborhoods to know the source of detrimental

substances, especially for their potential impacts on human health from routes of exposure.

In response to the EPCRA, the EPA established the TRI program to track and super-

vise certain classifications of toxic substances and chemical pollutants that endanger human

health and the environment.1 In particular, the EPA mandates a record of the amount of

each TRI-listed toxic chemical being released to the environment through the air, water, or

soil each year for every facility that meets the following criteria:

1. It manufactures, processes, or otherwise uses a TRI-listed chemical in quantities above

threshold levels in a given year.

2. It has ten or more full-time equivalent employees.

3. It is in the mining, utility, manufacturing, publishing, hazardous waste, or federal

industry.

When a facility meets all three criteria in a year, it must report to the EPA and thus enters

into the TRI program. The EPA then publicizes the TRI database, which contains detailed

information about the TRI program and is available for any interested third party to access.2

To maintain the data quality of the information in the TRI program, the EPA first

identifies if a TRI form submitted by a facility contains potential errors; if so, the EPA

contacts the facility. Once the EPA confirms errors, the facility is requested to resubmit a

corrected TRI report. In addition, the Office of Inspector General is an independent office

within the EPA that performs audits, evaluations, and investigations of the agency and its

contractors to prevent and detect fraud, waste, and abuse. The EPA then conducts an

extensive quality analysis of the TRI reporting data and provides analytical support for

enforcement efforts led by its Office of Enforcement and Compliance Assurance (OECA).

The annual emission data of all facilities reported to the EPA are updated on the webpage

of the TRI program between July and September of the following year, as shown in Figure

1The changes and updates of the list of these pollutants are provided in /www.epa.gov/sites/

production/files/2020-01/documents/tri_chemical_list_changes_01_21_2020.pdf
2The EPA also provides annual data on pollutant density recorded by air monitors. A single air monitor

records the density of multiple pollutants at a fixed location every hour.

IA-1

/www.epa.gov/sites/production/files/2020-01/documents/tri_chemical_list_changes_01_21_2020.pdf
/www.epa.gov/sites/production/files/2020-01/documents/tri_chemical_list_changes_01_21_2020.pdf


IA.1. It is worth noting that the TRI program has included approximately 98% of facility-

level emission data in 2020 on July 20, 2022. Thus, in our empirical tests, such as our

portfolio analysis, we construct portfolios at the end of September of year t to ensure that

the information with respect to facility emissions in year t− 1 is publicly available when we

sort portfolios.

[Place Figure IA.1 about here]

We also notice that the TRI database may not be comprehensive before 1991, as we

observe an abnormally high ratio of reported zeros in facilities’ TRI-listed chemicals in pre-

1991 years. We thus download and organize the facility-level TRI data from 1991 to 2017

as follows:

Step 1: We access the TRI program via the EPA website:

https://www.epa.gov/toxics-release-inventory-tri-program

[Place Figure IA.2 about here]

Step 2: We download the annual TRI data from 1991 to 2017.

[Place Figure IA.5 about here]

Step 3: For each facility in a year, we use the value “PROD. WASTE (8.1 THRU 8.7),”

which is the sum of the total released toxic pollutants (in pounds) across all chemical cat-

egories for each plant. Despite this, there are seven items reported in Section 8 of the TRI

database, including item 8.1 (amount of total releases),3 8.2 (energy recovery on-site), 8.3 (en-

ergy recovery off-site), 8.4 (recycling on-site), 8.5 (recycling off-site), 8.6 (treatment on-site),

8.7 (treatment off-site), and PROD. WASTE (8.1 THRU 8.7) (the sum of the quantities in

items 8.1 through 8.7).4

Three issues are worth discussing before we proceed. First, the TRI database provides

a link table with the facility-level Dun & Bradstreet number. As a result, we exploit the

identifier to bridge the TRI database to the NETS database and obtain additional facility-

level information, including sales and employment. Second, the TRI database also includes

a “parent name” that indicates the name of a company that owns the facility. Thus, we

can further use the “parent name” to bridge the TRI database to the CRSP/Compustat

3Since 2003, item 8.1 (amount of total releases) has been separated into four subitems and documented
as item 8.1a (on-site contained releases), 8.1b (on-site other releases), 8.1c (off-site contained releases), and
8.1d (off-site other releases).

4Details obtained from https://www.epa.gov/sites/production/files/2019-08/documents/basic_

data_files_documentation_aug_2019_v2.pdf.
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database (e.g., Xiong and Png (2019)). Third, the TRI database has not changed the

coverage of chemicals and pollutants to be disclosed.

A.2 The Pollution Prevention (P2) Database

We obtain the facility-level abatement activities from the Pollution Prevention (P2)

database as follows:

Step 1: We access the P2 program via the EPA website: https://www.epa.gov/p2

[Place Figure IA.4 about here]

Step 2: We download the annual P2 data from 1991 to 2017.

[Place Figure IA.5 about here]

Step 3: For each facility in a year, we count the total number of abatement activities for

each plant.

[Place Figure IA.6 about here]

We exploit the Pollution Prevention P2 database from the EPA to analyze abatement ac-

tivities. As presented in Figure IA.6, EPA provides the waste management hierarchy starting

from 1991. In addition, to release quantities for a released pollutant, plants reporting in the

TRI database must document specific source reduction activities that mitigate the number

of hazardous substances entering the waste stream: the quantities of the chemical recycled,

used for energy recovery, or treated at the facility or elsewhere in addition to the origi-

nal reporting requirements on releases emitted directly into the environment or transferred

off-site to disposal, treatment, or storage facilities. Moreover, plants report optional waste

minimization information on source reduction activities, such as process modifications and

the substitution of raw materials, newly implemented during the reporting year. The rest

but the most common type of abatement activity comprises several actions: modifications

to equipment, layout, or piping.

[Place Table IA.1 about here]

The list of various abatement activities are available in Table IA.1. In our empirical

analysis, we count the frequency of these process-related abatement and operating-related

activities as plants’ abatement intensity.

