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ABSTRACT

We seek to develop a model for pricing LTC insurance contracts in Australia using the
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1.0 INTRODUCTION

The Long Term Care (LTC) system in Australia is largely unfunded and characterised by an
absence of risk pooling or a sophisticated user pays mechanism. The system, therefore, stands
somewhat isolated from many of its counterparts overseas which combine private funding
mechanisms such as private LTC insurance with their respective State and publicly funded
welfare programs. With the exception of a limited number of accident compensation policies
where LTC is insured if attributable to accident, Australian insurers do not currently engage
in any form of LTC insurance business. As such, the task of pricing and reserving for private
LTC insurance contracts for introduction into the Australian market is made difficult due to a
lack of historical experience, adequate data and consensus on appropriate modelling
methodology and assumptions.

The primary objective of this paper, therefore, is to develop and test a multiple state model for
pricing and reserving LTC insurance using currently available Australian data. In Leung
(2004), a discrete time multiple state model was developed for projecting the needs and costs
of LTC in Australia. In this paper, we relax the assumption of discrete time and model the
underlying process in a continuous time Markov framework. The purpose of this is to enable
calculation of transition intensities for application in Thiele’s differential equation for pricing
and reserving. The modelling framework and results presented in this paper may be used as a
starting point for the development of LTC policies in Australia.

In this paper, we survey the relevant data currently available in Australia for pricing and
reserving for LTC insurance, and follow this with a brief review of the existing LTC pricing
and reserving literature emerging from Australia and abroad. Next, we develop the multiple
state model and discuss the probabilistic structure used to calculate premiums and reserves for
a set of illustrative hypothetical LTC insurance products. Finally, we analyse the sensitivities
of the model and present further avenues for research.

2.0 DATA REVIEW

Perhaps the greatest difficulty facing Australian insurers seeking to introduce LTC products is
the lack of complete, comprehensive and reliable data. This is particularly problematic in the
case of LTC insurance given the unusually broad range of services and modes of disability
associated with LTC (see Eagles 1992). Clearly choice of data will influence the modelling
methodology. In this section, therefore, a survey of relevant Australian data is undertaken for
the purposes of both introducing the current and available data sets in Australia and, more
importantly, in justifying the choice of data used in this paper.

21 Data Requirements

Ideal data for LTC insurance pricing is a longitudinal data set that tracks both levels of
disability and LTC utilisation patterns of a large representative population. As discussed by
Meiners (1989), the benefit of longitudinal data for LTC pricing is primarily to enable an
understanding of LTC utilisation changes as the cohort ages.

Many nations, including Australia, lack a systematic LTC data-reporting program enabling
comprehensive information to be collected across service sectors, care programs and
jurisdictions (see Reif 1985). Given that Australia currently has no private insurance
coverage for LTC, there is clearly a need to gather data on virtually all aspects of LTC cover
including costs, risk management, marketing and underwriting. From a pure actuarial pricing
and reserving perspective, utilisation/demand data for LTC segregated by age and sex in
conjunction with changes to utilisation /demand (ie functional changes) as a function of age




are essential. The following sections discuss and evaluate the various options for obtaining
this information.

2.2  Australian Insured Disability Data

Service and Pitt (2002), in their analysis of Australian disability claims, analyse an insured
disability database containing records concerning 106,000 individual claims and claim
characteristics over the period 1980 to 1998. The information attached to each record is
contained in Service and Pitt (2002).

Despite being the most comprehensive disability data set available for insurance purposes in
Australia, it remains unsuitable for LTC pricing for the following reason. Benefit triggers for
LTC insurance (as opposed to Disability Income Insurance) are typically payable on the
failure of a certain number of activities of daily living (ADLs) — usually 3 or 4 (see Pritchard
2002). The IAAust Disability Committee database, while reporting the onset and nature of the
disability, does not go further to detail the impact on the claimants functional capacity or
ability to perform ADLs. That is, a disability severity score, say, is not attached to each claim
cause and thus benefit triggers will be difficult to identify. The only possible indicator of
severity of disability in this data set is duration. As such, this data set was not further pursued
in this investigation.

2.3  Australian Bureau of Statistics Surveys (1981, 1988, 1993, 1998)

The Australian Bureau of Statistics (ABS) has published results of a number of surveys
detailing Australian population data on persons with disabilities, older persons and persons
who provide assistance to others due to their disabilities. The surveys are:

Survey of Handicapped Persons (1981);

Survey of Disabled and Aged Persons (1988);
Survey of Disability, Ageing and Carers (1993) and
Survey of Disability, Ageing and Carers (1998).

These surveys provide the only comprehensive source of data concerning the functional
capacities of persons in Australia on a population scale. The results from the Survey of
Disability, Ageing and Carers conducted from 16 March to 29 May 1998 represent the most
current information as at the time of writing. The data contained within those surveys and
used for this paper are those that relate to core activity restrictions (CAR) as detailed in
Leung (2004).

Note that although the survey results are not categorised according to an ADL scale, the
categorisation of data according to differing levels of core activity restriction (ie differing
levels of severity of disability) renders the results useful for the purposes of LTC pricing —
and, furthermore, easily translatable to an ADL system. For instance, a claim for LTC may be
allowed upon the failure of between 3 and 6 ADLs. Given that only persons who have either a
severe or profound core activity restriction, by definition, require LTC, one could infer a
severe core activity restriction being equivalent to the failure of 3 or 4 ADLs and a profound
core activity restriction being equivalent to the failure of 5 or 6 ADLs.

As outlined, ideal data required for pricing and reserving LTC insurance contracts includes
both the number of persons requiring LTC and the change in this demand as a cohort of
persons ages. Although non-longitudinal, the ABS survey data may conceivably be used to
ascertain this information in a number of ways which will be discussed in Section 4.




We re-iterate at this stage that the data for pricing and reserving LTC insurance in Australia is
far from ideal — restricting us largely to the prevalence rates contained in the 1998 ABS
survey of Disability, Ageing and Carers. These data limitations inevitably influence many of
the assumptions concerning methodology in this paper. We have tried to be as realistic as the
data allows.

3.0 LITERATURE REVIEW

A range of methodologies may be applied to pricing LTC insurance including inception
annuity approaches (see Gatenby 1991) or risk renewal approaches (see Beekman 1989). The
chosen methodology in this paper is a multiple state modelling approach within a continuous
time Markov framework with premiums and reserves calculated by means of applying
generalisations of Thiele’s differential equations. For brevity, we will refer to these as
Thiele’s differential equation for the remainder of the paper. This choice is motivated by the
benefits of multiple state modelling being an accurate representation of the underlying
insurance process, a greater degree of flexibility and scope for scenario testing and the ease of
monitoring actual experience against expected at a practical level (see Gatenby and Ward
1994, Robinson 1996 and Society of Actuaries Long-Term Care Insurance Valuation
Methods Task Force 1995).

Multiple state models are prevalent in the actuarial literature in areas including Life Insurance
(see Pitacco 1995), Permanent Health Insurance (PHI) in the UK (see Waters 1984, Sansom
and Waters 1988, Haberman 1993, Renshaw and Haberman 1998, Cordeiro 2001) and
Disability Income Insurance (see Haberman and Pitacco 1999). It is therefore unsurprising
that the suitability of multiple state modelling for LTC insurance has been well recognised
and consequently applied. For instance, Levikson and Mizrahi (1994) consider an ‘upper
triangular’ (UT) multiple state model in the general Markovian framework where three care
levels are considered and the insured life proceeds through the deteriorating stages of ADL
failure until death. Premium calculation is subsequently performed via a representation of the
discounted value of future benefits in a particular care level as a random variable. Similar
frameworks have been studied by Alegre et al (2002), who also consider a LTC system with
no recoveries and premium calculations derived by calculating annuity values in discrete time
for a life in a LTC claiming state. Moreover, the valuation of LTC annuities to price LTC
insurance in continuous time has been discussed by Pitacco (1993) and Czado and Rudolph
(2002).

Despite the wide range of methodologies considered abroad, only limited literature
concerning pricing LTC insurance contracts in Australia has been published. The earliest
paper, by Walker (1990), provides a brief introduction to the issues surrounding LTC
insurance pricing and provides specimen net single and annual renewable premiums for a
LTC benefit using illustrative morbidity rates for males, females and couples. Walsh and de
Ravin (1995) perform similar calculations based on data sourced from the 1993 ABS survey
of Disability, Ageing and Carers and calculated premium rates directly from prevalence rate
data. The mathematical methodologies are not detailed in their respective papers, but it is
clear that in both papers, calculations are based on an inception-annuity approach framework.

4.0 MODEL SPECIFICATION AND DEFINING ASSUMPTIONS

In Leung (2004), we used a discrete time multiple state model as depicted in Figure 1. Here,
we relax the assumption of discrete time and apply it in a continuous time framework. The
motivation for this is to enable the calculation of transition intensities for the purpose of
actuarial application — namely pricing and reserving using Thiele’s differential equations.
Note that we could have persisted with a discrete time process to price LTC cover using




annuity functions as in Alegre et al (2002). However, it was felt that the greater practicality,
flexibility and realism offered by using a Thiele’s differential equation framework for pricing
and reserving was a better route.

Figure 1: Transitions in the multiple state modél.

No CAR
(ie Able)
Mild Moderate Severe Profound
CAR CAR CAR CAR
A A A
Dead

Note that the model does not include an absorbing lapse state. While the inclusion of an
additional absorbing state to account for lapses is preferable for insurance pricing purposes,
its omission is solely attributable to unavailability of suitable data.

