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Default Risk Linkages in a Structural Credit Model

ABSTRACT

This paper proposes a novel explanation for the linkages between the default risk of borrowers. A

negative idiosyncratic shock to one borrower reduces its creditworthiness but also makes another bor-

rower a relatively larger player in the economy, increasing the latter’s systematic risk. Debt costs then

increase for the second borrower, tilting its decision towards an earlier default. This effect strengthens

with greater refinancing needs due to shorter debt maturity. Our model thereby generates positive

co-movement in credit spreads, risk premia, and equity volatilities across fundamentally unrelated

borrowers, providing novel insights into the interplay between credit and equity markets.

JEL classification: G12, G13, G32, G33.

Keywords: Credit Risk, Structural Models, Asset Prices, Leverage, Volatility, Spillovers.
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The theoretical literature on credit risk has made significant strides since Merton’s (1974) seminal

work. It has helped us understand credit spreads, suggested a framework for assessing capital structure

choices, enabled us to study the interplay between different sources of risk affecting equity and bond

prices, and allowed us to evaluate derivatives in debt and equity markets. However, little has been

done to examine the linkages between borrowers’ default risk. Indeed, existing credit risk theory has

concentrated on individual firms or large portfolios of atomistic firms, leaving us with limited knowledge

about the impact of one firm’s fate on the creditworthiness of others.

In this paper, we propose a new mechanism for endogenous default risk linkages in a multi-borrower

economy and analyze its implications for asset pricing. Our primary objective is to understand how

shocks to the fundamentals of one borrower, which could be a firm, industry, bank or sovereign,

can have an impact not only on its own creditworthiness but also on other potentially uncorrelated

borrowers. By doing so, we aim to explain the co-movement in default risk observed across these

borrowers. To achieve our objective, we enrich a standard structural credit model with a multi-borrower

setting. Specifically, we introduce debt and default risk into the two-tree equilibrium framework

developed by Cochrane, Longstaff, and Santa-Clara (2008).1

Our first contribution is to reveal how a shock to one borrower impacts the default decisions of

all borrowers, by way of fluctuations in equilibrium risk premia. This creates a new type of default

risk linkage, which results in an economically significant level of excess correlation. In our baseline

calibration, the correlation in default risk across borrowers is 9.5% higher than the correlation in their

fundamentals.

We also find that the transmission of default risk across borrowers is amplified when refinancing

is more imminent due to shorter debt maturity. Moving from perpetual to 5-year-maturity bonds, for

example, increases the baseline excess correlation by 5.8% (to 15.3%). The reason for this increase

is that a shock to one borrower affects the risk premium and thus the cost of debt refinancing of the

other borrower, thereby increasing its default probability. Our second contribution is thus to highlight

the unique role of refinancing needs in a multi-borrower economy, complementing recent work on

refinancing risk in single-firm default decisions (see He and Xiong, 2012) and equity risk premia (see
1Clearly a two-tree economy is a stylized representation of reality. Nonetheless, the intuition we develop in this setting

would be valid in a richer setting with more trees. However, one can also think about our model as one tree representing
a borrower or portfolio of borrowers (e.g. an industry), while the second summarizes the rest of the economy.
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Chaderina, Weiss, and Zechner, Chaderina et al.; Friewald, Nagler, and Wagner, 2022).2

Our third contribution is to show that the endogenous transmission of default risk across borrowers

also has significant consequences for equity investors. We demonstrate that increased default risk

across borrowers also results in higher leverage, leading to a positive co-movement in their equity risk

premia and volatilities. This result is in contrast with the classic two-tree economy without leverage,

where each tree’s systematic risk moves in opposite directions, resulting in negative co-movement in

equity expected excess returns and volatilities. Our findings are consistent with the empirical evidence

presented by Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2016, 2020) and thus contributes to a

deeper understanding of the interplay between credit and equity markets in a multi-borrower economy.

The core intuition of our model, which we summarize in Figure 1, is as follows. When one borrower

(B) experiences a negative shock to its fundamentals, reducing the value of its assets and increasing

its default risk, the other borrower (A) represents a larger proportion of the economy and bears more

systematic risk, as in Cochrane et al. (2008). The novelty of our paper is to show that, in the presence

of leverage, the higher risk premium reduces borrower A’s continuation value and skews its decision

towards defaulting, even if its fundamentals remain unchanged. As a result, borrower A’s default risk

endogenously increases following a negative shock to the fundamentals of borrower B, causing positive

co-movement in their default risk and credit spreads. This mechanism also applies to equity volatility

through variation in the borrowers’ leverage ratios.

Our model also highlights that the borrower’s average debt maturity significantly influences these

effects, as their default decision is directly impacted by the level of immediate refinancing needs.

Specifically, the increased risk premium raises the borrower’s cost of debt refinancing, exacerbating

the rise in default risk. Rollover risk, therefore, amplifies a borrower’s exposure to the fate of the

other borrower.

FIGURE 1 ABOUT HERE

An additional important finding is that the excess default risk correlation remains robust and quan-

titatively similar across different tree sizes. This result effectively addresses the concern that the
2Other notable papers that consider refinancing risk in structural models include Leland and Toft (1996), Leland

(1998), He and Milbradt (2014), Chen, Cui, He, and Milbradt (2018), Choi, Hackbarth, and Zechner (2018), and Dangl
and Zechner (2021).
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transmission of default risk could be relevant only for borrowers with large contributions to aggregate

fluctuations. Moreover, we demonstrate theoretically that the co-movement in default risk is inde-

pendent of the chosen debt level, which is a direct consequence of a scaling property relating to bond

valuation (the optimal default boundary is a linear function of the debt coupon). Therefore, the de-

fault risk transmission mechanism we advance in our paper applies to both exogenous and endogenous

financing policies and is a general mechanism that does not rely on a set of restrictive assumptions.

