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Introduction and Background

This paper is written at the request of, and is partly funded by, the Casualty
Actuarial Society’s Committee on Theory of Risk. It is the first of a trio of
papers whose purpose is to answer the following question, posed by the
Committee:

Assume you know the aggregate loss distribution at policy
inception and you have expected patterns of claims reporting,
losses emerging and losses paid and other pertinent information,
how do you modify the distribution as the policy matures and
more information becomes available? Actuaries have historically
dealt with the problem of modifying the expectation conditional
on emerged information. This expands the problem to
continuously modifying the whole distribution from inception
until it decays to a point. One might expect that there are at least
two separate states that are important. There is the exposure
state. It is during this period that claims can attach to the policy.
Once this period is over no new claims can attach. The second
state is the discovery or development state. In this state claims
that already attached to the policy can become known and their
value can begin developing. These two states may have to be
treated separately.

In general terms, this brief requires the extension of conventional point
estimation of incurred losses to their companion distributions. Specifically,
the evolution of this distribution over time is required as the relevant period of
origin matures.

Expressed in this way, the problem takes on a natural Bayesian form. For any
particular year of origin (the generic name for an accident year, underwriting
year, etc), one begins with a prior distribution of incurred losses which
applies in advance of data collection. As the period of origin develops, loss
data accumulate, and may be used for progressive Bayesian revision of the
prior.

When the period of origin is fully mature, the amount of incurred losses is
known with certainty. The Bayesian revision of the prior is then a single point
distribution. The present paper addresses the question of how the Bayesian
revision of the prior evolves over time from the prior itself to the final
degenerate distribution.

This evolution can take two distinct forms. On the one hand, one may impose
no restrictions on the posterior distributions arising from the Bayesian
revisions.  These posterior distributions will depend on the empirical
distributions of certain observations. Such models are non-parametric.
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Alternatively, the posterior distributions may be assumed to come from some
defined family. For example, it may be assumed that the posterior-to-data
distribution of incurred losses, as assessed at a particular point of development
of the period of origin, is log normal. Any estimation questions must relate to
the parameters which define the distribution within the chosen family.

These are parametric models. They are, in certain respects, more flexible
than non-parametric, but lead to quite different estimation procedures.

When a period of origin is characterised by a set of parameters in this way, it
is possible that those parameters change from one period of origin to the next.
Models with these properties are called dynamic models. If there is a specific
linkage between successive period of origin, they are evolutionary models.

The present paper deals with non-parametric models only, two future papers
dealing with the others.
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Motivational Example

For motivation, an unrealistically simple example is chosen, its data
represented in Table 2.1.

Table 2.1 Data for Motivational Example

Accident | Ultimate Number Paid losses ($m) in development year
Year Of Claims 0 1 2 3 4
1994 1,011 1.080 4295 1.838 0430 0.217
1995 1,235 1.276 4812 2629 0.612
1996 1,348 1.534 5017 2.511
1997 1,329 1.496 5.263
1998 1,501 1.374

For the purpose of the present example it is assumed that:

e The ultimate claim count is known with certainty
* No paid losses occur beyond development year 4
e There is no inflation.

Division of each row of paid losses in Table 2.1 by the associated ultimate
number of claims produces the payments per claim incurred (PPCI) (see eg,
Taylor, 1999, pages 88-96) displayed in Table 2.2.

Table 2.2 Payments per Claim Incurred

Accident PPCI (8) in Development Year
Year 0 1 2 3 4
1994 1,068 4,248 1,818 425 215
1995 1,033 3,896 2,129 496
1996 1,138 3,722 1,863
1997 1,126 3,960
1998 915

Let cell (i) represent development year j of accident year 7, and let X(i,j)
denote the PPCI in respect of that cell.

Assume that, prior to the collection of any data,

X(ij) ~ Gamma (2.1)
with

EX(ij) = 6() _ 2.2)
V X(ij) = 7)), (2.3)

with& (j) and r %(j) independent of i.
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Suppose that the X(7,j) form a mutually stochastically independent set and that
6(j) is a sampling from a hyperdistribution with d.f. Fi(.). Suppose the 8 (j)
are also stochastically independent. Let x(ij) denote the realised value of
X(ij) where this observation has been made.