5.0 ESTIMATING TRANSITION PROBABILITIES

Ideally, we would like to estimate transition intensities directly from our data. (See Jones
(2002a), Jones (2002b)). However, the 1998 ABS survey data is in the form of prevalence
rates at one snapshot of time. We thus have no information as to when transitions to the
various core activity restriction categories occur. We outline possible approaches to this
problem in the following.

51 Maximum Likelihood Estimation

One possibility may be to compare prevalence rates over two or more consecutive ABS
surveys (for instance 1993 and 1998) and calculate maximum likelihood estimates of the z-

year probability , p;’b of a life aged (x) making a transition from state a to state b using an

equation of the form:

ab
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where n?

x,x+t

is the number of persons in state g, aged x in 1993, say, and in state b, aged x+5

in 1998. This type of approach has been undertaken using US National Long Term Care
Survey (NLTCS) data by several studies including Manton (1988) and Manton et al (1993).




We have a number of reservations about implementing such an approach using ABS survey
data. Firstly, the ABS survey data is not longitudinal. That is, persons have not been
individually tracked as is the case with the NLTCS surveys. Secondly, survey design changes
over consecutive surveys will inevitably render any calculated transition probabilities
inaccurate. Madden and Wen (2001) argue that an increase in prevalence from 1993 to 1998
does not reflect a substantial increase in underlying disability but rather a change in disability
survey design. A similar view is put forward by Davis et al (2001) who suggest that over half
of the increase in prevalence between 1993 and 1998 is due to changes in survey method.
This approach was thus not favoured in this paper.

5.2  Approximation from 1-step Transition Probabilities

We therefore use 1-year transition probabilities as calculated in Leung (2004) to estimate a set
of transition intensities. A detailed discussion of estimating the 1-step transition probabilities
in discrete time and the associated parameters is given in Leung (2004).

The 1-step transition probabilities at 10-yearly age intervals are reported in Tables 1 and 2
and illustrated in Figures 2 and 3 for males and females (from the able state) respectively.

Several observations should be made at this point.

1. Transition probabilities for both males and females generally behave as expected
with transition probabilities to disability states increasing with age.

2. Transition through disability levels is reasonably progressive. That is, given that a
transition out of the disabled state occurs, there is a higher probability of moving
to a lower disability level than directly to a more severe disability level. At higher
ages, however, transition to the profound core activity restriction state appears to
mildly exceed other intermediate disability levels. This seems reasonable owing
to the effects of ageing and chronic frailty.

3. Transition probabilities out of the disabled state appear higher for males than
females.

4. Given that a transition out of the disabled state occurs, transition to profound or
severe core activity restriction states appears higher for females than males.

5. Mortality in the profound or severe core activity restriction states is higher for
males than females.

Points 4 and 5 above are particularly interesting as they form the basis of an a priori
expectation that the likelihood of LTC utilisation by females will be higher than by males in
the Australian population, therefore resulting in more expensive premiums for females.




Table 1: Male 1-step transition probabilities.

Able
20

30
40
50
60

70
80
Mild

20
30
40
50

60

70

80
Moderate

20

8888

70
80
Severe
20
30
40
50
60
70
80
Profound
20
30
40
50
60
70
80
Dead
20
30
40
50
60
70
80

Able

0.990045
0.988251
0.983648
0.971556
0.940283
0.897377
0.702715

0.15
0.15
0.15
0.15
0.15
0.15
0.15

O O OO O OO O OO OO O O O OO OO O O

O OO OO O O

Mild

0.005229
0.006233
0.008726

0.01486
0.029544

0.04365
0.119224

0.844587
0.843664
0.841226
0.834462
0.815941
0.785242
0.652276

0.15
0.15
0.15
0.15
0.15
0.15
0.15

O OO OO O O O OO0 O O O O

O O OO OO o

Moderate

0.001793
0.002137
0.002992
0.005095

0.01013
0.015034
0.046477

0.002142
0.002554
0.003575
0.006088
0.012106
0.017965

0.05554

0.846325
0.845736
0.844127
0.839403
0.825764
0.799797
0.695148

0.1
0.1
0.1
0.1
0.1
0.1
0.1

O OO O OO O

O OO OO O o

Severe

0.000926
0.001104
0.001545
0.002632
0.005234
0.007801
0.027297

0.001107
0.001319
0.001847
0.003145
0.006254
0.009322

0.03262

0.001322
0.001576
0.002207
0.003758
0.007474

0.01114
0.038981

0.895797
0.893162
0.887611
0.877522
0.860314
0.832916
0.748219

0.05
0.05
0.05
0.05
0.05
0.05
0.05

O OO O OO Oo

Profound

0.000808
0.000963
0.001348
0.002295
0.004564
0.006833
0.027065

0.000965
0.00115
0.00161

0.002742

0.005454

0.008166

0.032342

0.001153
0.001375
0.001924
0.003277
0.006518
0.009758
0.038649

0.001378
0.001643

0.0023
0.003916
0.007789
0.011661
0.046185

0.945549
0.940923
0.931562
0.916438
0.896451
0.868459

0.81603

O 0O OO O OO

Dead

0.001199
0.001313
0.001742
0.003562
0.010245
0.029305
0.077222

0.001199
0.001313
0.001742
0.003562
0.010245
0.029305
0.077222

0.001199
0.001313
0.001742
0.003562
0.010245
0.029305
0.077222

0.002825
0.005195

0.01009
0.018562
0.031897
0.055423
0.105596

0.004451
0.009077
0.018438
0.033562
0.053549
0.081541

0.13397

[ G G U (U G G



Table 2: Female 1-step transition probabilities.

Able
20
30
40
50
60
70
80

Mild
20
30
40
50
60
70
80

Moderate
20
30
40
50
60
70
80

Severe
20
30
40
50
60
70
80

Profound
20
30
40
50
60
70
80

Dead
20
30
40
50
60
70
80

Able

0.991502
0.990264
0.986776

0.97731

0.95288
0.920111
0.745522

0.15
0.15
0.15
0.15
0.15
0.15
0.15

O O O O O O O O OO0 O O O O O O O O O O O

©O O OO O O O

Mild

0.004906
0.005612
0.007486
0.012414
0.024985
0.037427
0.088349

0.845614
0.844967

0.84305
0.837712
0.823774
0.800804
0.654558

0.15
0.15
0.15
0.15
0.15
0.15
0.15

O O O O O O O O OO0 O O O O

O O O O O O O

Moderate

0.001299
0.001486
0.001983

0.00329
0.006659
0.010481
0.033458

0.001624
0.001858
0.002479
0.004113
0.008324
0.013102
0.041825

0.846652
0.846155
0.844634
0.840339
0.829065
0.808763
0.670198

0.1
0.1
0.1
0.1
0.1
0.1
0.1

O O O O O O O

O O O O O O O

Severe

0.0009463
0.0010826
0.0014443
0.0023981
0.0048804
0.0080711
0.0348423

0.001183
0.0013533
0.0018054
0.0029977
0.0061008
0.0100893

0.043555

0.0014788
0.0016917
0.0022569
0.0037473
0.0076264
0.0126122
0.0544463

0.8961415
0.8935488
0.8879883
0.8781655
0.8631546
0.8419825
0.7271528

0.05
0.05
0.05
0.05
0.05
0.05
0.05

O O O O O O O

Profound

0.000929
0.001063
0.001418
0.002357
0.004823
0.008381
0.048925

0.001162
0.001329
0.001773
0.002946
0.006029
0.010476
0.061159

0.001452
0.001661
0.002217
0.003683
0.007537
0.013096
0.076453

0.001815
0.002077
0.002771
0.004604
0.009421
0.016371

0.09557

0.946331
0.941744
0.932411
0.917769
0.900924
0.882235
0.844349

O O O O O O O

Dead

0.000417
0.000492
0.000893
0.002231
0.005772
0.015529
0.048903

0.000417
0.000492
0.000893
0.002231
0.005772
0.015529
0.048903

0.000417
0.000492
0.000893
0.002231
0.005772
0.015529
0.048903

0.002043
0.004374
0.009241
0.017231
0.027424
0.041647
0.077277

0.003669
0.008256
0.017589
0.032231
0.049076
0.067765
0.105651

-t b b b b b b




Figure 2: Male 1-step transition probabilities
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Figure 3: Female 1-step transition probabilities.
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6.0 ESTIMATION OF TRANSITION INTENSITIES

Given our inability to estimate transition intensities directly from our data, we calculate
transition intensities in the model using estimated transition probabilities. Note, however, that
since we have approximated 1-year transition probabilities using 1-step transition
probabilities from Rickayzen and Walsh’s (2002) framework , this creates difficulties when
transforming transition probabilities to transition intensities. This is because the discrete time
framework proposed by Rickayzen and Walsh (2002) is characterised by incomplete
communication of all states. This inevitably leads to structural inconsistencies in our
transition intensity matrix, with several off-diagonal entries estimated as negative values. One
possible way of approaching this difficulty is to re-estimate a set of transition probabilities
inclusive of a full set of recovery transitions — consistent with a Markov framework. Given
our data limitations, however, this was not possible. We chose to pursue estimating transition
intensities from our existing 1-step transition probabilities and couple this with a constraining
algorithm to force the negative transition intensities to lie in the feasible region. Our
justification for this is twofold. First, even if we were able to accurately estimate a full set of
transition probabilities including all recovery transitions, this does not guarantee that the




problem of negative transition intensities would occur (see, for example, Pritchard (2002)).
Second, the recovery transitions that are absent under the current framework are likely to be
small. For the ultimate purpose of this paper which is to price and reserve, the impact of this
inconsistency is minimal and in any case, should be encapsulated within the bounds of our
sensitivity analysis.