These theoretical findings have widespread implications for understanding recent developments in

financial markets. For example, they offer new insights on the pivotal role of corporate bailouts in

averting bankruptcy cascades during times of financial crises. Our main intuition regarding default risk

linkages via changes in risk premia can indeed be viewed in reverse. During times of market stress,

governments often provide direct credit and policy support to firms in need. However, determining

which firms or sectors should receive the most aid can be controversial, as seen in the recent Covid-

19 crisis.3 Our model suggests that beneficial spillovers can result from government support to any

sector. A wealth increase for firms in one sector effectively lead to a favourable repricing of other

firms in the economy since the latter now bear less systematic risk. As a result, even firms that do

not receive direct support can benefit from lower funding costs and reduced probability of default.

Thus, a rescue package can improve the creditworthiness of all firms, regardless of their fundamental

relationship to the sector receiving the bailout.

The mechanism we highlight in this paper is also relevant for understanding credit risk transmission

in the sovereign debt market, where a default crisis in one country can have spillover effects on

seemingly unrelated countries. A notable case is the events leading up to the Russian default in

August 1998, which likely had a causal effect on the creditworthiness of other governments. This

effect was particularly noticeable in the months leading up to the crisis, as bond spreads of countries

with distinct geographical locations increased substantially. Our model helps explain this phenomenon,

with the 1997-1998 decline in Russia’s real GDP acting as an exogenous shock to the first borrower’s

fundamentals. As predicted by our model, the gradual widening in credit spreads for Brazil, for

instance, is consistent with the increased risk premium for the second borrower.4 Moody’s downgrade
3See, for example, the articles “Who Should Get Bailed Out in the Coronavirus Economy?", published by the New

Yorker on April 22, 2020, and “US Big Business Gets Help First but Who Needs it Most?", published by the Financial
Times on May 26, 2020.

4In the context of international finance, each tree can be seen as a separate country, with country-level output
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of Brazilian debt on September 3, 1999, further emphasizes the impact on Brazil’s default probability.

What is striking is that there were no strong fundamental links between Brazil and Russia, with

their GDP growth rate correlation being –0.14 over the 1990–1998 period. Our model can thus be

useful for understanding how default risk can spill over to sovereign borrowers that are fundamentally

unconnected.

A third application of our rollover channel is to offer an explanation for the clustering of sovereign

debt distress episodes during the European debt crisis in 2010-2012. Policymakers were particularly

concerned about the potential spillovers in default risk from Greece, given the concentrated amount

of government debt subject to imminent refinancing. The countries most severely hit during the crisis

were generally those with the highest fraction of debt maturing within the following year. These

countries, located in the southern periphery of Europe, had a refinancing schedule requiring more

immediate short-term rollover than their northern counterparts. Our model suggests that the spillover

in borrowing costs through bond risk premia, combined with high exposure to rollover risk, may have

played an important role in the default risk transmission among southern countries, despite their weak

economic ties.5 This mechanism is consistent with the spillovers of sovereign credit risk for the

Eurozone documented by Gabaix and Koijen (2022), among others.

The basic setup of our model is borrowed from Cochrane et al. (2008), which comprises two

Lucas trees that represent the unlevered assets of borrowers with standard output dynamics. We then

incorporate a credit model similar to Leland (1994) and Leland (1998). This setup enables us to derive

the borrowers’ endogenous default decisions, taking into account the amount of debt issued as well as

its average maturity. Our model expands traditional structural credit models to an economy where two

state variables, i.e., the borrowers’ own output dynamics and their relative share in the economy, now

drive asset valuations and default decisions. This way, we can examine the transmission of default risk

within financial markets, which we will argue represents an additional layer to the previously studied

contagion in asset prices. Notably, the transmission of default risk can sometimes reinforce the effects

of Cochrane et al. (2008), such as in the case of equity valuation, but it can also counteract and

dominate them, as evidenced by the co-movement of equity volatility.

shocks (e.g., Pavlova and Rigobon, 2007). The drop in the value of Russian government debt raised Brazil’s default risk
and increased its risk premium and rollover risk.

5For example, the overall value of bilateral trade between Greece and Portugal in 2010 was less than 300 million
euros, negligible compared to their respective GDPs.
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In order to isolate the default risk spillover effects, the benchmark scenario we set out relies on

two borrowers with independent fundamentals. However, in practice, co-movement in default risk can

result from borrowers being subject to common sources of fundamental shocks, as studied in Bao,

Hou, and Zhang (2023).6 We therefore extend our analysis to account for correlated output shocks,

finding that positively correlated fundamentals reduce the variability of the risk-premium and mitigate

default risk transmission. While co-movement in default risk and equity volatility may increase with

more correlated fundamentals, the spillover effects we identify act as a substitute for fundamental

correlation. Thus, our proposed mechanism may help explain why common factors alone cannot fully

account for the degree of corporate default clustering (e.g., Das, Duffie, Kapadia, and Saita, 2007).

We acknowledge that a firm’s default is also likely to have a direct impact on the creditworthiness

of other firms, as demonstrated in studies such as Azizpour, Giesecke, and Schwenkler (2018).7

However, our approach differs from these studies as it does not require a causal relationship between

a borrower’s default and the default probabilities of others. Our mechanism proposes an alternative

source of default clustering, through market clearing, that does not rely on shared fundamentals or

explicit contagion through default events.