Consider accident year 1996, for example. At its commencement, its total
incurred losses per claim had the unknown value

iX(l 996, j). (2.4)

J=0

with d.f. Go * G, * G, * G; * G4, where the star denotes convolution and G;i(\)
is the unconditional d.f. of X(i,j) derived from the gamma distribution in 2.1
and the prior Fj(.).

By the end of 1998, the situation represented in Table 2.2, the observations
x(1996,), j=0,1,2 have been made. The quantity (2.4) therefore becomes

Zx(1996 _])+ZX(1 996, /). (2.4a)

Jj=0

Note that the best estimate of the d.f. of the second summand in (2.4a) is no
longer G3*Gy because accident years 1994 and 1995 have provided some data
in respect of development years 3 and 4. It is possible to form the Bayesian
revision of this d.f.

This causes Gs(x) to be replaced by
Prob [X(i,3) < x| {x(k,3), k= 1994, 1995} ] for i > 1996,
and similarly for G4(.).
In this way the d.f. of the initial variable (2.4) can be revised year by year, as
data accumulates, until finally the experience of that accident year is complete
and (2.4) is replaced by the known quantity (ie single point distribution).
4
> x(1996, /). (2.4b)
j=0
The remainder of this paper will be concerned with the application of

credibility theory, itself a Bayesian theory, to the estimation of the
distribution of quantities like

Zx(z N+ Z X3, )) (2.5)

J=k+1
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as they evolve from & = -1 to k£ = 4, under the convention that

] (anything) = 0. (2.6)

Jj=
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Bayesian Framework
The example of Section 2 is generalised as follows.

Let X(ij) denote some variable that is indexed by year of origin i and
development year j, i > 0, 0 < j < J for fixed J >0.

Let k=i+j. If the X(i,j) are set out in a rectangular array with i and Jj labelling
rows and columns respectively, then k labels diagonals. Each diagonal
represents an experience year, ie the calendar period containing year of origin
k, as well as development year 1 of year of origin &-1, etc.

Data accumulate over time by the addition of diagonals. At the end of year k,
the available data set will be

X(k)={X(,)):i20, 0<j<J, 0<i+ j<k} 3.1)
The case J = 4, k = 4 defines a triangle such as in Table 2.1.

Let ©(/) be an abstract parameter applying to development year j and
characterising the distribution of X(i,j). Suppose that ®(j) is an unobservable
random variable on a probability space P =(S,A,F). The realisation of
O()) is denoted by 6(;). It is supposed that 8(0), ..., 8(J) are iid samplings
from P.

Now suppose X (i, j), i 20 to be some stochastic quantity dependent on ().

Suppose that the X (i, j),| 6() are stochastically independent and, for fixed j,
they are iid.

Let G(+|@)denote the d.f. of X(i,)|6. For fixed j, this is G(s|6(;)), which

may be conveniently denoted by G'”(+), the upper € indicating conditioning
on that variable.

Write
G,(x) = [GP(x) dF(6) (3.2)

which represents the average of G\”’(x) over the conditioning parameter, ie

the expectation of G!”(x) in the absence of any data.
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Once data have accumulated, one may calculate the Bayesian revision of
G;(9):

G (| X (k) = E[G ()| X ()], (3.3)
which is an unbiased posterior-to-data estimate of G'* ().

Subsequent sections will be concerned with credibility theory approximations
to (3.3).
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4.1

Credibility Theory

Basic Credibility Theory

Let Y(ij) be a variable dependent on (), defined in the same way as X(@ ).
The quantities X(i,;)|0(j,) and Y(,,/,)|0(j,) are stochastically
independent if (i, j,) # (i, j,) .

Suppose one seeks a forecast of Y(i,k+1-i), ie relating to experience period
k+1, given data X(k). The most efficient forecast is the Bayesian expectation
E[Y (i, k +1-i)| X(k)].

Credibility theory is a linearised Bayes theory in which this last expectation is

approximated by a quantity that is linear in the data. Specifically, Y(i,k +1-i)
is forecast by:

Y*(@,k+1-i)=a+) b, X(h,j) 4.1)
h.j

with a and b,; constants, and 4,j varying over the set of values such that the
X(h,j) form X(k) defined by (3.1).

