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Abstract

We consider the distribution of the deficit at ruin in the Sparre An-
dersen renewal risk model given that ruin occurs. We show that if the
individual claim amounts have a phase-type distribution, then there is
a simple phase-type representation for the distribution of the deficit.
We illustrate the application of this result with several examples.
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1 Introduction

The purpose of this paper is to establish a fairly robust result regarding
the distribution of the deficit at ruin in the general renewal risk model,
often referred to as the Sparre Andersen model. In this model, the insurer’s
surplus at time ¢, which we denote by U(t), is given by

U(t) =u+ct — S(t)

where u is the initial surplus, ¢ is the rate of premium income per unit time,
and S(t) denotes the aggregate claim amount up to time t. We assume
that the aggregate claims process {S (t)}t>0 is comprised of a renewal claim
number process {N(t)}:>0 whose interclaim times {W;, W, .. .} are gener-
ally distributed with common mean E(W) = 1 /A. The individual claim
amounts X, Xo,..., independent of {N (t)}t>0, are positive, independent
and identically distributed (iid) random variables with common cumula-
tive distribution function (cdf) P(t) = 1 — P(t) = Pr(X < t) and mean
E(X) = p. We assume that ¢ = (1 + )y, where 6 > 0 is the premium
loading factor. We define R = cW as the interclaim revenue random vari-
able having cdf A(y) = Pr(R < y) and moment generating function (mgf)
A(s) = [0 evdA(y).

“Author affiliations are listed on page 20.




For this surplus process, we define the probability of ultimate ruin as
¥(u) = Pr(U(t) < 0 for some t > 0)

or, equivalently, ¥(u) = Pr(T < oo) where T denotes the time of ruin and

is defined by
T inf{t|U(t) < 0}
T | o0 ifU(t) >0forallt>0.

We write §(u) = 1 —1)(u), and for convenience we introduce p=1(0). (It is
well known that p = 1/(1+46) in the case of a Poisson claim number process;
see, for example, Bowers et al (1997).) Note that 6(x) = Pr(L < z) is the
cdf of the maximal aggegrate loss L.

As will be seen in the next section, phase-type distributions are charac-
terized by an initial probability vector and a matrix of transition rates. The
main result of this paper is given in Section 3 where we show that if claim

‘amounts are phase-distributed, then so too is the deficit, with precisely the

same matrix of transition rates. What is particularly remarkable about this
result is that it applies for the general Sparre Andersen model. In fact, if
the claim number process is not Poisson, the only ‘additional step needed
in most cases is a recursive calculation to determine the necessary initial
probability vector.

Section 4 contains several numerical examples intended to illustrate the
main result, and general comments on the power of the result are contained
in Section 5.

2 Mathematical Preliminaries

2.1 Notation

In the sequel, we shall make use of the following two functions:

G(u,y) = Pr(T < o0, U(T) > —y) and Y(u,y) = Pr(T < o0, U(T) < —y).

Clearly, ¥(u,y) = ¥(u) — G(u,y). Gerber et al (1987) introduced the func-
tion G(u,y) for the classical risk model, defined as the probability that ruin
occurs from initial surplus u with a deficit at ruin no greater than y. 9 (u,y)
is the probability that ruin occurs and the deficit at ruin exceeds y. Let

o(u,y) = %G(u, )

denote the (defective) probability density function (pdf) of the deficit at ruin
if it exists. These functions have been studied in the classical risk model by
a number of authors including Dufresne and Gerber (1988), Dickson (1989)
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and Willmot (2000). Corresponding to these functions, we introduce the
proper (non-defective) cdf G, defined by

—_1 —_ G(u7y)
Gu(y) =1 Gu(y) - w(u)
with pdf

_ 9(u,y)

We let the random variable Y, denote the deficit at ruin given that ruin
occurs, so that Y, has cdf G, and pdf g,. In the special case of a Pois-
son claim number process, it is well-known (see, for example, Bowers et al
(1997)) that the distribution of Y, when u = 0 is the equilibrium distribution
of P, defined by Pe(z) =1 - P.(z) = Jo P(y)dy/u, so that Go(y) = Pe(y).

2.2 Phase-type distributions

1In this section, we summarize key results for phase-type distributions in ruin
theory. Proofs of all results quoted in this section can be found in Rolski et
al (1999, Chapter 8) and Asmussen (2000, Chapter 8). An important early
reference on the use of phase-type distributions in a ruin-theoretic context
is Asmussen and Rolski (1991). A more detailed description of phase-type
distributions and their applications can be found in Neuts (1981) and La-
touche and Ramaswami (1999). A brief overview of phase-type distributions
and their properties can also be found in Asmussen (1992) and Stanford and
Stroifiski (1994). We provide a summary below.