In sum, our model can create spillover effects in both default risk, equity volatility, and risk premia

through a single mechanism: the response of borrowers’ default decisions to changes in equilibrium

risk pricing. To the best of our knowledge, this is the first model that can generate such predictions

in a unified framework.

This paper draws on insights from various strands of the asset pricing literature. First, we build on

the extensive literature on structural credit models that has been developed based on Merton (1974).

Specifically, we integrate equilibrium conditions into a model of borrower default and debt valuation,

building on the framework proposed by Leland (1994) and Leland (1998). Our approach is related

to a recent branch of the credit literature that has incorporated consumption-based asset dynamics

into structural models, including studies by Chang and Sundaresan (2005), Chen, Collin-Dufresne,

and Goldstein (2008), Bhamra, Kuehn, and Strebulaev (2010), and Chen (2010). In contrast to our
6Examples of such co-movement include those arising from aggregate cash flow shocks (Fudenberg and Maskin,

1986), financial network linkages (Allen and Gale, 2000), self-fulfilling beliefs (Goldstein and Pauzner, 2004), or compe-
tition across firms (Chen, Dou, Guo, and Ji, 2023).

7Other empirical studies have found that defaults can have spillover effects within industries (Lang and Stulz, 1992;
Jorion and Zhang, 2007), through business connections (Jorion and Zhang, 2009), via networks of firms (Acemoglu,
Ozdaglar, and Tahbaz-Salehi, 2015; Elliott, Golub, and Jackson, 2014), or through competition (Chen et al., 2023).
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model, a key feature of this literature is that individual firms have no impact on the fate of others,

and changes in asset value dynamics have only redistributive effects across claimants.

The second strand investigates asset prices in an endowment economy with a representative agent

consuming the output of multiple trees. Cochrane et al. (2008) study the case of two Lucas trees,

while Martin (2013) extend the model to a collection of trees (a Lucas orchard). In these models,

a shock to the output of one tree affects the output shares and hence valuation ratios of all other

assets.8 However, in the absence of leverage, asset volatilities (and risk premia) tend to move in

opposite directions, as an increase in one tree’s systematic risk reduces the risk of other trees. In this

paper, we highlight an endogenous response in default risk that reverses this negative volatility co-

movement. Our findings are distinct from those of Hasler and Ornthanalai (2018), who demonstrate

that investors’ fluctuating attention to news can generate contagion in asset returns and volatilities

when expected output growth is unobservable. Instead, we show that introducing debt in a Lucas tree

economy with complete information can jointly generate positive co-movement in the risk premium,

equity volatility, and default risk across borrowers. We further establish in a simulated economy that

these effects are economically significant. For example, the mean correlation between equity volatilities

(risk premia) across independent borrowers is 24% (38%).

Overall, this paper offers a unique contribution by departing from the traditional case of atomistic

firms and instead studying how a shock to one firm can impact another firm in the economy through

market clearing conditions. Unlike existing structural models for atomistic firms, where a borrower’s

default boundary is unaffected by the fate of others, the valuation of a borrower’s assets and its

default risk in this model depend on the market equilibrium resulting from changes to any borrower’s

fundamentals. By demonstrating that a shock to one borrower can impact another borrower’s default

risk, credit spread, equity volatility, and expected return, we highlight a new mechanism for default

risk transmission that can help us understand stylized facts in credit and equity markets.
8Other related studies include Dumas (1992) and Pavlova and Rigobon (2007) for the two-country economy case,

Menzly, Santos, and Veronesi (2004) for the predictability of returns in an equilibrium model with multiple securities
and habit preferences, Santos and Veronesi (2010) on the cross-section of stock returns, Buraschi, Trojani, and Vedolin
(2014) for an explanation of option prices in a Lucas orchard with investors’ disagreement, and Sauzet (2022) for the
case of two goods and heterogeneous preferences.
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1 Model

We develop a model to study how endogenous variation in risk premia creates default risk linkages

across borrowers. In our baseline version we embed a credit model with perpetual debt (Leland, 1994)

in an equilibrium economy (Cochrane et al., 2008), where two Lucas trees make up the unlevered

assets of the borrowers. This setting allows us to analyze how a borrower’s endogenous default

decision varies with its relative contribution to the economy. This model is subsequently extended

in Section 3.1 with finite-maturity debt to investigate the additional effects of rollover risk. We first

describe the economic environment, evaluate the assets of the borrowers, and then discuss the optimal

default policy.

1.1 Environment

The economy consists of two Lucas trees (i = A,B), which can be viewed as two distinct borrowers.

Each tree generates a stream of output that evolves according to

dX it
X it
= µidt + �idB

i
t , (1)

where µi denotes the expected growth rate and �i is the volatility of tree i ’s output. The trees are

subject to Brownian shocks dBAt and dBBt under the physical-probability measure, whose correlation

is given by ⇢. While our base case relies on independent trees, we consider the role of correlated

shocks as an extension.

The output share, which captures the relative importance of the two trees, is a key state variable

for this economy, as in Cochrane et al. (2008). The time-t output share of tree A, denoted by st , is

determined by

st =
XAt

XAt +X
B
t

, (2)

whose dynamics satisfy the process

dst = st(1� st)
⇥
µA � µB � st�2A + (1� st)�2B + 2(st � 1/2)⇢�A�B

⇤
dt (3)

+st(1� st)
�
�AdB

A
t � �BdBBt

�
,
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such that the output share st increases (decreases) with unexpected shocks to tree A (B). Note that

output share volatility is highest when the trees are of equal size and becomes zero when the economy

converges to a single borrower.

