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Abstract

We study the distribution of the maximum surplus before ruin
in a Sparre Andersen risk process with the inter-claim times being
Erlang(n) distributed. This distribution can be analyzed through the
probability that the surplus process attains a given level from the ini-
tial surplus without first falling below zero. This probability, viewed
as a function of the initial surplus and the given level, satisfies a ho-
mogeneous integro-differential equation with certain boundary con-
ditions. Its solution can be expressed as a linear combination of n
linearly independent particular solutions of the homogeneous integro-
differential equation. Explicit results are obtained when the individual
claim amounts are rationally distributed. When n = 2, all the results
can be expressed explicitly in terms of the non-ruin probability. We
apply our results by looking at (i) the maximum severity of ruin and
(ii) the distribution of the amount of dividends under a constant div-
idend barrier.

Keywords: Sparre Andersen risk model; Erlang inter-claim times;
Integro-differential equation; Maximum surplus before ruin; Maximum
severity of ruin; Dividends.

1 Introduction

Consider a Sparre Andersen surplus process

N(¢)
U)=u+ct—Y Xi, t>0, (1.1)

i=1

where u > 0 is the initial surplus. The X;’s are independent and identically
distributed (i.i.d.) random variables with common distribution function P
and density function p, representing individual claim amounts. Denote by
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. = E[XF] the k-th moment of X; and by p(s) = [;° e~ p(z) dz its Laplace
transform. The counting process {N(t); ¢t > 0} denotes the number of claims
up to time ¢ and is defined as N(t) = max{k: W1 +Wa+...+ W} < t}, where
the inter-claim times {W;}$2, are assumed to be i.i.d. random variables with
common density function k.

Further, we assume that the sequences {W;}2, and {X;}, are indepen-
dent, and that ¢ E(W1) > E(X,), providing a positive safety loading factor.

For u > 0, define

=inf{t > 0: U(t) <0} (oo, otherwise)

to be the time of ruin, and ¥(u) = P(T" < o0) to be the ultimate ruin
probability.

In this paper we consider the situation when the inter-claim times are
Erlang distributed, a model which has been widely discussed in recent litera-
ture. See Li and Garrido (2004a) and references therein for details. We start
in Section 2 by considering the maximum surplus before ruin by establishing
an integro-differential equation for the probability that ruin occurs without
the surplus attaining a specified level prior to ruin, and in Section 3 we apply
techniques developed in Li and Garrido (2004b) to show how this equation
can be solved. In Section 4 we show how the situation simplifies in the spe-
cial case when n = 2. We then consider two related problems: in Section 5
we consider the maximum severity of ruin, and in Section 6 we consider the
distribution of the amount of dividends payable prior to ruin when there is a
constant dividend barrier. In this final section we also consider the Laplace
transform of the time when the surplus process reaches the dividend barrier.

2 The maximum surplus before ruin

For b > u > 0, define
&(u, b)=P(sup U(t) < b, T<oo|U(O)=u>
0<t<T

to be the probability that ruin occurs from initial surplus u without the
surplus process reaching level b prior to ruin. Alternatively, £(u, b) is the
probability of ruin in the presence of an absorbing barrier at . Obviously,
&(u,b) =0 for b < u.

We now show that £(u, b) satisfies an integro-differential equation with
certain boundary conditions.




Theorem 2.1 If there exists a positive integer L, such that the density func-
tion, k, of the inter-claim times for the risk model (1.1) has the property

kD@©0)=0, 1=0,1,...,L—1, (2.1)
with k@ = k, then £(u,b) satisfies the boundary conditions
&€ (u, b)
—— = = 2,...,L .
| = 1=0,1,2,...,L, (2.2)

with 8% (u, b)/(0u®) = &(u, b).

Proof: Conditioning on the time and the amount of the first claim, we
have

(b—u)/c
£(u, b) = /0 k(&)yy(u + ct)dt,

for 0 < u < b, where 7,(t) = fgﬁ(t — z,b)p(x)dr + P(t), and P =1 — P.
Substituting s = u + ct, we obtain

£(u,b) = % /u “ (S = “) vy(s) ds . (2.3)

c

The boundary condition (2.2) for [ = 0 is obvious. For [ =1,2,..., L, taking
the [-th derivative of both sides of (2.3) with respect to u and using the
conditions in (2.1) yields