Consider a continuous time Markov chain (CTMC) with a single absorb-
ing state 0 and m transient states. Let Ji denote the state of the CTMC
at time ¢. The row vector a contains the probabilities a; that the process
starts in the various transient states j = 1,2,...,m. The components of
a need not sum to 1, as the process may start in the absorbing state with
probability ag. However, in all cases where one is using a phase-type distri-
bution to model a purely continuous quantity with no discrete weight at 0,
we require e’ = 1. (Here, and in what follows, e is a column vector of
ones of length m.) The infinitesimal generator Q for the CTMC is given by

0 0
o= g s]
In other words, S = [s;;] is the matrix of transition rates among the transient
states, and s = [s;] is the column vector of absorption rates into state 0
from the transient states. Necessarily, s = —SeT, and § is an m x m
matrix whose diagonal entries are negative and whose other entries are non-
negative. Under these assumptions, the time V until absorption has occurred

has mean
E(V)=—-aS"1eT,




cdf
F(x)=1-F(z) =1-~aexp(zS)eT for z>0,

and pdf
f(z) = aexp(zS)s} for z >0,

where the matrix exponential is defined by

exp(zS) = Z %’-S"

n=0

Furthermore, we can interpret the jth component of a exp(zS) as the prob-
ability that absorption has not occurred by time z, and that the process is
in transient state j at time z; that is

Pr(V>zx,J.=5j=12,...,m)= aexp(zS).

As this distribution is completely determined by a and § , we say either that
V' is “phase-distributed with representation (a, §)”, or write V ~ PH (a, S).
Occasionally, we will say that “F has PH representation (a, S)”.

We turn now to closure properties of phase-type distributions that will
be used in the sequel. First of all, the equilibrium distribution of F, denoted
by Fe, is also phase-distributed with representation (mw,S) where

T=-aS"/E(V)

so that meT = 1. In other words, even if F has probability mass at 0, its
equilibrium distribution F, does not. The fact that the equilibrium distri-
bution employs the same matrix S as the original distribution underlies a
key fact: any form of conditional distribution based on the time to absorp-
tion exceeding a given value necessarily employs the same matrix S. This
is because, if absorption has not occurred by time ¢, say, then at time t the
process must be in one of the transient states, and the future evolution of the
process is uniquely governed by the transition rate matrix S. This “matrix
memorylessness”, as we call it, means that such ruin-theoretic quantities as
the ladder height distribution employ the same matrix as the claim amount
distribution, if the latter is phase-distributed. Therefore, such ruin-theoretic
quantities remain within the same subclass of phase-type distributions for
well-known families such as mixtures of Erlangs or Coxian distributions.

Next, we consider the distribution of sums of phase-distributed random
variables. If Y ~ PH(e, S) is independent of Z ~ PH(3,T ), then the sum
Y + Z is likewise phase-distributed with representation (A,C) where the
row vector A = (a, apf3) and

S sIp
c:[o o J




In other words, once the process has left the transient states associated
with Y, it moves on to the states associated with Z, from which it is
ultimately absorbed. Furthermore, the sum of n iid random variables,
Y(n) =Y1+Y2+---+Y, where each Y; ~ PH(a, S), is phase-distributed. In

fact, Y (n) ~ PH(a(n),T(n)) where a(n) = (@, a0, a2a, ...,a0" a) and
[S sfa 0 - 0 0
: 0 S sfa --- 0 0
Tm)=|: P
0 0 0 - 8§ sTa
(000 0 0 § |

The corresponding column vector of absorption rates is given by
T T
S (n) = (aoSO, QoS0, @080, - . . , @080, So) .

Note that if each Y; is strictly positive, then ap = 0 and the above quantities
simplify considerably.

The last, and most important, closure property we stateahas implica-
tions for the maximal aggregate loss distribution. Let N be a, geometrically
distributed random variable with Pri(N=n)=(1-¢)¢",n=0,1,.... A
compound geometric sum L = Ly 4+ --- + Ly of N iid phase-distributed
random variables L; ~ PH(, S) is again phase-distributed. Moreover, its
representation is of the same order m and is easily calculated: I ~ PH (v, B)
where v = ¢a and

B=S+¢sia.