6.1 Calculating Transition Intensities from Transition Probabilities

We impose a Markov assumption to describe the process in our model. That is, we consider a
stochastic process {S ®),0<t< °°} with state space {1,2,...,6} where S(z) represents the

state of the process at time 7. {S ®),0<t< °°} is a continuous time Markov chain if for states
ghe {2, . 6tandx >0,

Pr{S(x+1)=h| S(x) = g,5(r) for 0< r < x}=Pr{S(x+1) = h| S(x) = g}. @)

In other words, the future development of S(z) can be determined only from its present state
and without regard to the process history. We denote , p¥* = Pr{S (x+1)= h| S(x)= g},

. p? = Pr{S (x+u)=gVuelx,x+ t]‘ S(x)= g} and assume a closed system whereby

6
Z ,p¥ =1 for all x=0and t>0. The transition probabilities also obey the Chapman-
h=l
Kolmogorov equations:

6
t+,p8 =, pf-.ph, 3)

1=1
The existence of transition intensity functions is also assumed such that

h
# —lim 2P @)
/ux - t—0+ t

or, alternatively, that , p%*=, 45" +o(t) . Transition and occupancy probabilities are related
to transition intensities via the relations:

d
= p# =3 (, pfut - p2 ) )

dt I1#h
and

P = exp(—qufirdr] 6)

0l=g

where equations (5) are better known as the Kolmogorov forward equations. A more detailed
discussion of Markov processes can be found in Cox and Miller (1965).

We further require the assumption that the transition intensities for each age in the 1998 ABS
survey data are constant (ie piecewise constant intensities). Consequently, if we define P(t) to
be the matrix of transition probabilities over ¢ years and Q to be the matrix of constant
transition intensities per annum, then it can be shown directly from the Chapman-
Kolmogorov equations (see Jones (1992b)) that

P(t) = exp (Qt) M

10




Thus, calculating transition intensities requires finding the infinitesimal generator Q for the
transition probability matrix P(t).

A number of numerical approaches may be used to determine Q such as uniformization
techniques (see Stewart 1994) or the evaluation of Pade approximants (see Higham 2001,
Cheng et al 2001). We chose to use a Schur-Parlett method purely because of its
straightforward implementation through software such as MATLAB, which we used.

The method, which is discussed in greater detail in Golub and Van Loan (1983), initially
requires the computation of a Schur decomposition P = UTU", where U is a unitary matrix

(ie its entries are complex and its inverse is the conjugate-transpose), U’ is the conjugate
transpose of U, and T is an upper triangular matrix. We can then determine functions of
matrices (including natural logarithms) using the formula:

f@=Uf(MU’ ®)
Parlett (1974) proposes a recursive relationship for determining the matrix F, defined as AT),

which is derived from equating elements (i,j) where i<j,( ie strictly upper triangular) in the
commutivity relation FT=TF. The elements (i,j) in the commutivity result satisfy

J J .
Zfiktkj =ztikfkj )
k=i k=i

and as long as t; #1 ; (ie the eigenvalues are distinct), then:

fi— Ty Z_:[tikfkj _fiktkj]
EY i + k=i+l

t; =t ty—t

fi =1, (10)

Thus, starting with f,; = f(z;), all other elements of F can be calculated one superdiagonal

at a time. Tables 3 and 4 report the calculated annual transition intensities calculated from 1-
step transition probabilities at 10-yearly age intervals for males and females respectively. As
anticipated, there are a number of calculated transition intensities which are negative and thus
have no physical interpretation. They remain useful, however, as starting values for our
constraining algorithm in Section 6.2. We will refer to these ‘unconstrained estimates’ as

ﬁf for the transition intensity at age x from state i to state j constituting matrix generator Q.

We found the Schur-Parlett approach to give satisfactory results over the majority of the age
range. We note, however, that the computational procedure was unstable at the extremely
high ages. This is perhaps attributable to one or more of the following reasons:

1. the 1998 ABS survey data has ages beyond 85 grouped together in a single strata,
thereby limiting our ability to understand the underlying process at higher ages;

2. the extremely high ages are the likely region where the assumption of constant
intensities is most unrealistic;

3. exposure at the higher ages is extremely low.

11




Table 3: Male unconstrained transition intensities calculated from 1-step transition probabilities in 5 yearly age intervals.

Able
20
30
40
50
60
70
80

Mild
20
30
40
50
60
70
80

Moderate
20
30
40
50
60
70
80

Severe
20
30
40
50
60
70
80

Profound
20
30
40
50
60
70
80

Dead
20
30
40
50
60
70
80

Able

0.163936

0.16419
0.164851
0.166644
0.171567
0.179329
0.225628

-0.01416
-0.01419
-0.01429
-0.01455
-0.01531
-0.01659
-0.02487

0.001055
0.001061
0.001074
0.001106
0.001188
0.001334
0.002285

~4.2E-05
-4.3E-05
~4.4E-05
-4.6E-05

-5E-05
-5.8E-05
-0.00011

O O OO O O O

Mild

0.005552
0.006628
0.009315
0.016034
0.032798
0.050588
0.172025

0.17751
0.177686
0.178158
0.179494
0.183309
0.190219
0.227448

-0.0101
-0.01014
-0.01021

-0.0104
-0.01084
-0.01164
-0.01592

0.000364
0.000367
0.000373
0.000385
0.000411
0.000456

0.00068

O O O O O O O

Moderate

0.001896
0.002262
0.003172
0.005429
0.010957
0.016731
0.058298

0.0023
0.002744
0.00385
0.006599
0.013363
0.020487
0.07359

0.114858
0.115073
0.115556
0.116579
0.118786

0.12276
0.139842

-0.00312
-0.00314
-0.00318
-0.00325
-0.00338
-0.00361
-0.00448

O O O O O O O

Severe

0.000956
0.001141
0.001602
0.002746
0.005528
0.008445
0.031805

0.001159
0.001384
0.001945
0.003337
0.006741
0.010338
0.040084

0.001384
0.001653
0.002322
0.003986
0.008062
0.012375
0.048401

0.054325

0.05454
0.054988
0.055764
0.056957
0.058828

0.06418

O OO O O O O

Profound

0.00083
0.000992
0.001395
0.002394
0.004817
0.007376
0.030252

0.001007
0.001203
0.001693

0.00291
0.005874
0.009029
0.038093

0.001202
0.001436
0.002022
0.003476
0.007025
0.010808
0.045992

0.001432
0.001713
0.002417
0.004174
0.008472
0.013082
0.056202

O O OO0 O O O

Dead

0.001198
0.001308
0.001725
0.003511

0.01013
0.029426
0.078928

0.001197
0.001306
0.001721
0.0034¢98
0.010091
0.029352
0.078519

0.001197
0.001305
0.001716
0.003484
0.010051
0.029274

0.07813

0.002916
0.005416
0.010587
0.019538
0.033564

0.05842
0.112765

0.0045
0.009214
0.018817
0.034521
0.055611
0.085793
0.144751
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Table 4: Female unconstrained transition intensities calculated from 1-step transition probabilities in 5 yearly age intervals.

Able
20
30
40
50
60
70
80

Mild
20
30
40
50
60
70
80

Moderate
20
30
40
50
60
70
80

Severe
20
30
40
50
60
70
80

Profound
20
30
40
50
60
70
80

Dead
20
30
40
50
60
70
80

Able

0.163707
0.163882
0.164386

0.16578

0.16951
0.175197
0.217371

-0.01413
-0.01415
-0.01423
-0.01444
-0.01502
-0.01597
-0.02427

0.001053
0.001057
0.001068
0.001096

0.00116
0.001267
0.002277

-4.2E-05
-4.3E-05
-4.3E-05
-4.5E-05
-4.9E-05
-5.4E-05
0.00011

O O OO O O O

Mild

0.005238
0.005998
0.008025

0.01342
0.027604
0.042664
0.123111

0.177359
0.177491
0.177885
0.178994
0.181963

0.18715
0.230334

-0.01009
-0.01012
-0.01019
-0.01035
-0.01071
-0.01131
-0.01653

0.000364
0.000366
0.000372
0.000383
0.000404
0.000436

0.00069

O O OO O O O

Moderate

0.001357
0.001553
0.002075
0.003457
0.007069

0.01133
0.041157

0.001728
0.001978
0.002643
0.004409
0.009048
0.014566
0.054786

0.114811
0.115016
0.115491
0.116458
0.118329
0.121394
0.144654

-0.00312
-0.00313
-0.00317
-0.00324
-0.00335
-0.00352
-0.00457

O O OO O O O

Severe

0.000973
0.001115
0.001492
0.002492
0.005119

0.0086
0.040843

0.001239
0.001419

0.0019
0.003178
0.006552
0.011055
0.054306

0.001547
0.001773
0.002374
0.003971
0.008197
0.013852
0.069226

0.054293
0.054505
0.054952
0.055704
0.056724
0.058059
0.064107

O 0O OO0 O O O

Profound

0.000954
0.001094
0.001467
0.002455
0.005065
0.008908
0.053228

0.001215
0.001393
0.001868
0.003131
0.006483
0.011451
0.070644

0.001517
0.00174
0.002334
0.003913
0.00811
0.014349
0.09001

0.001888
0.002169
0.002917

0.00491
0.010227

0.01817
0.116279

O O O O O O O

Dead

0.000415
0.000486
0.000875
0.002177

0.00562
0.015295
0.047905

0.000414
0.000484
0.000869
0.002161
0.005571
0.015189
0.047106

0.000413
0.000482
0.000863
0.002143
0.005517
0.015072
0.046253

0.002131

0.00459
0.009727
0.018176
0.028925
0.043837
0.080699

0.003715
0.008385
0.017952
0.033144
0.050892
0.070886
0.112549
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6.2  Constraining Transition Intensities to the Non-negative Region

Clearly we require transition intensities which are positive. We now discuss how we ensured
this condition to produce ‘constrained estimates’, /'2;’ Jfor the transition intensity at age x from

state i to state j, constituting matrix generator Q, .