8€(u, b —1) f® s—u
Egu’ )= ('Ct+1) /u k(l)( - )'yb(s)ds. (2.4)
Setting u = b in (2.4) shows that the boundary conditions (2.2) hold for
l=1,2,..., L. This completes the proof. O

For the rest of this paper, we assume that the inter-claim times are
Erlang(n) distributed with scale parameter A > 0. We use k, to denote
their common density function, which is given by
Antn—l e—,\t

(n—1)! °

We have the following result for £(u, b).

kn(t; X)) = t>0, ne N (2.5)

Theorem 2.2 If the inter-claim times are Erlang(n) distributed with density
function given by (2.5), then &(u, b) satisfies the integro-differential equation

Sl (2N (") = [ty P, (9

k=0
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for 0 < u < b, with boundary conditions

¢ (u, b)

S =0, k=0,1,2...,n—1. (2.7)

u=b -
Proof: Since the density function k, in (2.5) has the property that
KD0;0) =0, 1=0,1,2,....,.n -2, n>2,

k. satisfies condition (2.1) in Theorem 2.1 for L = n — 1. Therefore, the
boundary conditions in (2.7) hold true. .

For j =1,2,...,n — 1, applying the operator [8/0u — (\/c) Z}’ to both
sides of (2.3) and noting that k., (¢; A) = Alkn-1(t; A) — kn(t; A)] gives

[6%—(;\) ] £(u, b) = (]iz ; K (i:—u;,\) v,(8)ds,

where Z denotes the identity operator. In particular, when j =n — 1,

[%_(%)I] £, 0) = CL [k (S50 ) mlas. (29

Applying the operator [9/0u — (A\/c) Z] to both sides of (2.8) and noting that
Yp(w) = [; €(u — z,b)p(z)dx + P(u), we have

[% _ (%) ] £(u, b) = ( ) [ / (u-1, b)p(a:)da:+P(u)]

which is equivalent to (2.6) after dividing both sides by (—\/c)". O
Next, define

=inf{t>0: Ut) >b|U0)=u}, 0<u<b,
to be the first time that the surplus process upcrosses the level b, and
x(u,b) = P(T > 1° | U(0) = u)

to be the probability that the surplus process attains a given level b from
initial surplus u without first falling below zero. Since eventually either ruin
occurs without the surplus process attaining level b or the surplus attains
level b, then we have

x(u, b) =1—£&(u, b).




Corollary 2.3 The probability x(u,b) satisfies the homogeneous integro-
differential equation

ia—k# (:;)k (nﬁk) =/Oux(u—y, b) p(y) dy,

k=0
for 0 < u < b, with boundary conditions

x(b,0) = 1, (2.9)
0" x(u, b)
| 0, k=1,2...n—1. (2.10)
Proof: This easily follows from Theorem 2.2 by noting that x(u,b) =

3 The solution of an integro-differential equa-
tion

In this section, we consider the solution of the homogenous integro-differential
equation

BO)ow) = [ vlu-u)pwdy,  uzo (3.1

with boundary conditions .
Wb =€, k=0,1,2,...,n—-1, (3.2)
where ey, ey, . . ., €, are constants, D denotes the differentiation operator and

B(D) = [T — (¢/\D]" = i(-&)k (;)k (:)pk = in D
k=0 k=0

is an n-th order linear differentiation operator.
It follows from the theory of differential equations that the solution of
equation (3.1) with boundary conditions (3.2) is of the form

v(w) =Y mui(u), u>0, (3.3)
i=1
where v;(u), i = 1,2,...,n, are n linearly independent particular solutions

of equation (3.1), and 7y, 7,,...,n, are determined by the following system
of linear equations

S novP®)=e, k=012...,n-1 (3.4)
i=1

)




Dickson (1998) shows that ®(u) = 1—¥(u) satisfies the integro-differential
equation (3.1). Thus we can employ v,(u) = ®(u) as a particular solution.

One can find the n—1 linearly independent solutions v;(u),? = 2,3,...,n,
by specifying the initial conditions by

vBO)=Ik=i-1), k=01,...,n—1, (3.5)
where I(-) denotes the indicator function. To prove that v;(u),i=1,2,...,n,
are linearly independent, we assume there are constants ¢, cs,...,c, such

that > 0, cui(u) = 0, for any v > 0. Then E;;lc,-vfk)(u) =0, for k =
0,1,...,n—1, and any u > 0. Setting u = 0 and noting that v;(0) = ®(0) # 0
and vfk)(O) = I{k =i—1},for k = 0,1,2,...,n — 1, we can prove that
Cl=C2=°°'=Cn=0.