IA-3

https://www.epa.gov/p2


A.3 Matching TRI (NETS) with CRSP/Compustat

We extract facilities’ parental names in the TRI (NETS) database and then match these

names in the TRI database to the names of U.S. public companies in the CRSP/Compustat

database. We first clean parent firm names in the TRI (NETS) database and firm names in

the CRSP/Compustat database following the approach of Chen, Hsieh, Hsu, and Ross (2022).

Specifically, we remove punctuation and clean special characters. We then convert firm

names into upper case and standardize them. For example, we standardize “INDUSTRY”

to “IND,” “INCORPORATION” to “INC,” and “COMPANY” to “COM.”

To match facilities’ parental firm names with firms in CRSP/Compustat based on stan-

dardized names, we use the fuzzy name-matching algorithm via SAS, which generates match-

ing scores for all name pairs of parent names in TRI (NETS) and firms in CRSP/Compustat.5

We obtain a pool of potential matches based on two criteria: (1) the matching score must

be precisely 0 and thus the same as those of firms in the CRSP/Compustat database, and

(2) the matching score must be below 500. We then hire research assistants to identify exact

matches from all potential matches manually.

B Additional Empirical Results

In this section, we present additional empirical results and robustness tests.

B.1 Possible Explanation: Political Connections

Another possible explanation for the abatement-financial-constraint relation is that firms

may adopt political investment strategies rather than pollution abatement activities to mit-

igate the risks associated with these negative environmental incidents (e.g., Cooper, Gulen,

and Ovtchinnikov (2010), Smith (2016), Gloßner (2018), and among others), and there-

fore, the negative link between abatement investment and financial constraint may reflect

the implications of political connections. If such channels are responsible as the first-order

driving force, we would expect the limited effect of environmental policy uncertainty on pol-

lution abatement investment among these political-connected firms. Therefore, there is no

amplified abatement-financial-constraint relation upon the realization of uncertainty.

To validate this explanation, we handily collect annual firm-level political donation data

from OpenSecrets.org, maintained by the Center for Responsive Politics.6 We define a firm’s

5The matching score measures the distance between two firms’ names. The index score ranges from 0 to
infinity, with a score of zero being a perfect match.

6This database is used by Bertrand, Bombardini, and Trebbi (2014) to measure firms’ lobbying activities.

IA-4



political connections as the total amount of political donation (regardless of party) in a year

scaled by total assets. We include political donations as controls in the same specification

of equation (1) in our primary paper and report results in Table IA.2.

[Place Table IA.2 about here]

To verify the relative importance of this channel with our main story, we implement horse

racing tests to rule out the alternative explanation of political connections by regressing

pollution abatement investment to control for a bundle of firm characteristics, including the

measure of political connections (Donations and Donations/AT). As presented in Table IA.2,

the coefficients on the measure of political connects are negative and statistically significant

in some specifications. Consistent with the existing literature, high-politically connected

firms contribute to congresses or presidential donations as a strategic resource to neutralize

or manage environmental risk and thus substitute for their pollution abatement activities.

However, from each column of Table IA.2, we find no evidence to suggest that the channel

of political connections dampens the amplification channel on the interaction of financial

constraint and environmental policy uncertainty proxied by the tie elections in Panel A or

the textual analysis in Panel B. Hence, the political connection explanation is not likely to

explain the amplification effect of environmental policy uncertainty on abatement investment

when firms are subject to financial friction.

B.2 Emission Reduction and Pollution Abatement Investment

According to Xu and Kim (2022), the higher release of toxic emissions is driven by

insufficient investment in pollution abatement among firms subject to financial frictions.

We provide direct evidence by incorporating the joint link between facility-level abatement

activity and emission reduction. The Pollution Prevention database includes information on

how much facilities have reduced releases of each toxic chemical to the environment by which

pollution prevention each year and compare how different facilities have managed their toxic

releases. We sum up these reductions at the facility level each year. In Panel A of Table

IA.3, we present a negative correlation coefficient between the reduction in toxic emissions

(Reduction) and the abatement investment (x), which is significant at the 1% level.

[Place Table IA.3 about here]

We then examine the relation between facility-level emission reduction and abatement

activity in a more formal way by estimating OLS regressions, for which we control a list

of firm-level control variables, including size, book-to-market ratio, investment rate, and
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profitability, and state-level control variables for local fundamentals, including income per

capita and population, as well as facility and year fixed effects. Standard errors are clustered

at the facility level in Specifications 1 and 2 and the state level in Specifications 3 and 4.

As presented in Panel B of Table IA.3, all specifications indicate that estimated coefficients

on pollution abatement investment are statistically significantly negative at the 1% level,

suggesting that pollution abatement investment effectively reduces toxic emissions. More

importantly, evidence in this subsection provides us with a micro-foundation of a negative

relation between emission and pollution abatement investment and calls for more theoretical

work.

B.3 Robustness Tests

In Table IA.4, t-statistics based on standard errors that are clustered at the state level

are reported.

[Place Table IA.4 about here]

In Table IA.5, we use the firm-level measure of uncertainty constructed using textual

analysis ( (Hassan, Hollander, Van Lent, and Tahoun (2019), Hassan, Hollander, Van Lent,

Schwedeler, and Tahoun (2020a), and Hassan, Hollander, Van Lent, and Tahoun (2020b))).

t-statistics based on standard errors that are clustered at the facility and state level are

reported in Tables IA.5 and IA.6, respectively.

[Place Tables IA.5 and IA.6 about here]

For the robustness, we consider an alternative measure of abatement investment, which

is the number of unique pollution abatement activities (unique W codes), and implement

the analyses using standard errors clustered at the facility or state levels and using close

elections or firm-level uncertainty (Hassan et al. (2019), Hassan et al. (2020a), and Hassan

et al. (2020b)). Our results are reported in Tables IA.7, IA.8, IA.9, and IA.10.