Determining an appropriate method to deal with this requires care as adjusting negative
‘transition intensities’ to non-negative values will inevitably force other transition intensities,
particularly those complementary to transition intensities that are negative, to compenstate
accordingly.

This problem has been encountered previously in the literature. For instance, Pritchard (2002)
and Stallard and Yee (1999) both used US NLTCS data and estimated negative ‘transition
intensities’ from transition probabilities. In this section, we outline four possible methods for
constraining the transition intensities to be positive and discuss the approach ultimately
pursued.

The most straightforward approach would simply be to set any negative ‘transition intensities’
to zero and compensate accordingly on the negative diagonal to retain a zero row sum. This
was the approach adopted by Stallard and Yee (1999). Certainly this is the most
computationally efficient approach. However, we decided against this method as we felt that
our estimated negative transition intensities were not small enough to be forcefully
disregarded entirely. Moreover, Stallard and Yee (1999) state that their small negative
transition intensities should have been estimated as zero-values. There is no intuitive reason
for this, however, in this study.

Pritchard (2002) similarly encounters the problem of negative transition intensities in his
study of a disability model for LTC insurance using US NLTCS data. Pritchard (2002)
calculates 2-year and S-year transition probabilities using a maximum likelihood approach
and transforms them into transition intensities using an inverted method from Section 6.4.2 of
Kulkarni (1995). Pritchard (2002) then constrains the transition intensities to lie in the non-
negative region by maximising the log-likelihood function and introducing a penalty function
which ensures that all transition intensities remain non-negative during a computational
maximisation procedure. We cannot implement such an approach in our study as the 1998
ABS data do not provide any information on the number or nature of transitions over a given
period and thus do not allow a maximum likelihood approach for estimating transition
probabilities or transition intensities.

We therefore restrict our attention to two possible approaches. The first originates from the
mathematical finance literature relating to finding valid generators for credit rating matrices.
Israel et al (2001) develop an algorithm for finding generators using Lagrange interpolation.

We implemented this approach by revisiting the relationship in (7) and estimating Qusing
Israel et al’s (2001) algorithm instead of our original Schur-Parlett method. Israel et al (2001)
warn that the algorithm is inadequate when the eigenvalues 8,,6,....,8, of P are ‘close’. We
found this inadequacy to cause the algorithm to fail for the vast bulk of our age range —
particularly the young to mid age ranges. Tables 5 and 6 show the eigenvalues for the

transition probability matrices estimated from 1998 ABS survey data at 10-yearly age
intervals for both males and females respectively. We suspect that the ‘close’ eigenvalues

causing the failure of the algorithm for most ages are the pairs (6,,6,) and (6, ,8,) for both
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males and females. Even forcing the algorithm to consider up to 20 decimal places did not
provide any improvement.

Table 5. Eigenvalues for transition probability matrices estimated from 1998 ABS survey data in 10-
yearly age intervals — Males.

Age Eigenvalue
6, 6, 6, 6, 6, 6,

10 0.999821 0.838121 0.848222 0.896817 0.948796 1
20 0.998724 0.836277 0.846855 0.894568 0.945879 1
30 0.998483 0.834203 0.84593 0.891629 0.941491 1
40 0.997715 0.828986 0.843431 0.885246 0.932796 1
50 0.995003 0.81566 0.836371 0.872998 0.919348 1
60 0.986077 0.782183 0.816708 0.851791 0.901994 1
70 0.96448 0.737629 0.784764 0.821292 0.875627 1
80 0.534709 0.646476 0.721884 0.899341 0.811978 1

Table 6. Eigenvalues for transition probability matrices estimated from 1998 ABS survey data in 10-
yearly age intervals — Females.

Age Eigenvalue
6, 6, 6, 6, 6, 6,

10 0.999838 0.839261 0.847249 0.895964 0.949215 1
20 0.999496 0.838461 0.846717 0.894471 0.947096 1
30 0.999287 0.83703 0.845997 0.891524 0.942841 1
40 0.998546 0.833052 0.843896 0.884956 0.934408 1
50 0.996327 0.82245 0.838032 0.872459 0.922028 1
60 0.990413 0.795729 0.821848 0.852858 0.90895 1
70 0.977043 0.760464 0.795421 0.828059 0.892909 1
80 0.567567 0.624489 0.706487 0.827405 0.915832 1

It would indeed be possible to modify the algorithm for the case of close or repeated
eigenvalues (see Singer and Spillerman (1976, Sec 3.3b)). However, this search would be
much more involved and more difficult to implement.

We choose instead to implement a simple constraining algorithm to constrain the transition
intensities to lie in the non-negative region. That is, we estimate Q using

Q = min"P - exp(f))" (11)

such that the elements (i,,j), i # j, of Q are non-negative.

The procedure incorporates a least squares routine, using the unconstrained transition

intensities as starting values and exp (6) evaluated using a Taylor series expansion (see Moler
and Van Loan (1978) for series computations of matrix exponentials):

-~

A - 1~n ~ 1“'2 1 n
=Y —-0"=I +Q0+—0°+...+— 12
exp (Q) ;n!Q () 2!Q n!Q + (12)

Tables 7 and 8 show the annual constrained transition intensities calculated using the above
algorithm at 10-yearly age intervals for both males and females respectively. Interestingly, the
constraining procedure results in Q having the non-negative off diagonal entries estimated as
zero and recovery transitions only occurring progressively by one state — a likely feature of

estimating transition intensities from transition probabilities estimated using Rickayzen and
Walsh’s (2002) framework.
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Table 7: Male constrained transition intensities in 5 yearly age intervals.

Able
20
30
40
50
60
70
80

Mild
20
30
40
50
60
70
80

Moderate
20
30
40
50
60
70
80

Severe
20
30
40
50
60
70
80

Profound
20
30
40
50
60
70
80

Dead
20
30
40
50
60
70
80

Able

0.16274
0.162984
0.163619
0.165353
0.170124
0.177647
0.221915

O OO OO OO O OO O O O O O O O O O OO

O O O O O O O

Mild

0.005535
0.006611
0.009299
0.016017
0.032777
0.050562
0.171942

0.171054
0.171502
0.172716
0.174649
0.178058
0.184316
0.216654

O OO O O O O

O OO O O O O

Moderate

0.001894
0.002262
0.003174
0.005431
0.010964
0.016749
0.058377

0.002654
0.003072
0.004112
0.006806
0.013593
0.020748
0.074159

0.111617
0.111888
0.112424
0.113317
0.115347
0.119016

0.13433

O OO O O O O

O OO O O O O

Severe

0.000956
0.001141
0.001603
0.002749

0.00554
0.008463
0.031924

0.001267
0.001516
0.002139
0.003566
0.007001
0.010646
0.040752

0.0001
0.0001
0.0001
0.001486
0.005464
0.009604
0.044712

0.053249
0.053453
0.053877
0.054621
0.055759

0.05754
0.062538

O O O OO OO

Profound

0.000829
0.000991
0.001395
0.002399
0.004831
0.007401

0.03037

0.0011
0.001317
0.001862
0.003138
0.006132
0.009331
0.038714

0.0001
0.0001
0.0001
0.00097
0.004424
0.00804
0.042458

0.0001

0.0001
0.000368
0.002108
0.006328
0.010805
0.053389

O O O O O O O

Dead

0.001198
0.001307
0.001725
0.003514
0.010139
0.029442

0.07903

0.001293
0.001412
0.001864

0.00371
0.010323
0.029616
0.079062

0.0001
0.0001
0.0001
0.001143
0.007668
0.026776
0.075

0.000713

0.0033
0.008625
0.017608
0.031601
0.056369
0.110323

0.003661
0.008374
0.017969
0.033667
0.054741
0.084883
0.143705
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Table 8: Female constrained transition intensities in 5 yearly age intervals.

Able
20
30
40
50
60
70
80

Mild
20
30
40
50
60
70
80

Moderate
20
30
40
50
60
70
80

Severe
20
30
40
50
60
70
80

Profound
20
30
40
50
60
70
80

Dead
20
30
40
50
60
70
80

Able

0.16252
0.162691
0.163172

0.16452
0.168141
0.173658
0.214095

6000000 O OO O O O O O O O O O O O

O OO OO O O

Mild

0.005219
0.005978
0.008004
0.013394
0.027578
0.042624
0.122889

0.170766

0.17114
0.172247
0.174135

0.17685
0.181535
0.219895

O 0O OO O OO O O O O O O O

O 0O O OO OO

Moderate

0.001353
0.001551
0.002078
0.003471
0.007069
0.011333
0.041199

0.002092
0.002321
0.002919

0.00461
0.009264
0.014801
0.055272

0.111722
0.111999
0.112391
0.113222
0.114942
0.117768
0.138745

O OO O O O O

Severe

0.000973
0.001115
0.001491

0.00249
0.005126
0.008613

0.04099

0.001359
0.001562
0.002096
0.003409

0.0068
0.011343
0.055001

0.0001
0.0001
0.0001
0.001411
0.005633
0.011159
0.065519

0.053218
0.053417
0.053842
0.054561
0.055536
0.056803

0.06239

0O OO0 O O O O

Profound

0.000954
0.001094
0.001466
0.002454
0.005074
0.008928
0.053354

0.001336
0.001536
0.002062

0.00336
0.006728
0.011731
0.071246

0.0001
0.0001
0.0001
0.001344
0.005546
0.01167
0.086646

0.0001
0.000138
0.000892

0.00285
0.008102
0.015949
0.113418

O OO OO O O

Dead

0.000416
0.000487
0.000875
0.002177
0.005631
0.015317
0.048004

0.000444
0.000522
0.000939
0.002345
0.005796
0.015443
0.047636

0.0001
0.0001
0.0001
0.0001
0.003165
0.012649
0.043193

0.0001
0.002566
0.007726
0.016234

0.02698
0.041836
0.07823

0.002867
0.007542
0.017105
0.032294
0.050029
0.069999

0.11152
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We illustrate in Figures 4 and 5, the constrained transition intensities for both males and
females from the able state estimated using the simple constraining algorithm described
above.