From Section 6 of Li and Garrido (2004a) it is straightforward to show
that ®(u) satisfies the defective renewal equation

A"0 g
" P1P2 Py

B(u) = / " D(u—y) gy)dy + w30,

where 8 = cn/(\ p;) — 1 is the relative safety loading factor, py, ps, - - -, Pp_1,
with R(p;) > 0, are the roots of the generalized Lundberg equation B(s) =
P(s) in the right half complex plane, and

A‘n
9(y) = —c;;To T, - T, _.p(y),

with 7T, being an operator, such that

T.4@) = | Ty, reC,

for any integrable real function f.
Li and Garrido (2004b) show that v;(u),? = 2,3,...,n, all satisfy the
defective renewal equation

n—1

vi(u) =/ Ui(u_y)g(y)dy+€i,0+Z€i,jepjua u 20, (3.6)
where
A" B;
&i,O = T"a )
C"P1P2" " Pn
A" n—_i Bm 1 "
& = Limeo Brsi ] j=12,...,n—1.

n n—1 ’
" p; Hk:l,k;éj(pk - Pj)
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Further if the individual claim amounts are rationally distributed, then
the Laplace transform of v;(u) can be inverted by partial fractions. Let us
now assume that individual claim amounts are rationally distributed, i.e.,

N Qm—l(s)

)=
where m € N*, hy := inf{s € R : E[e~*¥] < o}, Qm is a polynomial of
degree m with leading coeflicient 1, @,,-1 is a polynomial of degree m — 1 or
less, and @, and @n-1 do not have any common zeros. Further, since p(s)
is finite for all s, with R(s) > 0, the equation @,,(s) = 0 has no roots with
negative real parts. :

Let py, pg,- -5 Pn_1, With R(p;) > 0, p, = 0, and —R;,—Ry,...,—Ry,

with R(R;) > 0, be the roots of the equation

B(5) @m(s) = Qm-1(s) = [1 = (¢/X)s]” Qm(s) — @m-1(s) = 0.
Li and Garrido (2004a, eq. 20) show that

R(s) € (hx,00), (3.7)

sy drey - 20)Qm(s)
01(s) = ®(s) = TG+ R (3.8)
If Ry, Rs,..., R, are distinct, then inversion of (3.8) yields
“ Qm( }?’l) —R.-u
®(u)=1-9(0 E , >0. 3.9
(u) ( ) — R H " J¢1(R }?4) U ( ) .

Li and Garrido (2004b) show that the Laplace transform of v;(u),1 =2,3,...,n

can be expressed as
5:(s) = /\_n | [—di(s) @m(s)] .
1) = o ST, - NG+ ) (310

where d;(s) = Sr_, Brs*~ = 310 By 8t
If p1, P9y - -, Ppoy @nd Ry, Ro, ..., Ry, are all distinct, by partial fractions,

we have
) = 75 Z(s—’pk) Z(s+R) (3-11)
where
o A" B; Qu(0)
Y el Al R
e = — A" di (1) Qm(Ps)
e ™ TTima (B + o) TTy (o0 — 1)
,B A" di(—Rj)Qm(—Rj)

Yo e TR+ p) [T, (R — Ry)
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Then inverting (3.11) yields
n m
viw) =0+ Y cipe® +Y B e =231 u>0. (312)
k=1 j=1

4 Analysis of x(u, b) when n =2

In this section, we give a detailed discussion of the results for the risk model
with Erlang(2) inter-claim times. Dickson and Hipp (1998) show that

5(s) — c*(s — p)
) =20 e e

where p > 0 is the unique positive root of the equation B(s) = p(s). Li and
Garrido (2004b) show that

c2

X*[B(s) — B(s)]
By comparing these two Laplace transforms we obtain

Jo @(u—y)ervdy
%(0)

132(3) =

vo(u) = (4.1)

Thus, x(u, b) can be expressed explicitly in terms of the non-ruin proba-
bility ®(u). Equation (3.3) shows that x(u, b) is of the form

X, 5 = m 02 + (5 22 D

where 7, (b) and 7,(b) are determined by the boundary conditions (2.9) and
(2.10), which can be solved to obtain

) = ®(b) +p [, ®(b - 3/)6"”dy | (42)
®2(b) + [p @(b) — @' (b)] [, ®(b— y)ervdy
—3(0)®'(b)

22(b) + [pB(b) — ¥ (b)) fy B(b—y)ervdy

1(b) (4.3)

We remark that when individual claim amounts are rationally distributed, a
closed form solution exists for ®(u), and hencé for x(u, b). It is interesting
that, just as in the classical risk model, only a knowledge of ®(u) is required
to find x(u, b).