A representative agent with log utility and time discount rate � consumes aggregate output. The

dynamics of aggregate consumption, given by Yt = XAt +XBt , follow

d Yt
Yt
= [stµA + (1� st)µB] dt + st�AdBAt + (1� st)�BdBBt (4)

vart


d Yt
Yt

�
= s2t �

2
A + (1� st)2�2B + 2st(1� st)⇢�A�B, (5)

which implies that the consumption growth variance, denoted by vart
⇥
dYt
Yt

⇤
, is stochastic and peaks

when st = 0 and st = 1 and is lowest for intermediate values of the output share, i.e., when consump-

tion is most diversified between the two output sources.

The endogenous stochastic discount factor (SDF), equivalent to e��t/Yt and denoted by Mt ,

follows

dMt
Mt
= �rtdt � st�AdBAt � (1� st)�BdBBt , (6)

where rt is the equilibrium risk-free rate given by

rt = � + stµA + (1� st)µB � s2t �2A � (1� st)2�2B � 2st(1� st)⇢�A�B, (7)

which is stochastic and varies with the share st .

The SDF implies that the market prices of risk of the shocks to trees A and B correspond to st�A

and (1� st)�B, respectively. The price of risk of one tree thus increases with its relative contribution

to aggregate consumption, as captured by st for A and 1� st for B.

1.2 Security valuation

We now analyze the pricing of the borrowers’ levered equity and debt, thus departing from the

unlevered case of Cochrane et al. (2008). Assuming the consol debt financing structure of Leland

(1994) allows us to focus on the spillover mechanism in a parsimonious setting. However, we will
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show that all qualitative results extend to a model with finite-maturity debt.

We assume each borrower issues perpetual debt with a fixed, tax deductible, coupon Ci .9 Letting

' denote the borrower’s tax rate, the levered equity value can be written as

E i(X it , st) = sup
⌧i�t
Et

Z ⌧i

t

Mu
Mt
(1� ')(X iu � Ci)du

�
, (8)

where ⌧i is the random time at which the borrower i defaults on its debt obligations. We will show that

default occurs when output X it falls to an endogenous stochastic boundary bi ,t , which will depend on

the output share st . This is because there are two key factors influencing the valuation of a borrower’s

equity and hence the default decision. One is the level of the risk-free rate, which changes in lockstep

with the output share. The second is the market price of risk of the aggregate output shocks, which

also varies with the output share.

Note that in the absence of debt, when Ci = 0, Equation (8) respresents the unlevered asset value

of each tree, i.e. the present value of all future cash flows discounted using the common stochastic

discount factor. Denoting this unlevered value as U i we have

U i(X it , st) = Et
Z 1

t

Mu
Mt
(1� ')X iudu

�

= (1� ')Et
Z 1

t
e��(u�t)

Yt
Yu
X iudu

�

= (1� ')X itV i(st),

(9)

where the function V i(st) can be obtained in closed-form.10

Turning to the valuation of debt, we assume that, upon default, creditors recover a fraction

1 � ✏ of the value of the unlevered assets of the tree backing their claim, leaving the borrower’s

residual claimants with nothing. In other words, a fraction ✏ of the unlevered asset value is lost in the

bankruptcy process.11 The value of debt can therefore be expressed as
9We can consider an exogenous financing policy because we will prove that our main results are independent of the

chosen debt level (Section 2.4).
10Cochrane et al. (2008) provide a closed-form solution for the function V i(st), representing the price-to-dividend

(output) ratio of the tree in their unlevered model (see Equation A.1). This expression involves a set of hypergeometric
functions that can be evaluated numerically.

11We extend our model to investigate the effect of alternative default assumptions in Appendix C.1. Note, however,
that taxes and bankruptcy costs have no effect on aggregate consumption and the SDF in the economy. Corporate taxes
are composed of transfers redistributed (by a benevolent government) to the representative agent, while bankruptcy
costs can be viewed as (lawyer) fees paid to the agent to restructure the defaulting firm. One way to view this is that
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Di(X it , st) = Et
Z ⌧i

t

Mu
Mt
Cidu +

M⌧i
Mt
(1� ✏)U i(X i⌧i , s⌧i )

�
, (10)

such that the credit spread of newly-issued debt is given by

CSit =
Ci

Di(X it , st)
� yt , (11)

where yt is the yield on a risk-free bond that accounts for the stochastic nature of the (instantaneous)

risk-free rate rt .

A novel aspect of our model is that the optimal default policy is endogenously time-varying, as it

now depends on the output share st . This is in contrast to most structural models à la Leland (1994),

whereby the default boundary is time-invariant, as it depends on the debt level, asset volatility, and the

risk-free rate, among others, which are all assumed to be constant. Yet, the intuition for the default

decision is very much the same as in Geske (1977) and Leland (1994): shareholders trade off the cost

of avoiding default (servicing debt) and the continuation value of equity (future upside).12 The added

technical difficulty is that the continuation value of a borrower now depends on two state variables:

the dynamics of its own output and the relative share of the borrower in the economy.

One technical contribution of the paper is to propose a numerical solution (via finite-difference

methods) of the associated set of (free-) boundary-value problems. We solve for the equity and debt

values via partial differential equations (PDE), rather than via simulation. The advantage of the PDE

approach is that it allows us to solve for all values of the output share st simultaneously, rather than

running a separate simulation for each separate output share. Our PDE methodology also allows

us to exploit the existence of closed-form expressions for security values in the limit as the output

share approaches zero (with tree A becoming atomistic) and in the limit as the share approaches

one (corresponding to a single tree economy). The details of the solution method are discussed in

Appendix A.

the Modigliani Miller irrelevance result applies to the value of the sum of the two unlevered trees. Any changes in taxes,
bankruptcy costs, equity and debt are merely redistributive.