[Place Tables IA.7, IA.8, IA.9, and IA.10 about here]

C The Computation Methods

Part I: Solving the Stationary Equilibrium - Outer Loop

We first assume the economy is at the steady state with a specific environmental policy un-

certainty structure T ∗ = {µ∗
τ , σ

∗
τ} and the steady-state distribution of the firms µ∗(z, x, n).
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There are no aggregate shocks to the environmental policy uncertainty and no other ag-

greagte shocks, so we solve the steady state as follows:

Step.1. Fix the equilibrium aggregate prices P ∗ = {Λ∗ = β, q∗ = 1};
Step.2. Solve the firm’s problem using Value Function Iteration;

Step.3. Calculate aggregate variables from the firm distribution using Young (2010);

Define Ω∗ = {P ∗, T ∗, µ∗} as the aggregate state, after solving the steady state, we have

the stationary equilibrium aggregate prices P ∗ = {Λ∗ = β, q∗ = 1}, environmental pol-

icy uncertainty structure T ∗ = {µ∗
τ , σ

∗
τ}, aggregate quantities {Y ∗(Ω∗), C∗(Ω∗), K∗(Ω∗),

A∗(Ω∗)}, firm value function {V ∗(z, x, n; Ω∗), policy functions k′∗(z, x, n; Ω∗), a′∗(z, x, n; Ω∗),

b′∗(z, x, n; Ω∗)}, and distribution µ∗(z, x, n; Ω∗) at the solved stationary steady state.

Part II: Solving the Stationary Equilibrium - Inner Loop

Now we describe more details on the inner loop, which is the Step.2 above. We choose a

grid-based value function iteration method. Below we show the initiating of VFI:

Step.1. Discretize the states/choices {z, n, τ, b}. For z, we use the Tauchen method

to discretize z into Nz states, with underlying grid values {z1, z2, ..., zNz} and an Nz × Nz

transition matrix Πz. For τ , we discretize it into Nτ states, with underlying grid values

{τ1, τ2, ..., τNτ}, and the i.i.d probability Nτ × 1 vectors Pτ . For {n}, we use the log grids to

discretize into Nn states. For {b}, we discretize b (debt as a ratio of capital) into Nb choices,

with underlying grid values {b1, b2, ..., bNb
} where b1 = 0 and bNb

= θk.

Step.2. Discretize the state {x} and the calculation of the corresponding control policy

{a}. To reduce the computational burden, we choose discrete grids of the abatement tech-

nology x. We use log grid values {x1, x2, ..., xNx}. Corresponding, the abatement investment

a depends on the firm’s choice for the next period state of abatement technology. The abate-

ment investment required to jump from xt to xt+1 equals
(

xt+1

xt
− (1− δx)

)1/η

. Therefore,

we would have an Nx ×Nx Abatement matrix Ax which the element of changing state from

xn to xm is Ax(xn, xm) = max

{
0,
(

xm

xn
− (1− δx)

)1/η
}
.

Step.3. Given the iteration t value function vt(z, x, n), we first solve the decision rules

a′(z, x, n), k′(z, x, n), b′(z, x, n), then update the value function, until convergence.

Part III: Solving the Transitional Equilibrium

With the stationary equilibrium solutions in hand, we now move to the solution of the

transitional equilibrium using a shooting algorithm. The key assumption here is that after

a sufficiently long time, the economy will always converge back to its initial or the new

stationary equilibrium (depends on the property of the shocks) after any unexpected shocks.

The following steps outline the shooting algorithm:
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Step 1. Fix a sufficiently long transition period t = 1 to t = T (say 200);

Step 2. Guess a sequence of aggregate prices {wt,Λt, qt} of length T such that the initial

prices {w1 = w∗,Λ1 = Λ∗, q1 = 1} (simply assuming all the prices stay at steady state works

well) and terminal prices {wT = w∗,ΛT = Λ∗, qT = 1}. Provide a predetermined shock

process of interest, i.e., the mean and uncertainty of environmental regulation {Tt}Tt=1. This

implies a time series for the aggregate state {Ωt}Tt=1. The aggregate state is just time t.

Step 3. We know that at time T, the economy is back to its steady state. I have the

steady state value function V (z, x, n; ΩT ) = V ∗(z, x, n; Ω∗) in hand for time T. We solve for

the firms’ problem by backward induction given V (z, x, n; ΩT ) and {wT−1,ΛT−1, qT−1}.
This yields the firm value function V (z, x, n; ΩT−1) and associated policy functions for capital

k′(z, x, n; ΩT−1), abatement a′(z, x, n; ΩT−1), debt b′(z, x, n; ΩT−1), and labor l(k, z; ΩT−1).

By iterating backward, We solve the whole series of both policy functions {k′(z, x, n; ΩT−1)}Tt=1,

{a′(z, x, n; ΩT−1)}Tt=1, {b′(z, x, n; ΩT−1)}Tt=1, {l′(z, x, n; ΩT−1)}Tt=1.

Step 4. Given the policy functions and the steady state distribution as the initial distri-

bution µ(z, x, n; Ω1) = µ(z, x, n; Ω∗), We use forward simulation with the non-stochastic

simulation in Young (2010) to recover the whole path {µ(z, x, n; Ωt)}Tt=1.

Step 5. Using the distribution {µ(z, x, n; Ωt)}Tt=1, We obtain all the aggregate quanti-

ties : aggregate output {Y }Tt=1, aggregate investment {I}Tt=1, aggregate abatement {A}Tt=1,

aggregate debt {B}Tt=1, and aggregate labor demand {L}Tt=1. We then use the goods market

clearing condition to calculate aggregate consumption {C}Tt=1. We then calculate the Exces-

sive Demand {∆C}Tt=1 by taking the differences between currently iterated {C}Tt=1 and the

previous iteration {Cold}Tt=1.

Step 6. Given all the aggregate quantities in the previous step and the Excessive Demand

{∆C}Tt=1, We update all the aggregate prices. We update all equilibrium prices with a

line search: Xnew
t = speed · fX({∆C}Tt=1) + (1− speed) ·Xold

t . Repeat Steps 2-7 until Xnew
t

and Xold
t are close enough. The fX({∆C}Tt=1) is chosen by the connections of the prices with

the Excessive Demand {∆C}Tt=1 through the equations of the prices. Updating all prices in

all periods simultaneously reduces the computational burden dramatically.7 This updating

rule allows me to solve the transitional equilibrium in seconds on a standard dual-core laptop

without any parallel computation.