Figures 1 and 2 help to visualize this key result. Figure 1 illustrates one
phase-type representation for L. With probability 1 — ¢, N = 0 so that
L = 0. This is represented by the arc going to the ultimate absorbing
state A. In all other cases, L consists of at least L,, so with probability ¢,
at least one PH(a,S) random variable is involved. Upon absorption into
the absorbing state 0, however, one returns with probability ¢ for another,
independent PH(a, S) length of time. It is easily verified that the number of
times N through this process is geometrically distributed with Pr(N = n) =
(1-¢)¢™. Thus, we can write L = L+ - +Ln. An alternate representation,
however, is displayed in Figure 2 by ignoring the instances of absorption into
state 0, and focussing instead on the ultimate absorption into state 4. One
can move directly from transient state 7 to transient state J at rate s;;, or
indirectly at rate ¢s;oar; by being absorbed from state 1, feeding back, and
restarting in state j; that is, at overall rate b;; = 8ij + ¢s;pa;. The matrix
B = [b;;] contains the sum of these rates.

If we assume that the iid claim amount random variables Xi~ PH(a,S),
then the ruin-theoretic consequences of these above results can be summa-
rized as follows:




® Let F' now be the cdf associated with the (non-defective) ladder height
distribution. From Propositions 4.1 and 4.3 of Asmussen (2000), pp.229-
230, F has PH representation (a,S) where aieT = 1. Furthermore,
@’y = oy /p where the (defective) row vector o, is the unique solution
of a fixed-point problem; namely, o, satisfies a; = p(a+) where

plar) = (S + o) = o [~ exp(y(s + Fan)daw). (1)

e Let L now represent the maximal aggregate loss. From Theorem 4.4 in
Asmussen (2000), pp.230-231, the probability of ultimate ruin in the
general Sparre Andersen model with phase-distributed claim amounts
is given by

' Y(u) = Pr(L > u) = a; exp(uB)e”

where B = S+ D and D = sla, = psfay. In other words,

L~ PH(ay,B).

3 The Main Result

0 S+D 0 B

T,
Henceforth, define C = [ § D } = [ § spoy ] Furthermore, let
T
= [ :T ] We are now ready to state the main result.

el
Theorem: The deficit Y, is phase-distributed with representation (ng,S)
where
ajexp(uB)  ayexp(uB)
"~ ajexp(uB)eT Yu)

To establish this result, we present both an analytic and a probabilistic proof.
The analytic proof employs established, current results from recent advances
in ruin theory, and thus better fits into the body of existing work. On the
other hand, the probabilistic proof provides a better intuitive understanding.
As each reveals important aspects that the other does not, we have included
both for greater exposition. We begin with the analytic proof.

Analytic Proof:
The starting point for the proof is eq.(2.1) of Willmot (2001):

3 = —P F U — T

Cul) = ot [ P+ -2
= £ [ ex u— eT'db(z
= G ) e+ u—2)9)erasm)

_ ((T?pp)wai [ exo(tu- ©)5)d5(z) ) exp(yS)eT
Tuexp(yS)eT, @)




where , u
Yu = Hjm‘h/() exp((u — z)S)dé(z). 3)

Clearly, (2) implies that G, is differentiable and so gu is well-defined. As
indicated in Latouche and Ramaswami (1999), p.42, the entries of the matrix
exponential are necessarily either positive whenever (u—1z) is, or identically
zero for all u > z. As a consequence, the components of 7., are non-negative.
Furthermore, it follows using eq.(2.7) of Willmot (2001) that

Yuel = (1—_:;)"0—(—13/01‘ o exp((u — ) S)eT db(z)

p -
P (1-py(w)
(1 = p)p(u) p
1

2

so that v, is a valid (non-defective) initial probability vector. Therefore,
Yy, ~ PH(v,,S). We now find an alternate expression for 7,. To do this,
we make use of a result which holds for the general Sparre Andersen model.
In particular, from eq.(2.13) of Willmot (2001), one has

Y(u+y)
Y(u)

which is clearly equivalent to

. Yy
Su+y) =50 + [ gu,2)s(y - z)a

6.+ [ ¥ i,

given by Dickson (1989), eq.(1). After straightforward manipulation, we can
rewrite either of these as

1- 220 [ oueety - sy @)

‘Working with the left hand side (LHS) of (4), note that

1o ¥ty oqexp((u+y)B)eT
P(u) P(u)
= 1- ___“agzi(pu()uB) exp(yB)eT
= 1—mgexp(yB)eT. (5)

Turning now to the right hand side (RHS) of (4), we observe that the ex-
pression '

/0  0u(@)6(y - 2)da
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represents the cdf for the sum of a PH(y,,S) random variable and a
PH(ay, B) random variable. By Theorem 8.2.6 of Rolski et al (1999),
or Theorem 2.2.2 of Neuts (1981), the convolution of these distributions is
again phase-distributed with representation ((v,,0),C). Therefore,

| /0 " 0u(@)6(y - 2)dz = 1 = (74, 0)exp(yC)eT. (©)