The forecast Y *(i,k +1-1i) is chosen according to the least squares criterion:
E[Y*(i,k+1-)-Y(i,k+1-i)] = min!, “4.2)

where here and elsewhere in this paper an expectation operator E without a
suffix indicates unconditional expectation. For example,

E[Y (i, D] = E,,,ETY (i, 1) | 6(N)]. (4.3)
Now the forecast (4.1) may be simplified a good deal before the details of (4.2)

are worked out. By the symmetry of the X(i,j) for fixed j, arising from the
identity of distribution of the X (i, j)| 8(/), (4.1) may be written in this form:

Y*(@k+1-i)=a+> b X()), (4.1a)
where
X()=3" X(hj)ik=j+1), 4.4)

and the b , are constants.
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The conditions governing independence:

(1) between the X°s and Y’s; and
(i1) between the 8());

cause (4.1a) to simplify further:
Y*(i,k+1-i)=a+b X(k+1-i), (4.1b)

with b constant. In other words, the only data that have any predictive value for
Y(i,k+1-i) arethe X(h,k+1-i).

The calculation of Y*(i,k+1-i) becomes a simple exercise when (4.1b) is

substituted in (4.2). The solution, with k+1—i conveniently abbreviated to just
J, 1s:

b=Cov[Y(, /) X(NVIX ()] (4.5)
a=v(j)-bu(J), (4.6)
where

H(j) = E X (i, J) 4.7)
v()=E Y(,J) (4.8)

and the variance and covariance in (4.5) are unconditional.

The numerator and denominator of (4.5) may be simplified further, taking
account of the above independence assumptions:

b= Ve(j)E[X(i, j) | 6(])] (4'9)

Va(j)E[X(i’ DNEN]I+ n;lEa(j)V[X(ia NIO(N] ’

where n; is the number of observations X (i, j) in /—Y.( 7). Equivalently,
b=n;/(n;,+K), (4.10)
with

_ By ) V1X G, ) 18()]
Vooh ELX (G, N6

(4.11)

This last quantity K is sometimes called the time constant. The final credibility
formula is obtained by substitution of (4.6) in (4.1b) and replacement of b by
the more conventional symbol z:
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4.2

Y*(@i, j) =[v(j) - u(N]+ A~ 2Du(j) + 2 X () » (4.12)
with j=k+1-i and z (ie b) given by (4.10) and (4.11). Since X(i,j) and Y(i,j)

are identically distributed, u(j)=v(j), and so the square bracketed term in
(4.12) vanishes.

This is a representation of the essentials (expressed a little differently) of the
original paper on credibility theory (Biithlmann, 1967). A useful and relatively
up-to-date survey of the theory is given by Goovaerts and Hoogstad (1987).
Credible Distribution

Jewell (1974) considered the case in which
Y(i,j)=G;”(») =Prob[X(i, /) < y | 6(/)], (4.13)
for some fixed but arbitrary value of y. The “observations” which served as

inputs to this model were not the raw X{(ij) but their empirical distribution
equivalents. That is, X(7,j) was replaced by

Lo, () =0if y < X(, j)
=1if y = X (@, )). (4.14)

It will be convenient to abbreviate 1 xi. (V1o L(y).

Application of the credibility theory set out in Section 4.1 then leads to a
forecast Y *(i,k +1~i) which is the linearised form of:

E{Prob [X(i,k+1—i)Sy]|X(k)}, (4.15)
the linearisation involving the terms I ()

This is a Bayesian forecast of the distribution of X (i,k +1-i) and was referred
to by Jewell as the credible distribution. In terms of the example given in
Section 2, it amounts to forecasting the distribution of any entry on the next
diagonal of the paid loss triangle, conditional on the triangle observed to date.

The basic credibility formula (4.12) may now be re-interpreted within this new

context. First note that, according to the definition of ¥(ij) in (4.13), and
making use of (4.8),

v(j)= Ee(j)Gj('o) »
=G, 4.16)

Note that G,(¢) is effectively the prior d.f. on the X(i,j) for the nominated j.
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Also, by (4.7) and recalling the replacement of X(i,j) by /,(»),

H()=EIL;(y)

= Ea(j)E[Iij()’) |6())]

= Eqy;, Prob[ X (7, /) < y | 6())] [by (4.14)]

= Ea(j)Gj'a) ), (4.17)
by the definition of G!” () in (4.13).
By (4.16) and (4.17),
H()=v()=G;(»), (4.18)
as was noted more generally at the end of Section 4.1.