5 The maximum severity of ruin

In this section we allow the surplus process to continue if ruin occurs, and
consider the insurer’s maximum severity of ruin from the time of ruin until
the time that the surplus returns to level 0. Since we assume that cn > Ay,
it is certain that the surplus process will attain this level.

Following Picard (1994), for u > 0 we define T” to be the time of the first
upcrossing of the surplus process through level 0 after ruin occurs, i.e.,

T =inf{t: t>T, U(t) >0},
and define
M, =sup{|[U@)|, T <t<T'}.

Let
J(z; u) = P(M, < 2| T < ), 220,

denote the distribution function of the maximum severity of ruin given that

ruin occurs.
As shown in Dickson (1998),

J(z ) = ;I,%)- / " gu, v)x(z ~ v, 2)dy, (5.1)

where g(u,y) = 0G(u, y) /0y, with

being the probability that ruin occurs and that the deficit at ruin is at most

y.
We now consider equation (5.1) when n = 2. We have

Iz u) = q,—(luj / 9w 9)x(z — 9, 2)dy
= 7&,1((;)) Ozg(u,y)¢(z—y)dy

12(2)

®(0) ¥(u) Jo

Z

z—y
+ 9(u,y) / ®(z —y—x)e’dzdy .
0
Noting that

V(u+z) = /oog(u, y)dy + /Ozg(u, y)¥(z — y)dy,




and

/0 z 9(u,y)2(z—y)dy = / B g(u, y)dy+ /0 z 9(u, y)dy—¥(u+z) = ¥(u)—¥(utz),

/ 1) / B(z — y — z)e*dady
- / "z — ) / — )P dudy
= [ [ otwz- w2z
/ e / 9(u,)®(z — & — t)dtdz

- /0 e#*[U(u) — U(u + z — z)|dz
= /Oz e’ [®(u+ 2z —z) — P(u))dz.

we have

Finally, we have

J(z: u) ®(z) +p Jy Bz - y)e”ydy [<I>(u +2) - <I>(u)]
’ D%(2) + [p ®(2) — @'(2)] f; (2 — y)ervdy (u)
'(2) [y e?*[®(u+ z — z) — B(u)|dz 1

T B2(2) + [pB(z) — ¥'(2)] Jy @(z — y)ervdy 1 — &(u)

As in the previous section, when individual claim amounts are rationally
distributed, a closed form solution exists for ®(u), and hence for J(z; u).

6 Dividends problems

In this section we consider the situation when there is a constant dividend
barrier at b > u. We assume that whenever the surplus reaches level b
that premium income is paid out to shareholders as dividends. The surplus
process thus remains at level b until a claim occurs, and on any subsequent
return to level b, premium income is again paid out as dividends. For this
modified surplus process, it is straightforward to show that ultimate ruin is
certain.
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6.1 The distribution of the amount of dividends

Dickson and Waters (2004) consider the distribution of the total amount of
dividends payable until ruin in the classical risk model. We now extend their
arguments to the Erlang(n) risk model. Let D, denote the total amount of
dividends payable until ruin. Then

D, =) A, (6.1)

where N denotes the number of streams of dividend payments, and A; de-
notes the amount of dividends in the i-th dividend stream. Then N has a
zero-modified geometric distribution, with P(N = 0) = 1 — x(u, b) and

P(N =7) = x(u,b) [1 — a(b)]a(d)""}, r=12,...,

where a(b) = f: x(b—z,b)p(z)dz. Further, {A;}2, is a sequence of i.i.d. ran-
dom variables with density function

falz) = Z fg((s,;)))kn+l—i($; A/e) » (6.2)

where kn11-i(z; M/c) is the Erlang(n + 1 — i) density function with scale
parameter \/c, and x;(u,b) is the probability that the surplus reaches the
dividend barrier b during phase i (explained below) from initial surplus wu,
fori=1,2,...,n, so that

x(w,8) =3 x:(u.b).