Several important observations may be made here.
1. Clearly Q, no longer contains any negative ‘transition intensities’;

2. The constraining procedure does not impact on the unconstrained negative
intensities in isolation. All elements of the transition intensity matrix will be
affected. However, a comparison of the unconstrained transition intensities
against the resulting constrained transition intensities for both males and
females reveals only marginal differences to other elements as a result of the
constraining procedure.

3. We also note that several transition intensities have the tendency to change
direction abruptly at the extremely high ages (eg ,ufs and 54 for females).

4. Recovery intensities appear to be increasing as a function of age for both
males and females. This initially seems counter intuitive. However, if we
consider the conditional probability that a recovery transition occurs given a
departure from the life’s current state, it is easily verifiable that this quantity
is indeed decreasing as a function of age - which is consistent with the
underlying recovery process. A further reason lies with the Rickayzen and
Walsh’s (2002) feature of recovery transition probabilities which are constant
for each age.

Finally, we note that although the constraining procedure produces a matrix Q that has row-
sums 0 and non-negative off diagonal entries, it no longer satisfies P(1) = exp(Q) exactly. We
are confident, however, that our constraining procedure which forcefully minimises the

difference between P(1) and exp (6) produces a transition intensity matrix chosest to the
true generator Q.

Overall, the method we use here to constrain the transition intensities is not critical as these
intensities must ultimately be graduated in order to apply Thiele’s differential equation
approach, as will be discussed in the following section.

Figure 4: Male constrained transition intensities

Initial State Able (1)

COCLTER R ITT T T T TI TR n rn r T
B8 LIBBICRI S
Age
Able to Moderate  ———~ Able to Severe
Able to Dead

Able to Mild
Able to Profound
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Figure 5: Female constrained transition intensities

Initial State Able (1)

ll
- 0 0 N O ©
N N

— Able to Mild ——— Able to Moderate ——-Able to Severe
—— Able to Profound —— Able to Dead

7.0 GRADUATING THE TRANSITION INTENSITIES

In this section, we graduate the constrained transition intensities calculated in Section 6. We
are restricted by our choice of graduation technique given our purposes here. Thus, graduation
by mathematical formulae is pursued purely because of the need for functional forms for the
constrained transition intensities for use in the Thiele’s differential equations pricing and
reserving framework. Graduation by mathematical formulae is discussed in detail in
Benjamin and Pollard (1980), London (1985) and Forfar et al (1988). The graduation of
transition intensities will be discussed here in three parts. We begin by graduating transition
intensities to core activity restriction states, then graduate recovery transition intensities and
finally graduate mortality transition intensities. Furthermore, smoothness and goodness of fit
criteria are discussed here in relation to the absence of exposed to risk information.

71 Graduating Transition Intensities to Core Activity Restriction States

ors . o . 4 15 ,,23 24 25 34 35
The transition intensities considered here are 2\, 12, p2, > u?, 2, pu?, 12*, i and

,u:s for both males and females. Our choice of formulae was directly influenced by the

functional forms used to estimate the original 1-step transition probabilities in discrete time
from which these intensities were derived as discussed in Sections 5 and 6. We estimated
transition probabilities to core activity restriction states according to a logistic type function
motivated by Perks (1932) (see Leung (2004)). We therefore chose to use a Perks formula
specification, a(x), to graduate transition intensities to core activity restriction states.
Moreover, we included an additional parameter, H, for the purposes of a more suitable fit.

a(x) = —+ H (13)

Unsurprisingly, the Perks formula specification could not adequately fit the entire age range.
We therefore blended an additional function for higher ages using a 5™ order polynomial,
b(x). We found a 5™ order polynomial sufficiently flexible to capture the dynamics in the raw
information at the high ages while also retaining sufficient degrees of freedom in the
specification. Note that the use of a simple polynomial function has been found in CMIR 7
(1984) to not necessarily result in inferior graduations as compared to more specialised
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formulae. We chose to blend the Perks formula and the 5® order polynomial at age 65. There
were several cases, however, where the Perks specification was adequate to higher ages. In
those cases, we blended the 5™ order polynomial at age 90. We discuss our methods here
assuming blending at age 65. The alternative is a trivial modification. As

b(x) = a, (x—65)° + , (x—65)* + &, (x —65)° + @, (x - 65)* + a,(x —65) + @, (14)
the graduated transition intensities to core activity restriction states are specified as:

A+B

O A x <65

ol 1+D¢ +Kc

M =3 (15)
L al(x—65)5 ta (x-65* ta (x—65° ta, (x~65? ta(x-69+a  x265

Smoothness was ensured to be adequate at the blending age by letting a(65) = b(65) and
a'(65) = b'(65). Note that one advantage of our polynomial specification of b(x) is that it
allows us to satisfy these smoothness requirements easily. It is easily seen that b(65) and
b'(65) equals the parameter estimates of & and ¢, respectively.

This leads to the next issue of parameter estimation. The parameters were calculated for the
Perks function using unweighted non-linear least squares estimation to minimize the sum of
squared errors, SS, between the observed and fitted intensities

NN G
SS=>|u,—u, (16)

Estimating parameters for the polynomial now becomes a straightforward least squares
exercise. Given that &5 and ¢ are already determined from a'(65) and a(65) respectively,

taking partial derivatives of SS with respect to ¢&;,c,, @, and @, and equating to zero
produces normal equations from which parameter estimates may be obtained. That is:

$S =3 [a) -y (x-65)° —a,(x - 65)* ...~ [ an

and

3‘5; SS=2 A (x=657 ~aq Y (x-65" ~a, 3 (x~65""7 ~..ma, Y (x~69*” =0
y
(18)
for y=1,2,34.

We would have preferred to use a weighted least squares approach. However, this is not
possible as there is no exposure information in our data.

We noted earlier that several transition intensities have the tendency to change direction
abruptly at extremely high ages (eg ,ufs and ,uf“ for females). For these transition intensities,

we found that the graduated curve behaved badly at the extremely high ages , sometimes
producing negative values, and thus displaying instability in the graduation. This occurred
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very infrequently and only affected the last few ages in the age range. We therefore simply
discarded these graduated rates. Again, this phenomenon and subsequent treatment is not
uncommon in health related data (see CMIR 7 (1984)). An alternative option was to graduate
over a stable age range and extrapolate for other ages. We chose not to pursue this, but rather
to adhere to our observed data. In any case, for our ultimate purpose of pricing and reserving
calculations, we anticipate that the impact of a handful of transition intensities at the
extremely high ages will be minimal. This will be confirmed once we test the sensitivity of
the model (see Section 9).

The parameter estimates for graduating transition intensities to core activity restriction states

for both males and females by mathematical formula as specified in equation (14) are
presented in Tables 9 and 10 respectively. :
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Table 9. Parameter estimates for graduating transition intensities to core activity restriction states for

males using a blended Perks and 5

Parameters

nRTAw>

Blend Point

mRTe W

Blend Point

RO W

Blend Point

012

A,
0.001716
0.000112
1.097952
0.000127

110
0.006186

90

-0.000022
0.000214
-0.00156
0.015836

0.01926

0.321477

023

R 2
0.001762
0.000053
1.093061

-0.0001
110
0.002894
90

-0.000053
0.000467
-0.00081
0.002509
0.029229
0.225823

035

Hy
-0.00217
0.000036
1.098811
0.002054
110
0.000203
65

-0.000000041
0.00000226
-0.000018
0.0000385
0.000513

Transition
Intensity
o 13

A
0.001192
0.0000422
1.093898
-0.000048
110
0.002114
90

0.000141
-0.00199
0.009249
-0.01343
0.016841
0.157799
o A
A
0.002586
0.0000265
1.097779
0.001027
110

0.001114
65

0.000000136
-0.0000084
0.000175
-0.00105
0.000541
0.009338

0 45

A
-0.00101
0.0000479
1.099158
0.002476
110
0.000119
65

-0.000000056
0.00000332
-0.000035
0.000136
0.000559

order polynomial specification.

014

Ay
-0.00174
0.0000316
1.090271
-0.00019
110
0.001342
90

-0.0000021
-0.00015
0.001942
-0.00788
0.019748
0.124831

025

A,
0.00247
0.0000218
1.097779
0.000907
110
0.000945
65

-0.000000024
0.00000107
0.00000271
-0.0000084

0.000478
0.008153

03

A
0.001849
0.0000175
1.097587
0.000811
110
0.000711
65

-0.000000057
0.00000306
-0.000041
0.000191
0.000402
0.006495

0 34

M,
-0.00208
0.0000447
1.098795
0.002346
110
0.000185
65

0.0000000072
-0.00000014
0.0000118
-0.000038
0.000564
0.008121
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g

0.006751

0.009038

Table 10. Parameter estimates for graduating transition intensities to core activity restriction states for
females using a blended Perks and 5™ order polynomial specification.