This simplifies the credibility formula (4.12) to the following:
Y*(,j)=(1~2)G,(») +2 Li(y), j=k+1-i (4.19)

where Y*(i,j) is the forecast discussed in (4.15) and 1;(y) is the empirical
distribution of observations X{(i,j) for the fixed j under consideration:

L) =n"Y L), (4.20)

An examination of the definition of I;(y) in (4.14) indicates that I; (¥) is the

proportion of observations X{(i,j) , for the fixed j, which are less than or equal to
y.

The credibility z is still given by (4.10) with z in place of b. It remains to
interpret the time constant X in the present context. This is done by replacing

X(ij) by I;(y)in (4.11).

The denominator of (4.11) can be evaluated by the same reasoning as led to
4.17):

VoyELL; (010N =V, G () (4.21)

The variance of I;(y) in the numerator of (4.11) is a single observation
binomial variance, and so the numerator may be written:

EyV [1;(0016()] = B0, G 0)[1-G,2 ()]
=G,(V)=Ey;,, [Gj'e) 64 )]2 ’ (4.22)
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by (4.16).

The final member of (4.22) may be simplified further:

Eo(j) I:Gj(-e) (J’)]z = EH(j) {Gj O+ [Gjo) - G,' (J’)]}Z
=[6,00] +¥es[GP )] (4.23)

The quantity X may now be evaluated by means of (4.11) by applying (4.21) as
the denominator, and by substituting (4.23) in (4.22) and applying the result as
the numerator: '

G.(»[1-G.
- xol ¢ ,(y)]__1
Vo Gi" (»)

(4.24)

To summarise, Prob[X(i, )< y|for j=k+1-i is forecast by (4.19) with
quantities therein defined by (4.20), (4.10) (with b replaced by z) and (4.24).

By assumption, the Y (i, j)|€(/) are iid for ¥(i,j) defined by (4.13) and fixed j,
and so the same reasoning may be applied to the forecast of Prob[X (i, j) < y]
forall j=k+1-i,k+2~i,etc. The formula (4.19) continues to apply.
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The Forecast Cell Distribution

Section 4 gives us the credibility forecast of Prob[X(i, j)< y] for a particular
value of y. The collection of these forecasts for all y is a forecast of the entire
distribution G, (+)| X(k), which may be denoted G, (+), or just G (+) when
the value of & is clear from the context.

Then by (4.19),

G =[1-2,(» ]G, +z,(NL; (),

5.1
J=k+1-ik+2—-i, etc
where the dependence of z on j and y has been recognised explicitly:
2, =n/[m,+K,(»)], (5.2)
G,(»[1-G,(»]
K;(y) = Lol (53)

V(,U)Gf."’ »)

It is of interest to observe that K ;(¥), and therefore z;(y)is independent of y in

the special case ¥, j)Gf.o) (¥) proportional to G,(y) [1 -G( y)] for varying y.
This result may be put in a more general form as follows.

Proposition. If, for local variations of y, ¥, ,G\”(y) is an increasing (resp.
decreasing) function of Gj(y)[l—Gj( y)] , then z,(y) is also (locally) an
increasing (resp. decreasing) function of G () [1 -G( y)] .

Example. Consider the case in which

1+a
Von GO =e{G,[1-G,0n ]} . (5.4)
where @ 20 and ¢ < 4% are constants.
Then (5.3) yields
K, =c{G0m[1-6,0m]} " -1 (5.5)

If =0, (5.5) reducesto K,(y)=c™ -1, and

zj(y)=nl./(nj+c"—1),
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which is independent of y.

In the case a >0, (5.5) decreases as Gj(y)[l—Gj(y)] increases. It takes a

minimum value of 4% /c—1 when G;(y)=%, and increases without limit as
G,(») approaches O or 1.

This means that the credibility assigned to 7,(y) in (5.1) declines toward zero
in the tails of the prior distribution G ()
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Combining Cell Forecasts

Returning to the motivational example of Section 2, note that outstanding losses
in respect of accident year 1995 relate to just the single cell (1995, 4). Their
distribution is forecast by (5.1) with j=4.

However, outstanding losses in respect of accident year 1996 relate to the two
cells with j=3,4 respectively. The distribution in each of the cells is forecast by
(5.1). The distribution of outstanding losses is forecast by the convolution

G,*G,(+).