Motivated by Gerber and Shiu (2005), we decompose the Erlang(n) inter-
claim time W; into n phases as

Wi=Vi+Vo+..+V,,

where the V;’s are independent, exponentially distributed random variables
with parameter A > 0. Thus, if the surplus reaches b during the first phase,
the distribution of the time until the end of that phase is exponential with
parameter A, and hence the distribution of the time until the first claim is still
Erlang(n) with scale parameter A. Similarly, if the surplus reaches b during
the second phase, the distribution of the time until the end of that phase is
exponential with parameter A, and hence the distribution of the time until
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the first claim is Erlang(n — 1) with scale parameter A\. The same argument
applies to the other phases, and the other claim inter-arrival times.

Conditioning on whether the surplus reaches the barrier b before or after
the first claim, we have for i = 1,2,...,n,

xz(u b)

: (®-u)/e
= i / kn(t; A)vi(u+ ct,b)dt

- R (b cu ) J=( ) /ubkn(szu;/\)%(s,b)ds
(6.3)

where v;(2,b) = [; x;(z — z,b)p(z)dz and K;(t; \) is the survival function of
the Erlang(i) distribution with scale parameter ), with Ky(t; A) = 0 for all
t. It is well known that

t Je—At

Ki(t; \) = Z(’\ t>0,i=12,...,n.

J=

Thus, (6.3) can be rewritten as

"'A -1 (u - b)i_l —A(b-u)/c ]. b S—U

for i =1,2,...,n. Then we have the following results.

Theorem 6.1 Fori=1,2,...,n, the function x;(u,b) satisfies the boundary

conditions
u=b=(_1)i_1( —l1> (A>II("1 <l<n-1),  (64)

61X,’(’U«, b)
forl=0,1,...,n — 1, with 8%;(u,b)/0u’® = x;(u,b).

ou!

Proof: For I =1,2,...,n — 1, taking the l-th derivative of both sides of
(6.3) with respect to u, we have

6IX,-(’LL, b) — ___A i_lﬁ_ (’LL — b)i_l e—)\(b—u)/c
ou! c out | (i—1)!

( 1)! s—u.
Cl+1 /kr(:) —C———’/\ fY‘i(S7b)ds
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Setting u = b in the above equation yields the boundary condition (6.4), and
setting u = b in (6.3) gives

Xi(b,0) =I(i =1),
which can be rewritten as (6.4) for [ = 0. O

Theorem 6.2 For i = 1,2,...,n, and 0 < u < b, the function x;(u,b)
satisfies the integro-differential equation

kngo a_k%(‘%ﬂ (:/\_c)k (n . k) - /Ou xi(u —y, b) p(y) dy, (6.5)

with boundary conditions being given by Theorem 6.1.

Proof: For j = 1,2,...,n — 1, applying the operator [8/8u — (\/c) Z]
to both sides of (6.3) and noting that &/ (¢; ) = Alkn-1(t; A) — kn(t; N)] gives

+%i7)j /b kn_j (s — Z /\) 7i(s, b)ds .
"’ (6.6)

In particular, fori =1,2,...,n~1and j =n —1,
8 /\ n-l _/\ n-l ’ —A(s—u)/c
- (3)7] wtw o =ET= [aerewren s

while fori=nand j=n—1,

0 A\ 1
_ n—1 _ n—1 b
= (_’\) e““”’“)/c+£—/z_,)z— / Ae M=oy (s5,b)ds . (6.7)

Cc

Applying the operator [0/0u — (\/c) Z] again to both sides of equations (6.6)
and (6.7) yields for i =1,2,...,n,

- Q) wen=(2) o

Dividing both sides by (—A/c)"™ and noting that v;(u, b) = [;' x;(u—z, b)p(z)dz,
proves that the integro-differential (6.5) holds. O
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Example 6.1 In this ezample we illustrate the weight

w(u, b) = X1 (u, b)/x(x,b)

in formula (6.2) in the special case when n = 2 and p(z) = ™%, z > 0.
Following the analysis in Section 4, we have

Xi(u, b) = ;1 (0)®(u) + 1; 2(b)va (u)

for i = 1,2, where vy(u) is given by formula (4.1). The functions 7, ;(b),
1,7 = 1,2, can be found from the boundary conditions (6.4), yielding

_ cvy(b) — Avg(b) _ —c®'(b) + AP (d)
1) = Cme ) —wm@®) © ") = CHB)0) — wb)F )

and

) Ava(b) - 0]
M2,1(b) = ¢ (W0 (b) — v (D) (b)) ° Maa(b) = c (v (D) ®(b) — va(b)P' (b))

It is well known (see, for example, Grandell (1991)) that
®(u) =1- (1 - R)e ™,

where R is the adjustment coefficient, leading to

1 1-R

v (u) = R—p(e”“— 1) Y

Figure 6.1 shows w(u,10) for 0 < u < 10 when A = 2 and ¢ = 1.2, while
Figure 6.2 shows w(u,100) for 0 < u < 100 when A =2 andc=1.1. We
see in each case that the weight w(u,b) changes only as u approaches b as we
might have anticipated.