In all the experiments with both the Taylor rule shock and a volatility shock, We set T

7There is an alternative updating rule which is more stable but much more time consuming. In put it
here: Step 6’. Using the household first order condition for consumption {C}Tt=1, I obtain a new {Λ}Tt=1;
using the household first order condition for labor, {C}Tt=1, and {N}Tt=1, I obtain a new {w}Tt=1; using the
definitions of the stochastic discount factor and Taylor rule simultaneously, I update πt+1 with Λt, R

n
t , then

I update Rn
t+1 with the updated πt+1, and repeat until I have a new {Rn}Tt=0 and {π}Tt=1. Finally, I obtain

a new {pw}Tt=1 through the New Keynesian Phillips curve.
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= 100, and a step size of 0.01 to ensure convergence, with the necessary distance between

Xnew
t and Xold

t smaller than 1e-7. We also tested with various T from 50 to 400 to ensure

that the choice of T = 100 does not affect the accuracy of the solution.
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Figure IA.1. The Annual Updates of the TRI Program

Source:
https://www.epa.gov/toxics-release-inventory-tri-program/2021-tri-preliminary-dataset
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Figure IA.2. Access to the TRI Database

Source: https://www.epa.gov/toxics-release-inventory-tri-program
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Figure IA.3. The TRI Database by Years

Source: https://www.epa.gov/toxics-release-inventory-tri-program/
tri-basic-data-files-calendar-years-1987-present
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Figure IA.4. Access to the P2 Database

Source: https://www.epa.gov/p2
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Figure IA.5. The P2 Database by Years

Source: https://www.epa.gov/toxics-release-inventory-tri-program/
tri-basic-plus-data-files-calendar-years-1987-present
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Figure IA.6. Waste Management Hierarchy

Source: https://www.epa.gov/smm/
sustainable-materials-management-non-hazardous-materials-and-waste-management-hierarchy
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Table IA.1: The List of Reported Abatement Activities

W Code Abatement Activities

W13 Improved maintenance scheduling, record keeping, or procedures
W14 Changed production schedule to minimize equipment and feedstock changeovers
W15 Introduced an in-line product quality monitoring or other process analysis system
W19 Other changes in operating practices
W21 instituted procedures to ensure that materials do not stay in inventory beyond
W22 Began to test outdated material - continue to use if still effective
W23 Eliminated shelf-life requirements for stable materials
W24 Instituted better labeling procedures
W25 Instituted clearinghouse to exchange materials that would otherwise be discarded
W29 Other changes in inventory control
W31 Improved storage or stacking procedures
W32 Improved procedures for loading, unloading, and transfer operations
W33 Installed overflow alarms or automatic shutoff valves
W35 Installed vapor recovery systems
W36 Implemented inspection or monitoring program of potential spill or leak sources
W39 Other spill or leak prevention
W41 Increased purity or raw materials
W42 Substituted raw materials
W43 Substituted a feedstock or reagent chemical with a different chemical
W49 Other raw material modifications
W50 Optimized reaction conditions or otherwise increased efficiency of synthesis
W51 Instituted recirculation within a process
W52 Modified equipment, layout, or piping
W53 Use of a different process catalyst
W54 Instituted better controls on operating bulk containers to minimize discarding
W55 Changed from small volume containers to bulk containers to minimize discarding
W56 Reduced or eliminated use of an organic solvent
W57 Used biotechnology in manufacturing process
W58 Other process modifications
W59 Modified stripping/cleaning equipment
W60 Changed to mechanical stripping/cleaning devices (from solvents or others)
W61 Changed to aqueous cleaners (from solvents or other materials)
W63 Modified containment procedures for cleaning units
W64 Improved draining procedures
W65 Redesigned parts racks to reduce drag-out
W66 Modified or installed rinse systems
W67 Improved rinse equipment design
W68 Improved rinse equipment operation
W71 Other cleaning and degreasing modifications
W72 Modified spray systems or equipment
W73 Substituted coating materials used
W74 Improved application techniques
W75 Changed from spray to other systems
W78 Other surface preparation and finishing modifications
W81 Changed product specifications
W82 Modified design or composition of product
W83 Modified packaging
W84 Developed a new chemical product to replace the previous chemical product
W89 Other product modifications
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Table IA.2: Abatement Investment, Political Connections, and Environmental
Policy Uncertainty

This table reports the impact of environmental policy uncertainty on their abatement investment and the joint
link of their abatement investment and toxic emissions. We estimate a Poisson regression (an OLS regression)
by regressing abatement investment (the logarithm of abatement investment), abatement investment is
defined as a count variable reflecting the total number of abatement activities for firm i’s facility p located
in state s, on the measure of environmental policy uncertainty, which denotes the election-based uncertainty
in Panel A and the text-based uncertainty in Panel B, together with other firm characteristics, including the
logarithm of market capitalization (Size), book-to-market ratio (B/M), investment rate (I/K), profitability
(ROA), and the measure of political connections (Donations and Donations/AT) in year t, and local economic
fundamentals in year t, including the state-level income per capita and the logarithm of population, as well
as facility and year fixed effects. All independent variables are normalized to a zero mean and unit standard
deviation after winsorization at the 1st and 99th percentiles to reduce the impact of outliers. t-statistics
based on standard errors that are clustered at the facility level are reported in parentheses. The sample
period is from 1991 to 2017 in Panel A and 2004 to 2017 in Panel B, respectively.