12We can also express the criterion for default as follows: for a given output share, shareholders seek to keep the
borrower solvent until the lowest possible (own) output level consistent with limited liability.
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2 Predictions

In this section, we highlight a new source of default risk co-movement that arises in a Lucas

economy with two levered, independent trees. We begin by reviewing key market equilibrium effects

and their implications for equity and debt valuation. We then analyze how a borrower’s creditworthiness

depends on shocks affecting another borrower, thereby generating co-movement in their default risk.

After this, we discuss the role of this risk transmission for credit spreads and highlight how this

mechanism can generate new insights on the co-movement in equity volatility and risk premia across

borrowers.

2.1 Calibration

We set the parameters of our two-tree economy as follows. The expected growth rates of trees

A and B are µA = µB = 0.02 and their volatilities are equal to �A = �B = 0.2, in line with Cochrane

et al. (2008). In the base case, the trees are independent (i.e., ⇢ = 0), but we relax this assumption

in Section 3.2. The time discount rate is set to � = 0.06. The tax rate is set to 15% (i.e. ' = 0.15)

and we assume that 37.8% of the unlevered asset value are recovered in bankruptcy (i.e. ✏ = 0.622),

as in Feldhütter and Schaefer (2018) and Bai, Goldstein, and Yang (2020). Unless otherwise stated,

we normalize the initial output levels to one, i.e., X i0 = 1. The baseline debt coupon is set to

CA = CB = 0.4, but we also consider lower (Ci = 0.2) and higher (Ci = 0.6) debt levels to generate

predictions across book leverage. The set of parameter values is summarized in Table 1.

TABLE 1 ABOUT HERE

Under the benchmark calibration (st = 0.5), leverage, credit spreads and equity return volatility

of tree A are 41.8%, 80bps, and 29.2%, respectively. Huang and Huang (2012) report an average

leverage of 43.28% for Baa firms, while Kang and Pflueger (2015) report 41%. The average credit

spreads for long maturity bonds is 82 bps in Davydenko and Strebulaev (2007), while Bhamra, Dorion,

Jeanneret, and Weber (2023) report an average equity volatility of 33.15%. In addition, the (levered)

equity risk premium equals 3.18%, which compares to the level (3.22%) obtained in a structural model
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with macroeconomic risk (Bhamra et al., 2010). The model-implied moments are thus reasonably close

to their empirical counterparts.

2.2 Equilibrium asset prices

We first review how aggregate risk, the risk-free rate, and asset prices vary in equilibrium with

fluctuations in the size of the trees. We consider variations in the relative size of tree A, denoted by

the share st , that arise exclusively from idiosyncratic shocks to tree B. That is, we keep tree A’s output

constant to avoid a mechanical variation in this tree’s creditworthiness. Our intent with this exercise

is to ask what an exogenous shock to one borrower’s fundamentals implies for the asset valuation,

default decision, and creditworthiness of another borrower whose fundamentals remain unchanged.

2.2.1 Aggregate risk, risk-free rate, and equity valuation

We start by illustrating two standard features of the two-tree economy, discussed in Cochrane

et al. (2008), but which are going to play a critical role for understanding default risk: i) Consumption

growth volatility is a convex quadratic (U-shaped) function of the share st . It is thus lowest for equal

values of the output share (st = 0.5), that is when consumption is the most diversified; ii) The risk-

free rate, which varies negatively with such volatility through the precautionary savings motive, is the

mirror image and thus inherits a hump shape. These equilibrium effects are illustrated in Panels A and

B of Figure 2.

FIGURE 2 ABOUT HERE

Another central feature of Cochrane et al. (2008) that echoes in our model is how shocks to one

tree induce variation in systematic risk. Fundamentally, the level of systematic risk of a tree increases

with its contribution to the economy, as a tree with a larger share is less desirable from a diversification

perspective. So if a negative shock hits tree B, investors want to rebalance and reduce their wealth

across both trees. However, as investors cannot simultaneously rebalance all portfolios, given that

the assets are in fixed supply, prices and expected returns must adjust. As the size of tree B shrinks,

investors find it attractive to hold a smaller share of tree B. In contrast, the risk premium of tree A
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must then increase (Panel C) and its equity valuation fall (Panel D), so that investors are willing to

hold it in higher proportion. In equilibrium, a shock to one tree affects the other’s asset valuation,

creating contagion in asset prices, even in the absence of a common source of risk.

2.2.2 Debt valuation and leverage

We now discuss how these equilibrium effects drive a borrower’s debt valuation and leverage, which

are novel aspects of our model. The relationship between tree A’s debt value and its contribution to

aggregate fluctuations, as measured by the output share st , is a combination of two effects. First, as

the share of tree A increases (following a negative shock to tree B), the higher risk premium reduces the

value of its debt, which creates a negative relationship between debt valuation and the output share.

Second, debt valuation is inversely related to the risk-free rate, which creates a U-shaped relationship

between debt valuation and the output share. Panel E of Figure 2 illustrates the combined effect.