In the more general framework of Sections 3 and 4, let G;.+ (¥) denote the
h=j

J
forecast of Prob[ZX (i,h) < y:l, where J is the maximum value of j

considered. Then
G..(0)=G*G,, *.*G,(y) (6.1)

By (5.1), G;. (») will typically be a mixed distribution, since 7( y) is discrete but

(typically) G;(y) will be continuous. Analytical evaluation of convolutions

like (6.1) will therefore be awkward in most cases, and best dealt with
numerically.
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Application to Motivational Example

Consider the example set out in Section 2, and specifically outstanding losses in

respect of accident year 1997. This requires the forecast G,,(y) defined in
Section 6.

This is given by (6.1):
G,.(»)=G,*G, *G,(y), (7.1)
with G} (+), j =2,3,4 given by (5.1) to (5.3).

The input parameters required for this evaluation are G,(+),V,, G\*(y) for

J=2,3,4. Suppose that the G, (-) are gamma d.f.’s:

dG,(y)/dy=[T(a,)]" ¢y exp(=c,»), y >0, (1.2)
with a;,c; asin Table 7.1.

Table 7.1

Parameters for Gamma Distributions

] a c; mean s.d.
2 16.0 0.0080 2,000 500
3 11.11 0.0222 500 150
4 4.0 0.0200 200 100

Table 7.1 also includes, for each j, the gamma distribution’s mean (=a ;e j)

and s.d. (=a}/c,).

Suppose further that (compare (5.4))

VoG ) =1G,0)[1-G,(») ] (7.3)
Then, by (5.3)

K;(»)=1. (7.4)
By (5.2),

(M =%,2z,0)=4%,2,(y) =1 (7.5)
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By (5.1),
G;(¥) =025 G,(»)+0.75L,(y), (7.6)

where I,(y) is the d.f. consisting of three jumps of probability 1/3 each at
y=1818, 1863, 2129 respectively.

Similar formulas evaluate G,(y) and G,(y) respectively.

Figures 7.1 to 7.3 illustrate the computation of G;.( y), j=2,3,4. Each of these

plots includes G,(y), 1,(y) and G;(y). Figure 7.4 then plots G,,(y), given

by (7.1). For comparison, it also plots the corresponding prior G, *G, *G, .

Fig 7.1
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0 1
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0 |
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Fig 7.3
Development year 4
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Fig 7.4
Development years 2 to 4
1.2
1.0
0.8 /’/p
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g f/;/ B Prior
0.0 ————’/

$1,750 $2,250 $2,750 $3,250 $3,750
$2,000 $2,500 $3,000 $3,500 $4,000
PPCI

Figure 7.4 shows a reasonable correspondence of G,, with its prior. This is due

to the consistency of I;(+) with G, (+) for each j, ie the consistency of the
observations in Table 2.2 with their prior means (Table 7.1).
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Other Additive Forms of Outstanding Losses

Sections 6 and 7 were concerned with the outstanding losses of each accident
year; equivalently, the outstanding PPCI. Thus, for example, (6.1) provides a

J
forecast of Prob [Z X(@,h)< y] .

h=j

The key to this is that the outstanding losses of any accident year are just the
summation of a number of the quantities X(ij) whose distributions were
forecast in Section 5. The relation between the X{i,j) and outstanding losses
can be generalised without disturbing the essentials of this structure.

Let L, (i) denote outstanding losses in respect of accident year i, as at the end of
experience year k. Suppose that

Lk(i)=f( > X(i,j)], (8.1)
J=k+1-i

for some one-one function f. In this framework, the X(ij) may be any
quantities satisfying the assumptions made in Section 3.

The forecast distribution of outstanding losses is related to the forecasts of the
X(ij) through (8.1).

Since

Prob[L, (i) < y]= Probl: Ej: X@Hp<fo (y)], (8.2)

jek+l-i

for f(+) increasing (the < is changed to > on the right side of (8.2) if f (¢) is

decreasing), the left side of (8.2) is forecast by G;.+ ( i y)) for j=k+1-1i,as
defined by (6.1). ,

As an example of (8.1),
f(x)=¢e"C(i, k) (8.3)
X(@i, j)=log[C(, j)/ Ci, j-1)], (8.4)

with C(4, j) = cumulative paid losses to end of development year j in respect of
accident year i.