Panel A: Election-Based Uncertainty

Poisson OLS

(1) (2) (3) (4) (5) (6) (7) (8)

στ 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
(0.02) (0.03) (-0.33) (-0.32) (-0.67) (-0.69) (-0.82) (-0.83)

WW 0.02 0.02 -0.03 -0.03
(0.38) (0.39) (-1.06) (-1.06)

WW × στ -0.06 -0.06 -0.04 -0.04
(-3.80) (-3.82) (-3.07) (-3.04)

SA -0.13 -0.14 -0.10 -0.11
(-2.53) (-2.65) (-2.44) (-2.51)

SA × στ -0.05 -0.05 -0.03 -0.03
(-2.78) (-2.78) (-1.81) (-1.80)

Log ME -0.00 -0.01 -0.06 -0.06 -0.05 -0.05 -0.05 -0.06
(-0.07) (-0.15) (-1.27) (-1.37) (-1.18) (-1.26) (-1.42) (-1.51)

B/M 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01
(1.68) (1.65) (0.56) (0.49) (0.93) (0.81) (0.79) (0.67)

I/K -0.01 -0.01 -0.00 -0.00 0.01 0.01 0.01 0.01
(-0.50) (-0.50) (-0.16) (-0.16) (0.98) (0.99) (1.08) (1.09)

ROA 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00
(1.46) (1.43) (1.45) (1.43) (0.29) (0.26) (0.12) (0.10)

Donnations -0.03 -0.02 -0.01 -0.01
(-2.64) (-1.98) (-3.59) (-3.00)

Donnations/AT 0.00 0.00 -0.01 -0.01
(0.17) (0.22) (-2.23) (-2.23)

Income per Capita 0.14 0.13 0.15 0.15 -0.15 -0.15 -0.14 -0.14
(1.32) (1.29) (1.46) (1.44) (-2.27) (-2.28) (-2.17) (-2.18)

Log Population 0.15 0.15 0.19 0.19 -0.03 -0.03 0.00 -0.00
(0.59) (0.57) (0.74) (0.72) (-0.12) (-0.13) (0.00) (-0.01)

Rep Ratio 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00
(0.42) (0.41) (0.53) (0.53) (0.09) (0.09) (0.05) (0.05)

Observations 68,638 68,638 69,552 69,552 115,126 115,126 116,491 116,491
Facility FE Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes Yes Yes Yes Yes
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Panel B: Text-Based Uncertainty

Poisson OLS

(1) (2) (3) (4) (5) (6) (7) (8)

στ -0.02 -0.02 -0.02 -0.01 -0.00 -0.00 -0.00 -0.00

(-1.41) (-1.36) (-1.34) (-1.33) (-0.58) (-0.54) (-0.38) (-0.34)

WW -0.13 -0.14 -0.02 -0.02

(-1.54) (-1.56) (-1.03) (-1.04)

WW × στ -0.02 -0.02 -0.01 -0.01

(-2.00) (-2.01) (-2.19) (-2.24)

SA -0.41 -0.41 -0.12 -0.12

(-3.36) (-3.38) (-3.10) (-3.12)

SA × στ -0.03 -0.03 -0.01 -0.01

(-2.45) (-2.45) (-2.26) (-2.27)

Log ME -0.15 -0.15 -0.12 -0.12 -0.02 -0.02 -0.02 -0.02

(-1.42) (-1.44) (-1.36) (-1.38) (-0.63) (-0.66) (-0.80) (-0.82)

B/M -0.00 -0.00 0.01 0.01 0.00 0.00 0.00 0.00

(-0.00) (-0.02) (0.48) (0.47) (0.22) (0.19) (0.42) (0.40)

I/K -0.02 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01 -0.01

(-0.96) (-0.97) (-0.89) (-0.88) (-1.36) (-1.36) (-1.18) (-1.18)

ROA 0.07 0.07 0.08 0.08 0.02 0.02 0.02 0.02

(3.22) (3.24) (3.28) (3.29) (2.73) (2.74) (2.65) (2.66)

Donnations -0.01 -0.01 -0.00 -0.00

(-1.14) (-0.54) (-1.09) (-0.62)

Donnations/AT -0.00 -0.01 -0.00 -0.00

(-0.30) (-0.51) (-0.43) (-0.35)

Income per Capita 0.39 0.39 0.38 0.38 0.06 0.06 0.06 0.06

(2.88) (2.86) (2.85) (2.84) (1.34) (1.33) (1.36) (1.36)

Log Population 0.77 0.77 0.79 0.79 0.07 0.07 0.06 0.06

(1.24) (1.23) (1.26) (1.26) (0.34) (0.34) (0.29) (0.29)

Observations 19,853 19,853 19,996 19,996 49,900 49,900 50,241 50,241

Facility FE Yes Yes Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes Yes Yes

Cluster SE Yes Yes Yes Yes Yes Yes Yes Yes
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Table IA.3: Emission Reduction and Abatement Investment

This table shows the joint link between emission reduction and abatement investment. In Panel A, we present
the correlation matrix to document the correlation between emission reduction and abatement investment. In
Panel B, we report panel regressions of emission reduction on abatement investment, together with other firm
characteristics. All variables are normalized to a zero mean and unit standard deviation after winsorization
at the 1st and 99th percentiles to reduce the impact of outliers. t-statistics based on standard errors that
are clustered at the facility level are reported in parentheses. ***, **, * indicate significance at the 1, 5, and
10% levels in Panel A, and all regressions in Panel B are conducted at the annual frequency. The sample
period is from 1991 to 2017

Panel A: Correlation

Reduction x

Reduction 1 -0.11***
x 1

Panel B: Regressions

(1) (2) (3) (4)

x -10.62 -10.79 -10.62 -10.79
(-4.25) (-4.23) (-3.17) (-3.21)

Log ME -3.12 -3.12
(-0.81) (-0.84)

B/M 0.48 0.48
(0.35) (0.35)

I/K -2.51 -2.51
(-2.15) (-1.69)

ROA 3.26 3.26
(2.66) (2.51)

Income per Capita 4.63 4.63
(0.95) (0.79)

Log Population 0.90 0.90
(0.03) (0.03)

Observations 31,165 30,536 31,165 30,536
R-squared 0.33 0.33 0.33 0.33
Facility FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes
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Table IA.4: Abatement Investment and Election-Based Uncertainty

This table reports the impact of environmental policy uncertainty on their abatement investment. We
estimate a Poisson regression (an OLS regression) by regressing abatement investment (Log (1+abatement
investment)), which is defined as a count variable reflecting the total number of abatement activities for firm
i’s plant p located in state s, on environmental policy uncertainty shock, which denotes the election-based
uncertainty, together with other firm characteristics, including size, book-to-market ratio, investment rate,
and profitability in year t, and local economic fundamentals in year t, including the state-level income per
capital and pollution, as well as facility and year fixed effects. All independent variables are normalized to
a zero mean and unit standard deviation after winsorization at the 1st and 99th percentiles to reduce the
impact of outliers. t-statistics based on standard errors that are clustered at the state level are reported in
parentheses. The sample period is from 1991 to 2017.