(e™ — e~ R) .

6.2 The time to reach the dividend barrier

We now consider how long it takes for the surplus process to reach the divi-
dend barrier b from initial surplus u (< b) without ruin occuring. We define
T to be the first time that the surplus reaches b > u without ruin having
previously occurred, and, for § > 0, define

L(u,b)=E[e?™|U0)=1u], 0<u<b. (6.8)

Thus, L£(u, b) can be viewed as the expected present value of one dollar
payable at time 73, or, alternatively, it can be viewed as the Laplace transform
of 7, with respect to parameter 6.

14




Figure 6.1: Values of w(u, 10) when ¢ =1.2.
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Figure 6.2: Values of w(u, 100) when ¢ = 1.1.
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Theorem 6.3 L(u,b) satisfies the boundary conditions

l
=(é), 1=0,1,2,...,n—1.
u=>b ¢

Proof: Conditioning on the time and the amount of the first claim, for
0 < u < b we have

8 L(u,d)
out

L _ (b-u)fe —6t . —&(b—u)/c 12 b— U,
(u, b) = e ka(t; A) Cp(u+ct)dt +e K, P A,
0

where (,(t) = fot L(t — z,b)p(z)dz. Substituting s = u + ct, we obtain

L(u,b)
1 b s§—Uu —& (s—u)/ —6(b—u)/c 1o b—u
= =~ | k, - Ale °Cy(s)ds+e K, o A

c

1 A mort S—u. —6&(b~u)/c 17 b— u,
= z(m) /ukn( A ,A+5>Cb(3)d3+€ Kn( c ,A)
(6.9)

Setting u = b in (6.9) gives L(b,b) = 1. We know that for n > 2,

DO 4+6) = 0, 1=01,...,n-2, (6.10)
KY0;0) =0, 1=12,...,n—1 (6.11)

Then for | = 1,2,...,n — 1, taking the I-th derivative of both sides of (6.9)
with respect to u yields

OLwb) _ (X[ OF aic)
oul T dhn (A+5)n[‘ Go(s) K ( p ,)\+5>ds

0]
| [e—J(b—u)/cK_n (b u’; A)]
C

Setting u = b in the above equation, and using (6.10) and (6.11), we obtain

1
- (§> . 1=1,2,...,n—1.
u=>b ¢

This completes the proof. O

' L(u,b)
ou!
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Theorem 6.4 L(u, b) satisfies the integro-differential equation

o [ 5)]H (.2)=(3) [ ew-sbsem
(6.12)

with boundary conditions given by Theorem 6.3.

Proof: To prove the integro-differential equation (6.12), for j =1,2,...,
n — 1, we apply the operator [0/0u — ((A +6)/c) I}’ to both sides of (6.9)
and use k(t; A +0) = (A4 0)[kn-1(t; A+ 8) — kn(t; A + 6)]). Then

22 e
_ [—(2:15)11' . fa)n /u" - (S_:_“_ At 5) Co(s)ds

=\’ _ -
+ (_)‘) e—&(b——u)/CKn_j (b . u; )\) , (6.13)

c

In particular, when j =n — 1,

[% - (’\ “CL 5) z] " L)

— [_()\ + 5)]11_1 A" /b()‘ 4 5)6—-(z\+6)(s—u)/c<-b(s)ds

cn A+
- n—1
+ (T) e~ b-u)/e (6.14)

Applying the operator [9/0u — ((A + 8)/c) Z] again to both sides of (6.14)
and noting that (,(u) = [’ L(u — z, b)p(z)dz, we have

[%_ (,\:5) I]nﬁ(“ab)= (——c)‘-)n/omﬁ(u—x,b)p(x)dx,

which is equivalent to the integro-differential equation (6.12). a
We remark that the techniques presented in Section 3 can be applied to
obtain explicit solutions for £(u, b).
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