Parameters

DRT e Wy

Blend Point

RO e W

Blend Point

DRSS e Wy

Blend Point

012

M
0.005823
0.000125
1.097723
0.001315

110
0.004864

65

0.0000000761
-0.0000033
0.0000308
0.00023
0.002226
0.037427

023

Ky
0.000832
0.000041
1.092977
-0.000066

110
0.002054

90

-0.00018
0.003599
-0.02161

0.031538
0.016561
0.148599

035

M
-0.00231
0.0000441
1.098456
0.001818
110
0.000196
65

0.000000361
-0.00002
0.000372
-0.00189
0.000681

Transition
Intensity
013

K
0.001667
0.0000313
1.097345
0.001196
110
0.001246
65

0.0000000379
-0.0000014
0.0000129
0.000085
0.000586
0.009632

oA

Hy
-0.0067
0.0000534
1.090209
-0.00024
110
0.002363
90

0.000342
-0.0081
0.057726
-0.09074
0.050926
0.253975

045

M
0.000922
0.0000469
1.098481
0.001304
110
0.0000385
65

-0.00000032
0.0000244
-0.0005
0.003365
0.000871

014

M
0.001234
0.0000219
1.097263
0.001006
110
0.000901
65

0.00000007
-0.0000046
0.0000953
-0.00052
0.000452
0.007073
025
M
-0.01985
0.0000803
1.091327
-0.0002
110

0.003899
90

-0.000065
0.001607
-0.01093
0.003431
0.066463

0.35935

o 15

M
0.001233
0.0000217
1.097267
0.000978
110
0.000878
65

-0.00000019
0.0000109
-0.00018
0.001033
0.000454
0.007036

0 34

Hy
-0.01028
0.0000693
1.089583
-0.00027
110
0.001207
90

-0.00035
0.008423
-0.06479
0.142047
0.07541
0.338601
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O 0.008664 0.012035
7.2  Graduating Recovery Transitions

The transition intensities considered here are those concerning recovery - ,uil , ,uiz , ,uf and

,uf" . Graduations using the Gompertz-Makeham and Logit Gompertz-Makeham formula of

type (r,s) have been investigated previously using health and disability related data (see for
instance CMIR 6 (1983) and CMIR 17 (1991)). Generally, the Logit Gompertz-Makeham
formula is expressed as:

GM ;,” (%)

LGM ' (x) = ————
o () 1+GM * (x)

(19)

where:

GM ;* (x) = Zr: Bx + CXP{ i Bix H_l} (20)

i=r+l
is the Gompertz-Makeham formula of type (r,s) (see Forfar et al 1985).

A Logit Gompertz-Makeham formula, LGM (1,2) , was found to fit sufficiently well here for
recovery intensities, that is:

o B +exp(B, + fix)
B = 1+ B, +exp(f, + Bx) @D

Female recovery transition intensities had the tendency to change direction abruptly at
extremely high ages as discussed in Section 7.1. Note, however, that male recovery transition
intensities did not have this problem. We chose to extrapolate over the higher ages for the
female graduations. This was chosen purely to remain consistent with formulae used to
graduate male recovery intensities. In any case, for our ultimate purpose of pricing and
reserving calculations, we anticipate that the impact of this assumption will be minimal.

The parameters {,31’ B, ﬂ3} were estimated using unweighted least equares. The parameter

estimates for graduating recovery transition intensities for both males and females by
mathematical formula as specified in equation (21) are presented in Tables 11 and 12
respectively.

Table 11. Parameter estimates for graduating recovery transition intensities for males using a

LGM (1,2) specification.

Transition Intensity

Parameter 021 032 o83 0 54
H, Ay Ay Ay

131 0.207171 0.215534 0.127122 0.056404

.32 -30.05004 -26.27263 -17.13703 -11.9346

ﬂ3 0.326204 0.282975 0.169227 0.094258
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Table 12. Parameter estimates for graduating recovery transition intensities for females using a
LGM (1,2) specification.

Transition Intensity

Parameter 021 o2 o 43 0 54
Ky Ky H, Ky

'Bl 0.19639 0.223901 0.126574 0.055755

'32 -19.6237 -67.1497 -25.8437 -13.5762

'33 0.211458 0.744763 0.277626 0.11883

7.3  Graduating Mortality Transition Intensities

The final set of transition intensities to be considered are those concerning mortality -
W82 120 uand p2°. A GM (2,2) model was found to fit sufficiently well here, that
is:

0 i6

B, =Y, tY,xtexp(y; +7,%) (22)

Again, the parameters {}/1'72,}’,3,74} were estimated using unweighted least equares. The

parameter estimates for graduating mortality transition intensities for both males and females

by mathematical formula as specified in equation (22) are presented in Tables 13 and 14
respectively.

Table 13. Parameter estimates for graduating mortality transition intensities for males using a

GM (2,2) specification.

Transition Intensity

Parameter 016 0 26 0 36 0 46 0 36
K, A, A, A, A,
¥, 0.0066 0.007678 0.007857 0.001235 -0.002113
¥, -0.000378 -0.000451 -0.000467 -0.000413 -0.0003
¥s -7.189564 -6.869178 -6.750137 -5.894103 -5.705457
Ya 0.062122 0.058743 0.056746 0.050027 0.048946

Table 14. Parameter estimates for graduating mortality transition intensities for females using a

GM (2,2) specification.

Transition Intensity
Parameter

016 026 0 36 0 46 0 56
A, My H, A, K,

¥, 0.002798 0.000394 0.004367 0.000805 -0.00021

¥, -0.0001 -0.000031 -0.00024 -0.00011 0.000378

¥s -10.3889 -10.1279 -7.66023 -7.06937 -8.447

Ya 0.094146 0.089905 0.061344 0.059315 0.075388
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7.4 Smoothness and Goodness of Fit Criteria

One of the main advantages of graduating by mathematical formulae is that the resulting
graduations are smooth. There is therefore no issue concerning smoothness here except in the
case where two curves have been blended for graduating transitions to core activity restriction
states. As already discussed, we have endeavoured to ensure a smooth transition across both
curves by forcing endpoints of both curves to meet and first derivatives at end points to be
equal.

Due to the non-existence of any exposed to risk data for our study, we were unable to use
many of the conventional goodness of fit criteria such as the 7 -test. We thus required some

form of non-parametric goodness of fit measure. We chose to use the Theil Inequality
Coefficient (TIC) (Theil 1958) which is a scale invariant statistic typically used to assess
econometric forecast samples. It is expressed as:

2

n|o
Dlu—n,

x=0

(23)

and lies between 0 and 1 with O being a perfect fit. We accepted graduated curves with a
coefficient of 10% or less. Table 15 reports the TIC for the graduated transition intensities for
both males and females.

Overall, the reported TIC are generally low suggesting that the graduated curves provide a
good fit to the observed transition intensities. Furthermore, it is interesting to note that the
inequality coefficients for males appear to be better than the female counterparts despite there
being no intuitive reason as to why this should occur. Three reported inequality coefficients
023 32 0 36

for females (4, ,4, and i ) are slightly greater than 10% suggesting that the formula
specification for these transition intensities was sub-optimal. We chose not to change the
formula specification for these three transition intensities and to retain consistency with the
other intensities as the reported coefficients were only marginally greater than 10%.
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Transition Intensities to Core
Activity Restriction States

012
A,
o 13

A,

Recovery Transition
Intensities

021
A,
0 32

Ay

43

M,

0 54

M,

Mortality Transition
Intensities

0 16

Table 15: Theil Inequality Coefficient (TIC) for graduated transition intensities.

Male
TIC

0.01517

0.00861

0.01514

0.01406

0.00722

0.03741

0.01632

0.00725

0.01033

0.00911

0.06229

0.04052

0.01362

0.00728

0.04469

0.05063

0.05801

0.03631

0.04745

Female
TIC

0.034338

0.031603

0.02387

0.02537

0.10627

0.02084

0.05386

0.09105

0.010327

0.03106

0.07065

0.11509

0.09054

0.07664

0.01787

0.04332

0.11178

0.06597

0.02287
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8.0 THE PRICING AND RESERVING FRAMEWORK

In this section, we turn to pricing and reserving. We discuss LTC benefit types and benefit
triggers and the application of Thiele’s differential equations as a framework for pricing and
reserving LTC policies in Australia.

8.1 Long Term Care Benefit Types
Haberman and Pitacco (1999) describe four generic categories of LTC products. They are:

1. Fixed amount annuities (depending on disability level) sold to healthy people;

2. Fixed amount annuities (depending on disability level) sold to elderly people
entering, or already residing in, residential care facilities;

3. Nursing and medical expense refunding; and

4. Choice of fixed amount annuity or appropriate care service.

In this paper, only benefits of type 1 are considered. The pricing and reserving framework for
other benefit types, from a technical perspective, become straightforward once an
understanding of type 1 benefits is achieved. Haberman and Pitacco (1999) further outline
several examples of products belonging to this category, including:

1. Stand-alone policy, providing a fixed amount annuity (possibly depending on
frailty level) for persons requiring LTC.

2. LTC cover as a rider benefit, providing a fixed amount annuity (possibly
depending on frailty level) for persons requiring LTC in addition to a whole life
cover.

In this paper we consider both the stand-alone policy and the rider benefit policy.

8.2 LTC Benefit Triggers

A notable challenge associated with LTC products is the inherent difficulty in unambiguously
defining a suitable benefit trigger for LTC claims.

Cowley (1992) outlines two distinct sets of eligibility criteria for claiming LTC benefits.
Under the ‘health insurance approach’, benefit eligibility may be triggered by physician
certified medical necessity or prescribed periods of pre-hospitalisation. Shortcomings to this
approach, however, are that the criteria are subjective and exclude certain chronic cognitive
impairments that do not generally call for periods of pre-hospitalistion before LTC is
required. :

The alternative ‘disability insurance approach’ is designed to be more objective — relying on a
person’s inability to perform certain ADLs as a benefit trigger. Such an approach also easily
extends to include cognitive impairments and other chronic conditions. This approach is more
useful for our purposes as the use of ADL failures is easily transposed onto a core activity
restriction scale. For instance, a LTC benefit is typically paid upon failure of 3 or 4 ADLs.
This may roughly be equivalent to a severe core activity restriction.