Poisson OLS

(1) (2) (3) (4) (5) (6) (7) (8)

στ 0.00 0.01 -0.00 0.01 -0.00 -0.00 -0.00 -0.00
(0.18) (0.56) (-0.05) (0.35) (-0.16) (-0.12) (-0.24) (-0.23)

WW -0.01 -0.03 -0.01 -0.01
(-0.17) (-0.58) (-0.52) (-1.31)

WW × στ -0.06 -0.06 -0.01 -0.01
(-2.66) (-2.73) (-2.01) (-1.96)

SA -0.19 -0.21 -0.05 -0.06
(-4.30) (-4.78) (-4.10) (-4.30)

SA × στ -0.04 -0.04 -0.01 -0.01
(-1.96) (-1.97) (-1.39) (-1.28)

Log ME -0.04 -0.08 -0.01 -0.02
(-0.80) (-1.85) (-0.89) (-1.35)

B/M 0.02 0.00 0.00 0.00
(1.17) (0.16) (1.05) (0.79)

I/K -0.00 -0.00 0.00 0.00
(-0.46) (-0.06) (0.35) (0.58)

ROA 0.02 0.02 0.00 0.00
(1.37) (1.42) (1.19) (1.10)

Income per Capita 0.07 0.08 -0.05 -0.05
(0.67) (0.75) (-1.69) (-1.62)

Log Population 0.16 0.21 0.05 0.05
(0.56) (0.75) (0.60) (0.66)

Rep Ratios -0.01 -0.00 -0.01 -0.00 0.00 0.00 -0.00 -0.00
(-0.32) (-0.22) (-0.26) (-0.18) (0.05) (0.03) (-0.04) (-0.06)

Observations 91,433 89,990 93,096 91,351 149,882 148,130 152,272 150,150
Facility FE Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes Yes Yes Yes Yes
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Table IA.5: Abatement Investment and Text-Based Uncertainty

This table reports the impact of environmental policy uncertainty on their abatement investment. We
estimate a Poisson regression (an OLS regression) by regressing abatement investment (Log (1+abatement
investment)), which is defined as a count variable reflecting the total number of abatement activities for firm
i’s plant p located in state s, on environmental policy uncertainty shock, which is defined as a text-based
measure of firm-level uncertainty, together with other firm characteristics, including size, book-to-market
ratio, investment rate, and profitability in year t, and local economic fundamentals in year t, including
the state-level income per capital and pollution, as well as facility and year fixed effects. All independent
variables are normalized to a zero mean and unit standard deviation after winsorization at the 1st and 99th
percentiles to reduce the impact of outliers. t-statistics based on standard errors that are clustered at the
plant level are reported in parentheses. The sample period is from 2004 to 2017.

Poisson OLS

(1) (2) (3) (4) (5) (6) (7) (8)

στ -0.02 -0.02 -0.02 -0.02 -0.00 -0.00 -0.00 -0.00
(-1.71) (-1.73) (-1.71) (-1.78) (-1.13) (-1.05) (-0.91) (-0.83)

WW -0.10 -0.20 -0.01 -0.01
(-1.50) (-2.52) (-0.98) (-1.35)

WW × στ -0.03 -0.02 -0.01 -0.01
(-2.55) (-2.43) (-2.39) (-2.39)

SA -0.44 -0.47 -0.06 -0.06
(-4.21) (-4.43) (-3.85) (-3.83)

SA × στ -0.03 -0.03 -0.00 -0.00
(-2.91) (-2.89) (-2.25) (-2.22)

Log ME -0.19 -0.15 -0.01 -0.01
(-2.07) (-1.88) (-0.62) (-0.87)

B/M -0.02 0.00 0.00 0.00
(-0.61) (0.18) (0.04) (0.29)

I/K -0.01 -0.01 -0.00 -0.00
(-0.36) (-0.27) (-1.13) (-0.95)

ROA 0.08 0.08 0.01 0.01
(3.78) (3.77) (2.81) (2.67)

Income per Capita 0.27 0.26 0.01 0.01
(2.23) (2.18) (0.56) (0.59)

Log Population 0.50 0.60 0.01 0.00
(0.89) (1.07) (0.07) (0.03)

Observations 25,575 25,487 25,793 25,689 64,142 63,968 64,679 64,464
Facility FE Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes Yes Yes Yes Yes
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Table IA.6: Abatement Investment and Text-Based Uncertainty

This table reports the impact of environmental policy uncertainty on their abatement investment. We
estimate a Poisson regression (an OLS regression) by regressing abatement investment (Log (1+abatement
investment)), which is defined as a count variable reflecting the total number of abatement activities for
firm i’s plant p located in state s, on environmental policy uncertainty shock, which denotes the text-based
uncertainty, together with other firm characteristics, including size, book-to-market ratio, investment rate,
and profitability in year t, and local economic fundamentals in year t, including the state-level income per
capital and pollution, as well as facility and year fixed effects. All independent variables are normalized to
a zero mean and unit standard deviation after winsorization at the 1st and 99th percentiles to reduce the
impact of outliers. t-statistics based on standard errors that are clustered at the state level are reported in
parentheses. The sample period is from 2004 to 2017.