We now directly calculate exp(yC) =32 %C“. Note that

- [348]

0 S+D
_ [8 (§+D)?-g2
- [0 (S + D)? }

In general, it is not difficult to show by induction that

cn=[5 D ]“=[sn (S+D)» - 8"

0 S+D 0 (S+D) ]llfor n=0,1,2,....

Therefore, it immediately follows that

_ ¥[8 (S+D)y-g"
=PWC) = nzom[ 0  (S+D)y ]
[ exp(yS) exp(yB) — exp(yS) J
0 exp(yB) '

Substituting this result into (6) yields

/Oy 9u(z)8(y —x)dx = 1~ (7,,0)exp(yC)el

1 — (7,exp(yS), 7,exp(yB) — v, exp(yS))eT
= 1—1,exp(yB)eT. (7)

Comparing the expressions for the LHS and RHS of (4), equations (5) and
(7) imply that v,exp(yB)eT = ngexp(yB)eT for all y > 0. This equality
can be interpreted as follows: letting X ~ PH (7G,S) and Y ~ PH(v,,S),
and assuming that both X and ) are independent of the maximal aggregate
loss L, we have

Pr(Y + L > y) = v,exp(yB)el = reexp(yB)el = Pr(X + L > y) (8)

for all non-negative values of u and y. Therefore, (8) implies that ) + L is
equivalent in distribution to X'+ L, and hence ) is equivalent in distribution
to X, due to the independence of both X and ) from L. Therefore, for the
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purposes of determining the initial probability vector, we can resort to Yo
or mg. As the latter is notably simpler in form, we determine 7a, and this
concludes the analytical proof. O

In the probabilistic proof of the Theorem below, we establish that,
not only are the representations PH(v,,S) and PH(ng, S) equivalent, but

Yu =TG-

Probabilistic Proof:

This proof starts from the fact that the maximal aggregate loss L fol-
lows a compound geometric distribution, with the terms in the random sum
being the individual ladder heights L, (see, for example, Rolski et al (1999),
Section 6.5). We consider the joint probability ¥(u,y) that ruin occurs and
that the deficit upon ruin exceeds y, given an initial surplus of u. Now, ruin
occurs if and only if the maximal aggregate loss L exceeds u. Expressing L
in its compound geometric form, we obtain :

Y(uv,y) = Pr(L>u,U(T) < —y)

= 2(1 -p)p"Pr(Ly+---+ L, >';u., U(T) < ~y). (9)

n=1

By the Law of Total Probability where we condition upon the particular
ladder height L that causes ruin, we can write

(>0} n
Y(u,y) = Z(l—p)p"ZPr(L1+---+Lk_15u,L1+---+Lk>u+y)
n=1 k=1
[e o]
= Y APr(Li+ -+ Lisy Su, L+ + Ly > u+y), (10)
k=1

where the latter expression is immediately obtained after interchanging the
orders of summation. We note that this expression can be interpreted prob-
abilistically as follows: Pr(Ly +---+Ly_; < U, Ly +---4+Lg > u+y) is the
probability that the sum of (k—1) iid ladder heights does not cause ruin, but
the kth ladder height does, and the sum of the k ladder heights Ly +-- -+ L
exceeds the initial surplus by an amount in excess of y. Furthermore, p* rep-
resents the probability that the maximal aggregate loss L consists of at least
these k ladder heights. Carrying out the required integrations produces the
following results:

oo
Y(wy) = Y PPr(li++ Ly Su,Ly+oo 4 Ly > uty)
k=1

= Zpk/ Pr(Lk>u+y—t)dPr(L1+--~+Lk_1St)
— 0




= ipk /Ou ol (k= 1)exp(tT (k - 1))sg (k - 1)odexp((u —t +y)S)eT dt
k=1

= (i o* /Ou ol (k — 1)exp(tT (k — 1))s3 (k — 1)a} exp((u — t)S)dt) exp(yS)eT
k=1

= 4L exp(yS)eT, (11)

where 1, is the entire expression within brackets. After a derivation similar
to the above, it is not hard to show that Yu = ¥(u)7,, where v,, is defined by
(3). Therefore, (11) establishes that the Joint probability 1(u,y) possesses
the desired phase-type form involving the matrix S; it remains only to show
that v, simplifies considerably.