The 1998 ABS survey defines both severe and profound core activity restrictions to be levels
of disability requiring assistance from another person. Assistance from another person is also
a key aspect of the definition for LTC. We therefore require in our pricing and reserving
framework that a life be either severely or profoundly restricted before being able to claim a
LTC benefit.
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8.3  Implementing Thiele’s Differential Equation

The pricing and reserving methodology adopted here is essentially an application of Thiele’s
differential equations to derive formulae concerning the expected development of the
mathematical reserve for a closed LTC insurance portfolio. The application of Thiele’s
differential equations to life contingencies (but not LTC) can be found in Hoem (1969), Hoem
(1988), Linnemann (1993) and Norberg (1995).

We introduce some notation as follows. Let V. (r,u)denote the expected present value (EPV)
of LTC benefits in the time interval (r, u), given that the policyholder is in state i at time r
with a prevailing force of interest of & over the period (r,u) .

In general, for a multiple state model with 7 states, let B, (f)denote the benefit payable at

time ¢ upon transition from state j to state k, and let b i () denote the rate of benefit payment at
time ¢ if the policyholder is in state j.

Then, V, (r,u)may be expressed as:

V,(ra)=[ e, pE b 0dt e pi, 3 i, (B,0)+V, @) @4

j#i

which leads to the generalisations of Thiele’s differential equations:

LY, r) = 8V, )= b, ()= Tl (B, )+, 000 =V, ) (25)
j#i

fori=1,2,...,n (see Hoem (1969)).

We now turn to pricing some illustrative LTC products.

8.4  Pricing Illustrative LTC Products

Consider first a whole of life stand-alone LTC policy where premiums are payable
continuously at rate P per annum while the life is able (ie no core activity restriction) and an
annuity is payable to the policyholder at rate A per annum while enduring severe or profound
core activity restrictions. That is, A per annum is paid to the policyholder when in need of
LTC. Note that no death benefit is payable. For the purposes of premium calculation, we
require the expected present value at time #=0 of a unit payment while the individual is in
each of the able and LTC claiming states.

Therefore, consider first, the case where:

b (1) =1, b, (t) = by (t) = b, () = b(£) = bs (1) = 0, and B, (1) =0

for all i and j which allows us to calculate the present value of a unit payment, payable as long
as the life is able — which ultimately translates to the calculation of premiums.
Thus we have the following equations:
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i 1(1 ’“) 1 [/lx+r [ (1 u)) x+r(‘ (1 ,ll) ‘1(‘ ’u))
dr
I ll.ltir( ( ) i (1 ll) I /‘x+r( (1 “) i (1 ll J I /‘x+ri (1 ll)

2 o) = 8V, )= [, (0, o) =V, ) s, 0, )= Vi)
+u,+,( (r,u) v, (r, u>)+u,+,( s () =V, () + 12V, ()

L V,(0) = ¥al)- 2, 0 r0) Va0 2, (0 )= Vi)
+ 43 (Vi (rw) =V, () |+ 2.V, (row)

%V4(r,u)= SV, (roe)=[u® V, (r, ) =V, (r,))
+ 18, (Vs (rw) =V (ru)|+ 1 v, ()

L, () = 8V, )=, (V. )=V, )]+ 5 Vi 26)
-

Solving for V,(0,u) gives the expected present value of a unit payment to the individual

while in the no core activity restriction state, say EPV,.

We also do the same for:

o b, (®)=1b,)=b,(t)=b;(t)=bs(t) =bs(t) =0,and B,;(¢)=0
for all i and j which allows us to calculate the EPV of a unit payment while the
individual is in the severe CAR state, say EPV,.

o by (©)=1,b,()=b,(t) =b,(1) =b,(1) =bs(1) =0, and B, () =0
for all i and j which allows us to calculate the EPV of a unit payment while the
individual is in the profound CAR state, say EPV.

Using the principle of equivalence, the net annual premium, P, may be calculated as:
Px EPV, = Ax(EPV, + EPV,) 27)

Note that the system of Thiele’s differential equations may not be solved analytically. We
therefore solve numerically. Note also that u is required to be sufficiently large to mimic a
whole of life assurance.

Furthermore, A and & are flexible and may be modified easily. We provide a numerical
example here (as an illustration and for comparative purposes) using the bases employed by
Walsh and de Ravin (1995) and Walker (1990) who considered pricing LTC products in
Australia using different modeling methodologies.
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In these studies, a nominal rate of interest of 8% per annum is assumed where premiums are
increasing at an assumed inflation rate of 4% per annum and benefits are similarly increased
by 4% per annum whether the insured is claiming or not. Thus a 4% effective net interest rate
per annum is appropriate for comparative purposes. A benefit level of $400 per week once in
an LTC claiming state was also assumed for ease of comparison with Walsh and de Ravin
(1995) and Walker (1990). Table 16 reports the net annual premium for a whole of life stand-
alone LTC policy calculated at 5 yearly age intervals alongside results published by Walker
(1990) and Walsh and de Ravin (1995).

Table 16: Net annual premiums for a whole of life stand-alone LTC policy calculated using Thiele’s
differential equations for both males and females compared to other studies.

Age

20
25
30
35
40
45
50
55
60

Net Annual Premium ($ per annum)

Leung Walker Walsh & de
Ravin

Male Female " Male Female Male Female
740 909 - - 580 835
825 1043 - - 706 971
937 1220 413 1030 850 1140
1084 1456 520 1314 978 1358
1283 1771 567 1702 1123 1648
1555 2200 834 2244 1349 2053
1931 2788 1090 3056 1706 2645
2457 3603 1516 4461 2306 3609
3212 4758 2399 7487 3557 5667

Several general comments can be made on the comparison of the results produced by this
model and those of Walker (1990) and Walsh and de Ravin (1995).

1.

pA

Our results are consistent with previous studies in that male premium rates
are uniformly less than female premium rates.

Our results appear more closely in line with those of Walsh and de Ravin
(1995). This is not surprising given the similarity in data source. Walsh and
de Ravin (1995) base their premium rates on the 1993 ABS survey data — the
survey immediately preceeding the 1998 ABS survey used in this paper.
Given that our rates are higher for both males and females as compared to
Walsh and de Ravin (1995), it appears prima facie that our heavier premium
rate is attributable to an increasing trend in disability. Note, however, that a
change in survey design from 1993 to 1998 is well documented and no
change in disability trend is apparent (see Madden and Wen 2001). The
difference in our premium rates is more likely attributable to Walsh and de
Ravin (1995) only considering the profound core activity restriction category
as an LTC claiming state whereas we consider both the profound and severe
core activity restriction categories. A further but less significant contributing
factor may also be an improvement in mortality from 1993 to 1998.

Our results are markedly lower than Walker (1990). The difference is
undoubtedly related to the sources of data used. Walker (1990) restricts his
attention to nursing home data. We would therefore expect that incidence
rates used in Walker’s (1990) premium calculations largely ignore LTC
claims arising from non-institutional LTC needs and thus result in a lower
premium.

Overall, the net annual premium rates for both males and females calculated using Thiele’s
differential equations within a multiple state model framework appear both reasonable and
consistent with previous Australian studies.
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This pricing framework may easily be extended to other LTC product types. For instance,
consider a LTC rider benefit policy where premiums are payable continuously at rate P per
annum while able (ie no core activity restriction) and an annuity is payable to the policyholder
at rate A per annum while enduring severe or profound core activity restrictions. In addition, a
sum assured, S, is payable immediately on death from any live state.

That is, we need to consider the case where b,(t) =0fori=12,....5and Bj6(t)=1for

j=1,2,....,5 which allows us to calculate the EPV of a unit payment when the individual
transits to the dead state, say EPVj,.

Again, using the principle of equivalence, the calculation of the net annual premium for this
rider benefit policy may be calculated as:

Px EPV, = Ax(EPV, + EPV,)+ S x EPV, (28)

Table 17 presents the net annual premium for a LTC rider benefit policy, calculated at 5
yearly age intervals using the same basis as the stand-alone policy with a sum assured, S, of
$25 000.

Table 17: Net annual premiums for a LTC rider benefit policy calculated using Thiele’s differential
equations for both males and females.

Net Annual Premium ($ per annum)

Age Male Female
20 917 1050
25 1041 1216
30 1211 1437
35 1442 1733
40 1758 2134
45 2193 2683
50 2800 3442
55 3658 4506
60 4897 6030
65 6767 8346

The premium rates for the LTC rider benefit policy are clearly heavier than the stand alone
LTC policy reflecting the addition of the death benefit. Moreover, they are proportionally
higher at the older ages as expected.

In contrast to net annual premiums, the single premium for a LTC rider benefit policy where
premiums are payable continuously at rate P per annum while able (ie no core activity
restriction) and an annuity payable to the policyholder at rate A per annum while enduring
severe or profound core activity restrictions with sum assured S, payable immediately on
death from any live state, may be calculated directly by including all benefit payments and
sums assured concurrently.

Table 18 presents the single premium for both a LTC stand alone policy and LTC rider
benefit policy, calculated at 5 yearly age intervals using the same bases as per calculations for
net annual premiums.
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Table 18: Single premiums for a LTC rider benefit and LTC stand-alone policy calculated using
Thiele’s differential equations for both males and females.