In sum, both equity and debt prices fluctuate endogenously with the relative importance of a

borrower in the economy. However, we find that the effect on debt valuation differs qualitatively from

the effect on equity valuation, which implies that leverage (debt value over the sum of debt plus equity

values) varies non-trivially in equilibrium. We can indeed see that, when a borrower becomes a relatively

larger player in the economy, its leverage tends to increase (Panel F), although the fundamentals of

this borrower do not change. This points towards an increase in default risk in response to negative

shocks hitting the other borrower. This transmission in default risk across borrowers, which we discuss

in more detail below, is the focus of this paper.

2.3 Default risk linkages across independent borrowers

In this section, we discuss how an economy with two levered trees can experience endogenous

default risk linkages across borrowers. By default risk linkages, we have in mind an increase in the

(physical) default probability of one borrower (A) due to a negative shock to another borrower (B)’s

fundamentals, whose default risk also increases. Specifically, we show that as borrower A becomes a

greater player in the economy, given that the size of borrower B shrinks, the increased risk premium of

borrower A skews its decision towards defaulting, although its fundamentals remain the same. Default
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risk thus co-moves across the two borrowers, despite their independent fundamentals.13

2.3.1 Endogenous default decision

We first explore the predictions for a borrower’s default policy, as characterized by its optimal

default boundary bi(st). We can then measure (physical) default risk with the distance-to-default,

defined as the log distance between a tree’s output level and the corresponding default boundary,

normalized by its output volatility. The distance-to-default for tree i is then DDit =
1
�i
ln
⇣
Xit
bi (st)

⌘
.

In our setting, the output volatility is constant, which implies that any increase in the boundary

is equivalent to a decrease in the distance-to-default, i.e., the borrower is more likely to default.

Similarly, when the output of a tree approaches its endogenously determined default boundary, the

distance-to-default decreases and default risk increases. Given its simplicity, the distance-to-default

is widely used in practice, being a useful default predictor in reduced form credit models (e.g., Duffie,

Saita, and Wang, 2007; Bharath and Shumway, 2008; Campbell, Hilscher, and Szilagyi, 2008).

To understand the mechanism linking default risk across borrowers in our model, consider a negative

(idiosyncratic) shock to tree B, while keeping the output of tree A unchanged, i.e., a decline in the

share of tree B. Clearly, this negative shock leads to a deterioration in the fundamentals of tree B,

which translates into a lower distance-to-default and, thus, creditworthiness.

The more interesting effect is what happens to tree A. In relative terms, tree A becomes a greater

contributor to aggregate consumption and, thus, exhibits higher systematic risk. The increase in risk

premium for tree A reduces the present value of future cash flows to equity, and as a result, decreases

the option value of waiting to default. This effect appears in the form of a higher optimal default

boundary, as illustrated in Panel A of Figure 3, and thus a lower distance-to-default. Tree A is then

more likely to default on its debt when it becomes a greater player in the economy, as a result of tree

B being hit by a negative shock. In contrast, a positive shock to tree B decreases the share of tree A,

reduces its risk premium and, and then its default risk. Tree A’s creditworthiness thus directly depends

on the fate of tree B.

FIGURE 3 ABOUT HERE
13This is reminiscent of what is known in the literature as default contagion, where the default of one borrower can

cause the default of another. However, in our model the default event is not a driver of another’s default, rather default
risk will co-move across borrowers through contagion in risk premia and the resulting impact on default decisions.
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2.3.2 Co-movement in default risk

A direct implication of this mechanism is co-movement in default risk across borrowers, as their

distances-to-default move in tandem when one borrower experiences a shock while the other does

not. An economy with two levered trees features endogenous co-movement in default risk and,

thus, a potential clustering of defaults, even when their fundamentals are independent. The primary

transmission channel arises from a borrower’s default policy varying endogenously with equilibrium risk

premia. We thus point to a new mechanism through which market clearing conditions can generate

real effects, by inducing a transmission in default risk from one borrower to another. This is a unique

prediction of our two-tree economy with debt. Thus far, existing models with multiple unlevered

trees (e.g., Pavlova and Rigobon, 2007; Cochrane et al., 2008; Martin, 2013; Hasler and Ornthanalai,

2018) have abstracted from default risk, while credit risk theories based on Leland (1994)’s model

have focused exclusively on individual firms or portfolios of atomistic firms. Our contribution is to

combine these distinct strands of literature and to show how shocks to one borrower can increase the

default risk of another fundamentally-independent borrower.

To provide more quantitative insight into the co-movement in default risk between borrowers, we

compute the correlation between their distances-to-default, given the stochastic fluctuations in both

the output process X it and the default boundary bi(st). Specifically, we have:

PROPOSITION 1. Define the distance-to-default for tree i to be DDit =
1
�i
ln
⇣
Xit
bi (st)

⌘
, where X it

and st follow the dynamics in (1) and (3), respectively. The correlation between the changes in

distance-to-default across borrowers, ⇢DD(st) := Corr
�
dDDAt , dDD

B
t

�
, is

⇢DD(st) =
⇢[(1� fA(st)fB(st)] + ↵AfA(st)� ↵BfB(st)q

[1 + 2⇢↵AfA(st) + ↵2Af
2
A (st)][1� 2⇢↵BfB(st) + ↵2Bf 2B(st)]

, (12)

where ↵i := ��i/�i and

fi(st) := st(1� st)
b0i(st)

bi(st)
, (13)

which represents the sensitivity of tree i ’s default boundary bi to changes in output share st .

Proof. See Appendix B.
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COROLLARY 1. Letting ⇢ = 0 in (12) yields

⇢DD(st) =
↵AfA(st)� ↵BfB(st)q

[1 + ↵2Af
2
A (st)][1 + ↵

2
Bf
2
B(st)]

> 0. (14)

Given that the default boundary bA(st) is increasing in st (the share of tree A), we observe from

(13) that fA(st) > 0. Moreover, since the share of tree B is simply 1� st , we observe that bB(st) is

decreasing in st and hence fB(st) < 0. The correlation between the distance-to-defaults of the two

trees is therefore positive, even when shocks to their output are independent (⇢ = 0).