In order to do so, we return to the traditional definition of a. phase-type
distribution as representing the time to absorption in a transient CTMC. So
long as absorption has not occurred by a particular time instant, the process
‘must be in one of the transient states at that time instant. Recalling J; as
the state of the process at time t, assuming that absorption has not occurred,
and N as the number of ladder heights comprised in the maximal aggregate
loss, we can then interpret the vector 7., as follows: -

v, = Zpk /u ol (k — 1)exp(tT (k — 1))sd (k — 1)a} exp((u — t)S)dt
k=1 V0

o0
= D APt A L Su Lt A Le>udu=Gij=1,2,....m)
k=1

oo
= Y Pr(ly+ - +Lig SuLi+ -+ Ly >u N> k,Ju=353=1,2,...,m)
k=1 '
= Pr(L>u,Ju=j;j=1,2,...,m). (12)
However, this last probability vector is more easily determined according to
the form set out in Section 2.2:

!

Yo = Pr(L>uJ,=7;5= 1,2,...,m)
= ayexp(uB). (13)

After substituting for 4}, in (11), and dividing 1 (u,y) by the probability of
ruin ¥(u), the same expression is obtained for the initial probability vector
Y. as before; namely, 7. This completes the probabilistic proof. [

An immediate consequence of equations (11) and (13) is the following
result:

Corollary: The joint probability that ruin occurs and the deficit at ruin
exceeds y is given by

Y(u,y) = arexp(uB)exp(yS)eT.
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Remark: We observe that every component of the vector
g = aiexp(uB)/y(u) is positive for u > 0 even if the original proba-
bility vector o for the claim amount distribution has some null components
(as in the case of an Erlang distribution, for example). This can be seen from
Latouche and Ramaswami (1999), p.42, or from the following reasoning, by
contradiction. In order for some component (say the Jjth) of m¢ to be null,
it would have to be the case that there was no way to reach transient state
J at time u from any transient state at time 0. Using results for CTMGCs, if
one cannot reach state j at a particular time u, then one cannot reach it at
any point in time, including time 0. Thus, state j is completely redundant
to the phase-type fitting, and can be eliminated, thereby reducing the order
of the phase-type fit.

Simplifications in the Compound Poisson Model:

Recall that a is the unique solution of the fixed-point problem defined
by (1). In the classical compound Poisson model, interclaim revenues are
exponentially distributed with A(y) = 1—e=*¥/<fory > 0. Letting A\, = A /c,
note that

/ exp(y(S + sf o)) dA(y) = / exp(y(S + 5T ap)) Ae>Vdy
0 0

o0
= )\*/ exp(y(—Aelm + S + sTay )dy
0
= MAum =8 —sfa,) !,

where I,,, represents the m x m identity matrix. Therefore, (1) implies that
o4 satisfies
or equivalently,

Aoy —arS—aysiay — Aa=0. (14)
Based on Corollary 3.1 of Asmussen (2000), p.227, we try as the candidate
solution ay = —A,aS~1. Note that the LHS of (14) then becomes
Aoy —ayS—aysfa, — Mo
-8 4 )88 ~ MaS1sTas™ ! - Ao
-XaS1+ Aa+ )\faS_I(SeT)ozS“1 - A
-X2a87! + X2qeT oS!
-A2aS71 + X281
0.

"

This leads to the following result:

Corollary: In the case of a Poisson claim number process, ay = pn where
n = —aS~'/u represents the initial probability vector of the equilibrium
claim amount distribution P..

11




Proof: Direct substitution yields

A 1
= — 1= _Za81=_"- (_a8-1 =
oy = —=).aS caS 7 0( oS /u) = py

which completes the proof. [

While we are able to obtain an explicit formula for a4 in this particular
model, it is more difficult to do so in general. In this more general situation,
we may compute oy numerically, as in the iterative procedure described in
Asmussen (2000), pp.230-231.

4 Examples

In this section, we illustrate the application of the results of the previous
section with four examples. We comment that the computation of matrix
exponentials is a simple task with the aid of software. The results in this
section can be readily obtained using packages such as Mathematica and
Maple.

Example 1: Our first example is intended to illustrate the computation
of the various vectors and the matrix exponential for a well-known simple
problem. Example 1 of Gerber et al (1987) considers an individual claim
amount distribution that is an equal mixture of two exponentials at rates 3
and 7 respectively, with Poisson claims at rate A= 1 and a relative security
loading 6 = 0.4. Revenue is earned at rate ¢ = 1 /3. It is straightforward to
show that p = 5/7,0% = (7/10,3/10), and a, = (1/2,3/14). In a similar

fashion,
B= -3/2 9/14
T\ 72 -11)2

so that the matrix exponential can be calculated as

S,~uy 1l —6u 9 _—u_ 9 —6u
10 T ipe 70€ 76€

exp(uB) =
%e—u _ %6_61‘ 1_lde—u + 1%)e—ﬁu
This yields the well-known ruin probability Y(u) = (24e™™ + 7 %+) /35 and
the following initial probability vector 7¢ for the deficit Y.