Poisson OLS

(1) (2) (3) (4) (5) (6) (7) (8)

στ -0.02 -0.02 -0.02 -0.02 -0.00 -0.00 -0.00 -0.00
(-2.24) (-2.26) (-2.27) (-2.32) (-1.37) (-1.26) (-1.09) (-1.00)

WW -0.10 -0.20 -0.01 -0.01
(-1.31) (-1.85) (-0.85) (-1.05)

WW × στ -0.03 -0.02 -0.01 -0.01
(-2.62) (-2.50) (-2.71) (-2.67)

SA -0.44 -0.47 -0.06 -0.06
(-3.55) (-3.68) (-3.23) (-3.28)

SA × στ -0.03 -0.03 -0.01 -0.01
(-2.88) (-2.94) (-2.20) (-2.24)

Log ME -0.19 -0.15 -0.01 -0.01
(-1.62) (-1.67) (-0.51) (-0.82)

B/M -0.02 0.00 0.00 0.00
(-0.53) (0.17) (0.04) (0.28)

I/K -0.01 -0.01 -0.00 -0.00
(-0.32) (-0.26) (-0.99) (-0.85)

ROA 0.08 0.08 0.01 0.01
(3.62) (3.52) (2.93) (2.69)

Income per Capita 0.27 0.26 0.01 0.01
(1.99) (1.91) (0.55) (0.58)

Log Population 0.50 0.60 0.01 0.00
(0.94) (1.06) (0.09) (0.04)

Observations 25,575 25,487 25,793 25,689 64,142 63,968 64,679 64,464
Facility FE Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes Yes Yes Yes Yes
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Table IA.7: Abatement Investment (Alternative) and Election-Based Uncer-
tainty

This table reports the impact of environmental policy uncertainty on their abatement investment. We
estimate a Poisson regression (an OLS regression) by regressing abatement investment (Log (1+abatement
investment)), which is defined as a count variable reflecting the total number of abatement activities based
on the alternative criteria for firm i’s plant p located in state s, on environmental policy uncertainty shock,
which denotes the election-based uncertainty, together with other firm characteristics, including size, book-
to-market ratio, investment rate, and profitability in year t, and local economic fundamentals in year t,
including the state-level income per capital and pollution, as well as facility and year fixed effects. All
independent variables are normalized to a zero mean and unit standard deviation after winsorization at
the 1st and 99th percentiles to reduce the impact of outliers. t-statistics based on standard errors that are
clustered at the plant level are reported in parentheses. The sample period is from 1991 to 2017.

Poisson OLS

(1) (2) (3) (4) (5) (6) (7) (8)

στ 0.00 0.01 -0.00 0.00 -0.00 -0.00 -0.00 -0.00
(0.13) (0.57) (-0.13) (0.28) (-0.30) (-0.26) (-0.37) (-0.39)

WW -0.03 -0.04 -0.00 -0.01
(-0.80) (-1.01) (-0.73) (-1.48)

WW × στ -0.04 -0.04 -0.01 -0.01
(-2.97) (-3.01) (-2.53) (-2.29)

SA -0.15 -0.17 -0.04 -0.04
(-4.17) (-4.23) (-4.45) (-4.61)

SA × στ -0.03 -0.03 -0.00 -0.00
(-2.01) (-2.14) (-1.48) (-1.36)

Log ME -0.02 -0.05 -0.01 -0.02
(-0.53) (-1.34) (-1.17) (-1.94)

B/M 0.02 0.01 0.00 0.00
(1.56) (0.88) (1.72) (1.48)

I/K -0.00 -0.00 0.00 0.00
(-0.57) (-0.32) (0.35) (0.56)

ROA 0.02 0.02 0.00 0.00
(1.81) (1.74) (1.63) (1.59)

Income per Capita 0.05 0.06 -0.04 -0.04
(0.65) (0.74) (-2.75) (-2.71)

Log Population 0.25 0.29 0.04 0.04
(1.27) (1.45) (0.74) (0.80)

Rep Ratios -0.00 -0.00 -0.00 -0.00 0.00 0.00 0.00 0.00
(-0.34) (-0.21) (-0.24) (-0.11) (0.32) (0.23) (0.23) (0.16)

Observations 91,433 89,990 93,096 91,351 149,882 148,130 152,272 150,150
Facility FE Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes Yes Yes Yes Yes
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Table IA.8: Abatement Investment (Alternative) and Election-Based Uncer-
tainty

This table reports the impact of environmental policy uncertainty on their abatement investment. We
estimate a Poisson regression (an OLS regression) by regressing abatement investment (Log (1+abatement
investment)), which is defined as a count variable reflecting the total number of abatement activities based
on the alternative criteria for firm i’s plant p located in state s, on environmental policy uncertainty shock,
which denotes the election-based uncertainty, together with other firm characteristics, including size, book-
to-market ratio, investment rate, and profitability in year t, and local economic fundamentals in year t,
including the state-level income per capital and pollution, as well as facility and year fixed effects. All
independent variables are normalized to a zero mean and unit standard deviation after winsorization at
the 1st and 99th percentiles to reduce the impact of outliers. t-statistics based on standard errors that are
clustered at the state level are reported in parentheses. The sample period is from 1991 to 2017.

Poisson OLS

(1) (2) (3) (4) (5) (6) (7) (8)

στ 0.00 0.01 -0.00 0.00 -0.00 -0.00 -0.00 -0.00
(0.11) (0.52) (-0.10) (0.25) (-0.27) (-0.25) (-0.33) (-0.37)

WW -0.03 -0.04 -0.00 -0.01
(-0.67) (-0.92) (-0.54) (-1.34)

WW × στ -0.04 -0.04 -0.01 -0.01
(-2.59) (-2.67) (-1.88) (-1.72)

SA -0.15 -0.17 -0.04 -0.04
(-4.06) (-4.29) (-4.12) (-4.37)

SA × στ -0.03 -0.03 -0.00 -0.00
(-1.76) (-1.85) (-1.19) (-1.10)

Log ME -0.02 -0.05 -0.01 -0.02
(-0.62) (-1.43) (-1.04) (-1.61)

B/M 0.02 0.01 0.00 0.00
(1.64) (0.87) (1.61) (1.31)

I/K -0.00 -0.00 0.00 0.00
(-0.57) (-0.31) (0.37) (0.58)

ROA 0.02 0.02 0.00 0.00
(1.73) (1.72) (1.62) (1.60)

Income per Capita 0.05 0.06 -0.04 -0.04
(0.50) (0.55) (-1.86) (-1.80)

Log Population 0.25 0.29 0.04 0.04
(0.86) (0.96) (0.49) (0.52)