The level of this default risk correlation is economically meaningful. Our baseline calibration

implies fA(0.5) = �fB(0.5) ⇡ 0.0476, which yields ⇢DD ⇡ 9.51% when st = 0.5. We stress that this

correlation is between fundamentally independent borrowers, hence we can interpret this correlation

as an excess co-movement in default risk caused by the mechanism outlined in this paper.14 Recall

that we consider the log utility case, so this excess correlation can be viewed as a lower bound: higher

risk aversion would magnify variations in risk premia and thus strengthen the transmission of default

risk across borrowers.

Importantly, the level of default risk correlation remains sizable and robust to variation in the

output share st , as illustrated in Panel A of Table 2. That is, the default risk co-movement obtained

in equilibrium applies equally to relatively small and large firms. This alleviates the concern that the

transmission in default risk we identify only matters for borrowers contributing the most to aggregate

economic fluctuations.

We also verify that this prediction remains robust to changing our assumption about who receives

what in default (see Appendix C.1). Panel B of Table 2 shows that similar co-movement in default

risk arises when shareholders and debtholders play a Nash bargaining game in default, as in Fan and

Sundaresan (2000). In addition, we find that the degree of default risk co-movement only varies

marginally with a borrower’s characteristics (see Appendix C.2). Our prediction therefore does not

hinge on a specific model calibration.

TABLE 2 ABOUT HERE

14As we will show later, the level of (excess) default risk correlation increases for borrowers with shorter-maturity
debt (Section 3.1) and negatively-related output (Section 3.2).
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2.4 Capital structure independence

Our analysis so far assumes an exogenous debt level, determined by the coupon Ci . In doing so, we

intentionally abstract from an optimal financing policy. We now demonstrate that the co-movement

between borrowers’ default risk, as measured by the correlation in (12), is actually independent of a

borrower’s capital structure choice.

We see from (8) that equity values satisfies the following symmetry due to the multiplicative nature

of geometric Brownian motion:

E(X it , st ;Ci) = CiE

✓
X it
Ci
, st ; 1

◆
(15)

and hence bi(st ;Ci) = Cibi(st ; 1), i.e. the optimal default boundary scales linearly with the debt coupon

Ci . This scaling property, which is shared with most Leland (1994)-type of models, is illustrated by

Panel B of Figure 3, where each of the three boundaries for different Ci are merely scaled multiples

of each other.

A novel implication of this scaling property is that fi(st), as defined in (13), is independent of Ci ,

so that the correlation ⇢DD(st), as defined in (12), does not depend on the capital structure chosen by

borrowers. Appendix D provides a proof and more details on this independence.15 This fundamental

result implies that there is no additional insight to be gained from endogenizing borrowers’ leverage

when the objective is to understand default risk co-movement.

2.5 Default probabilities

Until now, we have considered the distance-to-default as our key measure of default risk. The

distance-to-default has the advantage of allowing its correlation across two trees to be computed in

closed form. We now consider the default probability, which is perhaps a more intuitive metric.

Figure 4 illustrates how the default probabilities for the two borrowers behave as a function of the

output share under both the physical and risk-adjusted measures. The difference between the two

measures of default probability identifies the risk premium associated with default risk.16 We report
15The extended version of our model with finite maturity debt exhibits the same symmetry.
16We compute the default probabilities via PDEs, using the methodology described in Appendix F. The 10-year default

probability is within the confidence intervals reported in Feldhütter and Schaefer (2018) for a BBB firm. We calibrate
the full term structure of default probabilities to study a simulated economy in Section 2.8.
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predictions for the output share of tree A varying between 0.2 and 0.8 because tree B is in default

outside of this range. The wedge between risk-neutral (Q) and physical (P) probabilities, measured as

a ratio, varies between 1.43 (at s = 0.2) and 2.56 (at s = 0.8), which is consistent with the ratios of

risk-neutral to physical default intensities reported in Driessen (2005) for BBB firms. Note that the

ratio (and the difference) between Q and P in our model increases with the output share of tree A,

so it is strongly tied to the level of systematic risk.

FIGURE 4 ABOUT HERE

We find that borrower A’s physical default probability responds to a shock to borrower B and that

the model also generates co-movement in probabilities across the two borrowers. In addition, the

risk-adjusted default probability of tree A is even more responsive to a shock on tree B, which implies

an increasing risk premium. This result should translate into a particularly strong co-movement in

credit spreads and asset pricing moments, given they are derived under the risk-adjusted measure. In

the next section, we explore the predictions for equilibrium credit spreads, which combine information

about both the probability of default and risk premia.

2.6 Equilibrium credit spreads

It is particularly interesting to study credit spreads because a negative shock to borrower B affects

credit spreads through two channels: a change in level of default risk and a change in the price of

risk. To understand the two channels driving credit spreads, consider, as before, a negative shock to

borrower B. As borrower A contributes more to the economy, the increase in its risk premium tilts that

borrower towards increasing its optimal default boundary. The resulting increase in credit spread can

be viewed as a ‘quantity of default risk’ effect. In addition, the higher risk premium implies a direct

increase in the credit spread, which can be viewed as a ‘price of risk’ effect.