(42 ~Te™5* 64 g5 )
TG =

48 + 2e—5u’ 48 + 2e~5u

The distribution of Y, is also a mixture of Exp(3) and Exp(7) densities, with
the weights above. This is in agreement with Gerber et al (1987), p.157,
and Willmot (2000), p.69. We observe that u only has an impact on 7¢ for
very small values of u (relative to the mean individual claim amount).

12




Example 2: Suppose that the individual claim amount distribution is
Erlang(3) with mean p = 1, so that a = (1,0, 0) and

-3 3 0
S = 0 -3 3 .
0 0 -3

Let A =1 and ¢ = 1.1 so that p = 10/11. Then, ot = (10/33,10/33,10/33)

and
-3 3 0
B= 0 -3 3 .
10 10 -23

1 11 11

Unlike the preceding example, B has eigenvalues which are complex. How-
ever, evaluation by software is nonetheless trivial for a given value of wu.
Table 1 shows the elements of n¢ for some values of u. While Y. does not
belong to the class of Erlang distributions, it does belong to the class of
mixtures of Erlangs, as all elements of 7 are positive. The key point here
is that the matrix S that describes the size of the deficit is unchanged, guar-
anteeing that the deficit distribution is a mixture of Erlang distributions up
to order three. This is in agreement with the conclusions of Willmot (2000),
where an approach which differs from our present phase-type method yields
an alternative analytic representation for the mixing weights.

Table 1: Elements of 7¢ in Example 2 for various values of u

u TGl G2 TG3

0 | 0.33333 0.33333 0.33333
0.5 | 0.18068 0.35388 0.46544

1 ]0.16210 0.33580 0.50210
1.5 ] 0.16114 0.33128 0.50758

2 10.16132 0.33064 0.50804
2.5 | 0.16138 0.33060 0.50802

3 | 0.16139 0.33060 0.50801

As in the preceding example, it is only when the initial surplus is relatively
small that the elements of 7g vary.
We also remark that the phase-type representation of the distribution of
Y, allows us to easily find moments of Y.. From standard results for phase-
type distributions (see, for example, Neuts (1981) or Rolski et al (1999)),
we find that
E(Y)F) = (~1)*k!(ngSkeT).

Although this formula does not in general yield a simple analytical expres-
sion for E(YF), it does provide a fast and effective method of calculation
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given a set of parameter values. Table 2 shows moments of Y, for the same
values of u as in Table 1. We observe that these are not monotone functions,
but they do converge quickly. ‘

Table 2: Moments of Y, in Example 2 for various values of #

v | E(Ya) E(Y7) E(Y.) E(Y;) E(Y,)
0 | 0.66667 0.74074 1.11111 2.07407 4.60905
0.5 1 0.57175 0.58026 0.81950 1.46520 3.15210
1 }0.55333 0.55158 0.77029 1.36671 2.92398
1.5 1 0.55119 0.54850 0.76536 1.35736 2.90331
2 10.55109 0.54842 0.76529 1.35735 2.90353
2.5 | 0.55112 0.54847 0.76538 1.35756 2.90402
3 | 0.55113 0.54848 0.76540 1.35760 2.90413

We note that in computational terms, this approach to calculating moments

of Y, employing the phase-type representation is an efficient alternative to
the recursive approach derived in Lin and Willmot (2000).

Example 3: Suppose the individual claim amount distribution is a general
Erlang mixture given by the pdf
2 3 0
ﬂ-z y.? _le_ﬂiy
p(y)=229ij“—. D for y>0,
i=1 j=1 G-

where ﬁl = 1,,32 = 0.5, g = 0.05,(]12 = 0.1,q13 = 0.5,Q21 = 0.05,(]22 = 0.2,
and g3 = 0.1. Written in phase-type form, we have

a=(0.5,0.1,0.05,0.1,0.2,0.05)

and
[ -1 1 0 0 0 0 7
0 -1 1 0 0 0
S= 0 0 -1 0 0 0
0 0 0 -0.5 0.5 0
0 0 0 0 -0.5 0.5
| 0 0 0 0 0 ~0.5 |

For this distribution, = 3.25. Let A =1 and 6 = 1 so that ¢ = 6.5, Then,
one obtains (to 5 decimal places of accuracy)

at = (0.07692, 0.09231, 0.10000, 0.03077, 0.09231, 0.10769)
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and