Rep Ratios -0.00 -0.00 -0.00 -0.00 0.00 0.00 0.00 0.00
(-0.28) (-0.19) (-0.19) (-0.10) (0.27) (0.22) (0.19) (0.16)

Observations 91,433 89,990 93,096 91,351 149,882 148,130 152,272 150,150
Facility FE Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes Yes Yes Yes Yes
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Table IA.9: Abatement Investment (Alternative) and Text-Based Uncertainty

This table reports the impact of environmental policy uncertainty on their abatement investment. We
estimate a Poisson regression (an OLS regression) by regressing abatement investment (Log (1+abatement
investment)), which is defined as a count variable reflecting the total number of abatement activities based
on the alternative criteria for firm i’s plant p located in state s, on environmental policy uncertainty shock,
which denotes the text-based uncertainty, together with other firm characteristics, including size, book-to-
market ratio, investment rate, and profitability in year t, and local economic fundamentals in year t, including
the state-level income per capital and pollution, as well as facility and year fixed effects. All independent
variables are normalized to a zero mean and unit standard deviation after winsorization at the 1st and 99th
percentiles to reduce the impact of outliers. t-statistics based on standard errors that are clustered at the
plant level are reported in parentheses. The sample period is from 2004 to 2017.

Poisson OLS

(1) (2) (3) (4) (5) (6) (7) (8)

στ -0.02 -0.02 -0.02 -0.02 -0.00 -0.00 -0.00 -0.00
(-2.35) (-2.35) (-2.09) (-2.12) (-1.68) (-1.64) (-1.39) (-1.33)

WW -0.06 -0.11 -0.00 -0.01
(-1.06) (-1.44) (-0.64) (-0.89)

WW × στ -0.03 -0.02 -0.01 -0.01
(-2.57) (-2.49) (-2.23) (-2.26)

SA -0.31 -0.32 -0.04 -0.04
(-3.33) (-3.39) (-3.37) (-3.34)

SA × στ -0.02 -0.02 -0.01 -0.01
(-2.03) (-2.01) (-1.72) (-1.69)

Log ME -0.07 -0.07 -0.00 -0.01
(-0.84) (-0.92) (-0.33) (-0.70)

B/M -0.00 0.01 0.00 0.00
(-0.03) (0.36) (0.24) (0.33)

I/K -0.02 -0.02 -0.00 -0.00
(-0.89) (-0.81) (-1.20) (-1.03)

ROA 0.05 0.05 0.00 0.00
(2.69) (2.73) (1.91) (1.80)

Income per Capita 0.17 0.17 0.00 0.00
(1.49) (1.50) (0.02) (0.02)

Log Population 0.25 0.32 0.00 0.00
(0.48) (0.62) (0.04) (0.01)

Observations 25,575 25,487 25,793 25,689 64,142 63,968 64,679 64,464
Facility FE Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes Yes Yes Yes Yes
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Table IA.10: Abatement Investment (Alternative) and Text-Based Uncertainty

This table reports the impact of environmental policy uncertainty on their abatement investment. We
estimate a Poisson regression (an OLS regression) by regressing abatement investment (Log (1+abatement
investment)), which is defined as a count variable reflecting the total number of abatement activities based
on the alternative criteria for firm i’s plant p located in state s, on environmental policy uncertainty shock,
which denotes the text-based uncertainty, together with other firm characteristics, including size, book-to-
market ratio, investment rate, and profitability in year t, and local economic fundamentals in year t, including
the state-level income per capital and pollution, as well as facility and year fixed effects. All independent
variables are normalized to a zero mean and unit standard deviation after winsorization at the 1st and 99th
percentiles to reduce the impact of outliers. t-statistics based on standard errors that are clustered at the
state level are reported in parentheses. The sample period is from 2004 to 2017.

Poisson OLS

(1) (2) (3) (4) (5) (6) (7) (8)

στ -0.02 -0.02 -0.02 -0.02 -0.00 -0.00 -0.00 -0.00
(-2.98) (-2.99) (-2.69) (-2.72) (-1.95) (-1.89) (-1.63) (-1.55)

WW -0.06 -0.11 -0.00 -0.01
(-0.85) (-1.15) (-0.53) (-0.72)

WW × στ -0.03 -0.02 -0.01 -0.01
(-2.78) (-2.64) (-2.40) (-2.42)

SA -0.31 -0.32 -0.04 -0.04
(-2.64) (-2.74) (-2.81) (-2.92)

SA × στ -0.02 -0.02 -0.01 -0.01
(-2.06) (-2.07) (-1.68) (-1.67)

Log ME -0.07 -0.07 -0.00 -0.01
(-0.80) (-0.94) (-0.29) (-0.71)

B/M -0.00 0.01 0.00 0.00
(-0.02) (0.32) (0.20) (0.28)

I/K -0.02 -0.02 -0.00 -0.00
(-0.76) (-0.71) (-1.03) (-0.88)

ROA 0.05 0.05 0.00 0.00
(2.80) (2.75) (2.00) (1.80)

Income per Capita 0.17 0.17 0.00 0.00
(1.35) (1.31) (0.02) (0.02)

Log Population 0.25 0.32 0.00 0.00
(0.54) (0.68) (0.05) (0.01)

Observations 25,575 25,487 25,793 25,689 64,142 63,968 64,679 64,464
Facility FE Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes Yes Yes Yes Yes

IA-27


	Maintext
	Introduction
	Empirical Analysis
	Data
	Empirical Analyses

	Our Mechanism in a Simple Example
	The Full Model
	Production, Pollution, and Finance
	Recursive Problem for Firms
	General Equilibrium Block
	The Roles of Financial Frictions and Policy Uncertainty

	Quantitative Analysis
	The Solution Methods
	Parameterization
	The Effects of Financial Frictions and Policy Uncertainty
	Impulse Responses to Policy Uncertainty Shocks

	Conclusion

	Internet Appendix
	The Database and Supplementary Analyses
	The TRI Database
	The Pollution Prevention (P2) Database
	Matching TRI (NETS) with CRSP/Compustat

	Additional Empirical Results
	Possible Explanation: Political Connections
	Emission Reduction and Pollution Abatement Investment
	Robustness Tests

	The Computation Methods