The definitions (8.3) and (8.4) produce a chain ladder analysis (Taylor, 1999,

Chapters 2 and 3) with logged age-to-age factors X{(i,j) . The factor ¢* in (8.3)
is the age-to-ultimate factor.
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In this case, (8.2) becomes

Prob[L, (i) < y]= Prob[ EJ: X3, j)<log| y/C(i,k)]} = Gyariys (log[y/ C G, 6)]),

J=k+1-i

(8.5)

with G,,,_,,, defined by (6.1).
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A More Realistic Example

The numerical example of Section 7 was invented for motivational purposes.
The present section applies the results of this paper to an example based on real
data.

The data, in the form of incremental paid losses are set out in Table 9.1. They
are extracted from an Australian Auto Bodily Injury portfolio.

Table 9.2 displays the logged age-to-age factors X{(ij). It also displays the
sample mean and standard deviation of these quantities for each j. Table 9.2
appears as Table 7.2 in Taylor (1999) as part of a stochastic chain ladder
analysis attributed to Hertig (1985).

For this example, it is assumed that each G, (+) is normal with parameters 4,
given in Table 9.3, and

o;=0.19x 0.8’ (9.1)
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Table 9.3 Parameters of prior distributions

J Y o;

1 0.60 0.152
2 0.20 0.122
3 0.10 0.097
4 0.05 0.078
5 0.03 0.062
6 0.02 0.050
7 0.00

and later

Table 9.3 also displays values of o, calculated from (9.1), for comparison with
the sample values in Table 9.2.

Finally, it is assumed that

VoG (») = 0.1G(M[1-G(»)], , 9:2)
so that (5.3) yields

K,(»=9. (9.3)

While Table 9.2 displays the full data triangle of dimension 17, the example
examines estimates of the form (5.1) as the dimension k£ + 1 of the triangle
grows from 1 to 17. By (5.2) and (9.3),

z;(»)=(k+1-j)/(k+10- j) (9.4)
for given k.

Now restore the full notation G, () for (5.1). This will yield forecast

distributions for j(k)=k+1-i,k+2—i, .., k in respect of underwriting year
i=0,1,.., k.

There are no data for j >k, and so the forecast distributions G, (+) must be
taken as the priors G, (+) for j(k)=k+1, k+2, etc.

With this understanding, (6.1) is applied to yield
G;'(k)+ (y) = G;(k) *LKG K, xS G,(»). 9.5)

The corresponding prior is
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G.(¥) = G,*..*G,(»)

(st
h=j  h=j

where (D(-; ,u,oz) denotes the normal d.f. with mean x and variance o”.

Result (9.5) gives the d.f. of the logged age-to- ultlmate factor that is applied to
incurred losses at end of development year j.

Let W (i,k—i) denote incurred losses in respect of underwriting year i, as

measured at end of experience year k (ie development year & — i). Then
estimated ultimate incurred losses are given by

W (i,J +1)=W (i,k—i)exp(f), 0.7
for logged age-to-ultimate factor f.
Then
Prob[ W" (i,J +1)<w] = Prob[W (i,k—i)exp(f)<w]
= Prob| 1 <log[w/W (i,k-i)]]

= Gy | log[w/ W (i, k- 1)]]. (9.8)

Note that, by (9.4), the credibility factors involved in G(k iy @

I+1 i i-1 _1_
i+107i+9°i+8° 7710

, (9.9)

which do not depend on the size of the data triangle.
The quantity (9.8) is the forecast distribution of ultimate incurred losses for

underwriting year, based on data up to and including experience year k. By
(9.6), it compares with a prior

Gieys | log[ w/W (i,k-1)]]. (9.10)

Note that this is the prior conditional on actual losses incurred to the end of
development year k — i. Specifically, it is net the original prior for the
underwriting year, ie at end of development year 0, which is

G,, [log[w/W (i, 0)]].
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Figures 9.1 to 9.5 display the forecast d.f. in (9.8) and the corresponding prior
(9.10) for underwriting year 1980 (i = 2) at the various points of development,
corresponding to k=1, 2, 4,9, 16 ie 1980, 1981, 1983, 1988, 1995.

Figure 9.1
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Figure 9.3
Underwriting Year= 1980
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Figure 9.4
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100x

Underwriting Year= 1980
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The vertical bar in each plot represents incurred losses to date W (i, k —i).

Observations to be made on the plots are:

The forecast (credible) distribution tends to converge to the prior with
increasing development year, due to the reducing number of distributions in
convolution (9.5) as j increases.

The centre (specifically the median) follows the vertical bar for j>7 (since
then x4, =0).

The forecast distribution loses smoothness at the highest development years,
where it is based on only a handful of data points.
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