[ —1.00000 1.00000 0 0 0 0 ]
0 —1.00000 1.00000 0 0 0
B= 0.07692  0.09231 —0.90000 0.03077 0.09231  0.10769
0 0 0 —~0.50000 0.50000 0
0 0 0 0 —0.50000 0.50000
| 0.03846  0.04615  0.05000 0.01539  0.04615 —0.44615 i

As B has eigenvalues which are complex, we can find expressions for the
mixing weights 7 in terms of trigonometric functions. This is an enhance-
ment to the approach employed by Willmot (2000), where it is established
that the deficit pdf gy, is of the same form as p. However, unlike the previous
example, Willmot (2000) does not in general obtain a simple analytic form
for the specific mixing weights.

From 9 (u) = ayexp(uB)eT, we get that

¥(u) = 0.01518e~0-6154u 1 () 51614¢—0-2005u :
+0.03296¢~9-5495 Cos[0.14324u] — 0.06429 121574 Cos [0.30563u]
—0.06059¢~%-549%4Sin[0.14324u] - 0.05064e~1-2574Gin[0.3056 3],

and the elements of 7 work out to be:

T = ﬁ(0.00374e‘0'6154“ + 0.01991¢—0-2005u

+0.01113e~0-5495%Cos[0.14324u] + 0.04215e~1-2157u Gog [0.30563u]
—0.00622¢~0-549%45in{0.14324u] ~0.00180e~2-2!574Gin[0.30563u] )

TGz = {55 (0.01420e~06154% | 0,04879¢—0-2005u

+0.03977e~0-54954Cos[0.14324) — 0.01045¢~ 12157 Cos[0.30563u]
—0.01287¢0-549%45in[0.14324u] +0.09269¢~1-2!574Gin[0.30563u] )

TGy = ﬁ(0.04177e‘0'6154“ + 0.08690¢0-2005u

+0.10289¢~0-5495%Cos(0.14324u] — 0.13156¢~1-2157uC0g [0.30563]
—0.008546‘0'5495“Sin[0.14324u]——0.168036‘1'2157"Sin[0.30563u])

Y

TGa = gizy( — 0.00498¢~06154% | 02196 0-2005u

+0.00741e 054954 Cos[0.14324u] +0.00708e~ 121574 Cos[0.30563u)
+0.01407e—°-5495“Sin[0.14324u]+0.00396e—1-2157"sm[0.30563u]),

s = gy (0.00664e~0-6154w 4 0, 09924¢~0-2005u

—0.02963e~0-54954Cos[0.14324u) + 0.01606e 121572 C0g [0.30563x]
+O.05018e_°‘5495“Sin[0.14324u]+0.01133e‘1'2157“Sin[0.30563u]),
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Tos = Wl;;( — 0.04619¢~0-6154x 4 (,24005¢—0-2005«

—0.09861e"-495%Cos[0.14324u] +0.01243¢ 121572 Cos[0.3056 3]
—0.09721e~0-34%543in[0.14324u]+0.01122¢~ 1 21574Gin[0.3056 3u)).

Table 3 shows the elements of 7¢ (to 5 decimal places of accuracy) for several
choices of u.

Table 3: Elements of g in Example 3 for various values of u

u TGl TG2 TG3 TG4 TGs TGe

0 | 0.15385 0.18462 0.20000 0.06154 0.18462 0.21538
0.5 | 0.11147 0.18672 0.22148 0.05660 0.18334 0.24040

1 ]0.08516 0.17683 0.23611 0.05324 0.18391 0.26475
2 | 0.05849 0.15024 0.24308 0.04942 0.18802 0.31076
5 | 0.04102 0.10660 0.20119 0.04513 0.19802 0.40805
10 | 0.03852 0.09480 0.17047 0.04203 0.19572 0.45847
20 | 0.03855 0.09446 0.16822 0.04118 0.19237 0.46522

We observe that the initial surplus u continues to influence the initial prob-
ability vector for much larger values of u than in the previous two examples.

Example 4: Our final example has been chosen to show that the compu-
tations are still relatively straightforward when the claim number process is
not Poisson: the only additional complexity is the determination of the
row vector ay. Suppose that ¢ = 1 and the interclaim time distribu-
tion is a mixture of 3 Erlangs with A = 0.5, initial probability vector
v = (0.4, 0.2, 0.4), and transition matrix

-1 1 0
H=| 0 -1 1 .
0 0 -1

Clearly, in the above, we have that r¥ = (0,0, 1)T. Let the individual
claim amounts be distributed according to a feedforward Coxian distribution
(see Horvdth and Telek (2000), p.195, Figure 1, which can be shown to
be equivalent to Kleinrock (1975), p.14, but with time reversed) with PH
representation a = (0.2, 0.3, 0.4, 0.1) and

-1 1 0 0
0 -3 3 0
§= 0 0 =2 2
0 0 0 -4
The claim amount mean is ;2 = 16/15, and the pdf can be expressed as
4 14 24 8
=—e V4 e W ey, S g )
p(y) g€ Y+ e e +56 or y>0 (15)
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The pdf (15) is sometimes referred to as a linear combination of exponentials.