Single Premium ($)

Stand Alone Rider
Age Male Female Male Female
20 14457 18215 17570 20700
25 15492 20142 19136 23054
30 16646 22437 21103 25908
35 17930 25131 23258 29311
40 19346 28234 25803 33285
45 20874 31714 28616 37808
50 22464 35484 31603 42789
55 24039 39390 34635 48067
60 25560 43266 37609 53453
65 27222 47178 46661 58986

8.5  Reserving for Illustrative LTC Products

Having solved for the net annual premium, P, we may calculate the development of the
reserve for each state - V,(r,u),V, (r,u),V,(r,u),V,(r,u)and V,(r,u). All we need specify
are the boundary conditions given as:

Viu,u) =V, (u,u) =V,(u,u) =V, (u,u) =V,(u,u) =0 29)

For illustrative purposes, we present results for the reserve profile for an insured male life
aged 20 under a LTC stand-alone policy in Figure 6.

Overall, the results in Figure 6 show that the behaviour of V,(r,u)is largely as expected.

Reserves for non-LTC claiming states (V,(r,u),V,(r,u) and V,(r,u)) begin at zero (state

1) or a low level (states 2 and 3) and gradually build before falling and ultimately releasing
the entire reserve at the end of the policy term. Reserves in LTC claiming states, howeyver,
begin at very high levels and gradually fall to zero at the end of the policy term.

Insurers are likely to be most concerned with V,(r,u)as the vast majority of LTC policies
would ordinarily be effected while the individual is in the non core activity restriction state. In
each of the reserve profiles calculated here, V| (r,u)has a zero reserve at both contract issue
and termination which is directly attributable to the equivalence principle. An interesting
point to note is that the reserve levels for both the mild and moderate core activity restriction
states (V, (r,u)and V,(r,u)) begin at a positive non-zero level despite being a non benefit
claiming state. This is a result of our hypothetical policy designs in this paper not requiring
premiums to be paid while the insured is in either the mild or moderate core activity
restriction states despite the probability of transiting to.a LTC claiming state being greater
than from the no core activity restriction state.
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Figure 6: Reserve profile for a male insured life aged 20 under a LTC stand-alone policy.
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9.0 TESTING MODEL SENSITIVITIES

Apart from the general diagnostic purposes of sensitivity testing of our model, there are two
important additional motivating factors.

1. The constraining procedure in Section 6.2 to ensure the off-diagonal entries of the

transition intensity matrices are non-negative implicitly causes deviation from the
transition probabilities estimated from the data. We would therefore like to determine
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the impact of uniformly higher or lower transition intensities on our financial
calculations. :

The calculation of transition intensities from transition probabilities requires the
assumption of piecewise constant intensities for each age. We suspect that this
assumption is perhaps questionable at the extremely high ages as can be seen from
several transition intensity functions abruptly changing direction at the last few ages
(see Section 7). We anticipated that this would have a minimal impact on our
financial calculations. We would like to determine if this is generally the case by
uniformly adjusting transition intensities at the higher ages.

The approach in this section is to construct sixteen scenarios for both males and females with
each scenario requiring modification to selected transition intensity functions. Premium
calculations are then performed and compared to our ‘best estimates’ as determined in Section
8. For brevity, we restrict our attention here to the net annual premium calculated for the LTC
stand-alone type policy.

The sixteen scenarios, A through P, are as follows:

A.

B.

Uniform 10% increase for all ages to transition intensities to LTC claiming states (ie

10% increase to fo.°, p, 2, w2 a3, 2, ).

Uniform 10% decrease for all ages to transition 1ntensities to LTC claiming states (ie
10% decrease to 4", 44,7, J2t  Jay J3 103, 1),

Uniform 10% increase for all ages in mortality transition intensities from LTC
claiming states (ie 10% increase to 4.°and £2°).

Uniform 10% decrease for all ages in mortality transition intensities from LTC
claiming states (ie 10% decrease to £, * and /156 ).

Uniform 10% increase for all ages in recovery transition intensities from LTC
claiming states (ie 10% increase to ,uf“ and ,u::‘ )

Uniform 10% decrease for all ages in recovery transition intensities from LTC
claiming states (ie 10% decrease to qu and /143)

Uniform 10% increase to transition intensities to LTC claiming states for lives aged
65 and over (ie 10% increase to qu s qu s /‘x , ,u /‘x s qu s /145 where x = 65).
Uniform 10% decrease to transition intensities to LTC clanmng states for lives aged
65 and over (ie 10% decrease to /‘x a2, ,uJr ,uJr , ,uJr , ,uJr where x > 65).
Uniform 10% increase in mortality transition intensities from LTC claiming states for
lives aged 65 and above (ie 10% increase to 128 and 42° where x > 65).

Uniform 10% decrease in mortality transition intensities from LTC claiming states for
lives aged 65 and above (ie 10% decrease to ,u;“ and ,uf6 where x > 65).

Uniform 10% increase in recovery transition intensities from LTC claiming states for
lives aged 65 and above (ie 10% increase to ,uf" and /1:3 where x 2 65).

Uniform 10% decrease in recovery transition intensities from LTC claiming states for
lives aged 65 and above (ie 10% decrease to ,uf" and ,u:3 where x > 65).

. Uniform 10% increase for all ages to transition intensities to LTC claiming states (ie

10% increase to i, u2, ,uJr L0, u¥), uniform 10% decrease for all
ages in mortality transition intensities from LTC claiming states (ie 10% decrease to
428 and 1) and uniform 10% decrease for all ages in recovery transition intensities

from LTC claiming states (ie 10% decrease to ,uf“ and /1:3 ).
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N. Uniform 10% increase to transition intensities to LTC claiming states for lives aged
65 and over (ie 10% increase to 4.*, 1%, ™, u? p** , 1’ , i where x> 65),
uniform 10% decrease in mortality transition intensities from LTC claiming states for
lives aged 65 and above (ie 10% decrease to ,u:‘ and ,uf6 where x265) and
uniform 10% decrease in recovery transition intensities from LTC claiming states for
lives aged 65 and above (ie 10% decrease to 4>* and 4> where x > 65).

O. Uniform 10% decrease for all ages to transition intensities to LTC claiming states (ie
10% decrease to ﬂ;", ,uis , ,uf‘, ,ufs .,ui" , ﬂzs , ,u:s ), uniform 10% increase for all
ages in mortality transition intensities from LTC claiming states (ie 10% increase to
,uf‘ and ,uf6 ) and uniform 10% increase for all ages in recovery transition intensities

from LTC claiming states (ie 10% increase to ,uf“ and ,u;” ).

P. Uniform 10% decrease to transition intensities to LTC claiming states for lives aged
14

65 and over (ie 10% decrease to f.*, u, u?, ue o, 12, 1P where x>65),
uniform 10% increase in mortality transition intensities from LTC claiming states for
lives aged 65 and above (ie 10% increase to g ®and 42* where x>65) and
uniform 10% increase in recovery transition intensities from LTC claiming states for
lives aged 65 and above (ie 10% increase to ,uf“ and ,u;” where x 2 65).

All scenarios involve modifications to transition intensity functions concerning LTC claiming
states (severe and profound). Scenarios A to L include modifications to either transition
intensities to LTC claiming states, mortality transition intensities from LTC claiming states or
recovery transition intensities from LTC claiming states. Scenarios M to P involve a
combination of modifications. From an insurer’s perspective, scenarios M and N may be seen
as the ‘worst case’ scenario and scenarios O and P as the ‘best case’ scenario.

Figures 7 and 8 illustrate the results of premium calculations for the LTC stand alone policy
using the same bases as in Section 8 under each of the above scenarios for males and females
respectively.

Figure 7: Scenarios A to P Males
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Figure 8: Scenarios A to P: Females
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The results in Figures 7 and 8 show a reasonably narrow range of premium levels at each age
for all 16 scenarios. This suggests that the impact of slightly different transition intensities to
the intensities calculated as a result of the constraining procedure in Section 6.2 on premium
and reserve calculations is relatively minimal. A further interesting observation is the results
for scenarios G through L concerning modifications to transition intensities at the higher ages.
Again, the range of premium levels at each age for these scenarios is reasonably narrow. The
questionable assumption, therefore, of piecewise constant intensities at the higher ages
appears to have all but a minimal impact on our financial calculations.

10. CONCLUSIONS AND FURTHER RESEARCH

The non-existence of adequate data in Australia has been, and will be, a significant obstacle in
the introduction of private LTC insurance in Australia. We are able, however, to develop a
model for pricing and reserving LTC insurance using the currently available data in Australia
— the 1998 ABS Survey of Disability, Ageing and Carers. We do this via the application of
Thiele’s differential equations for a multiple state model. This model, despite its complexity,
offers a significant degree of modeling flexibility and robustness which makes it preferable to
traditional annuity inception approaches. This study, to our knowledge, represents the first
stochastic model developed for the purposes of pricing and reserving LTC in Australia.

There are, however, a number of limitations here, largely a result of inadequate data. In
particular, we acknowledge the inconsistency of a continuous time Markov chain with the
discrete model framework of Rickayzen and Walsh (2002). We have managed to construct a
model, however, that largely circumvents the difficulties introduced here along with a set of
sensitivity scenarios in response to this constraint. Our focus to a great extent in this paper has
been the development of a model which, when adequate data becomes available, will produce
increasingly accurate results.

Moreover, once appropriate LTC specific data become available for Australia, the following
extensions to this study could be undertaken:

1. Allow for all possible modes of recovery in the multiple state model;
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Allow for lapses in the multiple state model;

Allow for duration in the multiple state model by implementing a semi-Markov
assumption as opposed to a Markov assumption. That is, allow transition
intensities to depend on both age and the duration of stay in the current state.

W

For comparative purposes, the technical actuarial bases used to price and reserve several
illustrative LTC products come from a survey of earlier relevant Australian literature. The
model bases here, however, may be easily modified at the insurer’s discretion.
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