To determine o, we employ the numerical procedure described in As-
mussen (2000), p.231. However, since the interclaim time distribution is
itself phase-type, we may also make use of Proposition 1.7 in Asmussen
(2000), p.221, to obtain that o satisfies

ar = a(v® It)[-(H & B)| "} (h§ ® L), (16)

where “®@” and “@” represent the Kronecker product and Kronecker sum
respectively (see Asmussen (2000), pp.346-347, for further details). As in
eq.(4.3) of Asmussen (2000), p.231, the result of computing a, by iteration
of (16) is (to 5 decimal places of accuracy)

oy = (0.09007, 0.07254, 0.20063, 0.11384),

from which it follows that

-1.00000 1.00000 0 0
B= 0 —3.00000 3.00000 0
- 0 0 -2.00000 2.00000

0.36026  0.29016  0.80252 —3.54463

Furthermore, we can once again obtain expressions for m¢ in terms of the
initial surplus u. In particular, from ¥(u) = ayexp(uB)el, we get that

Y(u) = 0.23381e-3-6926"—0.26698e-3-5987"+o.04517e-1-6967“+0.46507e-°5566“,

and the elements of 7 work out to be:

TG = m(—0.05523e-3-6926“+0.06368e-3~5987u—0.01894e—1-6967"+0.10056e—°-5566u),
TGy = ﬁ(—0.093198'3'6926“+0.11626e‘3'5987“—-0.00638e"1'6967“+0.05585e“°'5566“),
TG3 = ﬁ(—0.03054e‘3'6926"+0.01242e‘3'5987“+0.033856“1'6967“+0.184906‘0'5566"),
TGe = ﬁ(O.412776‘3'6926“—0.459326"3'5987"+O.03664e‘1'6967“+0.12376e“°'5566“).

For several choices of u, Table 4 displays the elements of 7 (to 5 decimal
places of accuracy).

Table 4: Elements of 7¢ in Example 4 for various values of U

u a1 TG2 TGs TG4

0 | 0.18878 0.15205 0.42054 0.23862
0.5 ] 0.19177 0.12103 0.41659 0.27061

1 {0.19949 0.11598 0.40884 0.27570
3 | 0.21422 0.11928 0.39869 0.26781
5 | 0.21602 0.12001 0.39769 0.26629
10 | 0.21622 0.12010 0.39757 0.26611
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5 Concluding Remarks

In this paper, we have demonstrated that in the Sparre Andersen risk model
the conditional distribution of the deficit at ruin (given that ruin occurs) is
of phase-type if the distribution of the individual claim sizes is of phase-type.
A key component of the derivation is the identification by Asmussen (1992)
of the distribution of the ladder height random variable in this setting, or
equivalently the distribution of the amount of a drop in surplus given that a
drop does occur. Separate analytic and probabilistic proofs are provided, due
to the fact that each approach provides separate insight into the problem.

A remarkable feature of the result is the fact that the matrix of tran-
sition rates S is exactly the same for both the claim size distribution and
the distribution of the deficit at ruin, and the two distributions differ only
insofar as their initial probability vectors. While this result is in agreement
with our probabilistic intuition, as discussed in the body of the paper, its
importance cannot be overemphasized. It implies not only that the phase-
type representation is invariant under the deficit at ruin mapping, but that
this invariance property also extends to subclasses of the phase-type family
of distributions. Examination of the phase-type representation (and the ma-
trix of transition rates in particular) for such classes of distributions as the
exponential, combinations and mixtures of exponentials, and mixtures of Er-
langs reveals immediately that the distribution of the deficit remains within
the same class. This result provides additional insight into the conclusions
in Willmot (2000) which were obtained through a mixture representation.
It is worth noting that for the purposes of the present analysis the ordinary
Erlang distribution should be viewed as being within the class of Erlang mix-
tures with a particular initial probability vector, as is illustrated by Example
2.

Finally, we note that in addition to the result being quite general in
nature, it is normally quite tractable computationally using standard soft-
ware packages currently available, as we have demonstrated through our
examples.
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