The combination of the two effects induces the credit spread of borrower A to increase with the

relative size of this borrower in the economy, as illustrated in Panel A of Figure 5. Note that the

exposure of borrower A’s credit spreads to shocks impacting borrower B now increases with the level

of leverage, although the sensitivity of the distance-to-default does not (given the scaling property
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discussed in Section 2.4). This is because a shock to one borrower impacts the other borrower’s credit

spread by affecting both its default risk and its (levered) risk premium, which naturally increase with

leverage.

In contrast, the effect on borrower B’s credit spread is ambiguous because the two channels now

work in opposite directions: while borrower B’s negative shock increases its default risk, the level

of systematic risk decreases and so does its risk premium. Yet we find that the default risk effect

dominates the price of risk channel, that is, borrower B’s credit spreads move in the same direction

as borrower A’s (see Panel B of Figure 5). This results in a co-movement in credit spreads across

independent borrowers, complementing the co-movement in default risk discussed earlier.

FIGURE 5 ABOUT HERE

2.7 Co-movement in equity volatility and risk premia

Another important feature of financial markets is the co-variation in the equity volatility between

fundamentally unrelated firms, which has been extensively documented in the empirical literature.17

We now show that our model can explain a positive co-movement in equity volatility (and risk premia)

through the endogenous default risk channel, without assuming any change in output volatility.18 This

result is not trivial because the offsetting variations in systematic risk across the two borrowers would

generate a negative co-movement in equity volatility and risk premia in the absence of leverage and

default risk.

To understand this mechanism, consider a negative shock to borrower B. The equity volatility of

borrower A increases with its output share, as illustrated in Panel A of Figure 6. This result arises

because the optimal default boundary increases with the level of systematic risk (borrower A becomes

relatively larger), thereby increasing leverage and thus the level of equity volatility. Turning to borrower

B, this shock increases that borrower’s leverage, as its output approaches the default boundary, and

thus its equity volatility, as displayed in Panel B of Figure 6. We can see that the positive effect

of leverage on the equity volatility of borrower B dominates the decrease in equity volatility due to
17See, for example, Hamao, Masulis, and Ng (1990), Boyer, Kumagai, and Yuan (2006), Bekaert, Ehrmann,

Fratzscher, and Mehl (2014), and Hasler and Ornthanalai (2018).
18Appendix E derives these equity return moments in our model.
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the reduction in systematic risk (borrower B becomes relatively smaller). Shocks to one borrower

thus generate co-movement in equity volatility across independent debt-financed trees. Similarly, we

observe a positive co-movement in equity risk premia, as illustrated in Figure 7.19

FIGURES 6 AND 7 ABOUT HERE

These predictions stand in contrast to the case of unlevered trees, such as in Cochrane et al.

(2008): an increase in the output share of one tree decreases that of the other, causing equity

volatilities and risk premia to move in opposite directions across trees, as illustrated in Panels C and

D of Figures 6 and 7. The mechanism is described in Figure 8. Such a counterfactual negative

co-movement highlights the importance of considering debt financing. The default risk transmission

that we document in this paper reverses the negative linkages in equity risk premia and volatilities and,

as a result, generates predictions that are consistent with the positive co-movement observed in the

data (e.g., Herskovic et al., 2016).20

FIGURE 8 ABOUT HERE

Our model can thus create spillover effects in both default risk, equity volatility, and risk premia

through a single mechanism: the response of borrowers’ default decisions to changes in equilibrium

risk pricing. To the best of our knowledge, this is the first model that can generate such predictions

in a unified framework.

2.8 Quantifying co-movement with simulated economies

So far, we have illustrated how our model implies co-movement among several metrics such as the

default risk, leverage, credit spreads, risk premia, and equity volatilities. We now seek a better sense

of the economic magnitude of such co-movements.
19Equity risk premia co-move positively when borrower B’s default risk is high (when its output share is low, due to

negative shocks), as the leverage channel dominates the change in systematic risk. In contrast, the leverage effect is
weak when borrower B’s default risk is low, so that the co-movement in risk premia becomes similar to the unlevered
case.

20Hasler and Ornthanalai (2018) show that spillovers in return and volatility can also arise in a two-tree economy in
which the representative investor needs to estimate unobservable expected output growth. Their incomplete information
model abstracts from the leverage channel, whereas our model introduces debt financing in an economy without learning.
Both mechanisms complement one another as means of understanding commonality in returns and volatility in financial
markets.
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To do so we simulate a dataset of multi-borrower economies and compute the correlations across

trees. In contrast to model results discussed thus far, which are calculated for borrowers with output

levels maintained at the level of bond issuance (Xi = 1), each simulated economy consists of borrowers

endowed with different levels of outputXi and hence default risk. The simulation thus generates a panel

of economies in which borrowers’ default risk, credit spreads, and asset pricing moments display large

variation both in the cross-section and time series. Appendix G describes the simulation procedure,

based on 20,000 two-tree economies at the daily frequency over a 10-year period. The level and

the term structure of default probabilities in our simulation exercise closely matches the empirical

counterparts, as the 1-, 5-, and 10-year default probabilities are 1.41%, 6.29%, and 11.79% in the

simulation and respectively 1.86%, 7.72%, and 11.37% in the data, based on the cumulative default

rates for all-rated corporate bonds in the U.S. from Standard and Poor’s (2021). Table 3 reports

the sample correlation across trees, averaged across simulations, for different default risk measures in

Panel B and asset pricing moments in Panel C.

TABLE 3 ABOUT HERE

We first notice that the correlations obtained from the distance-to-default and the 10-year cu-

mulative default probability are quite similar, at 10.06% and 10.84% respectively. While the default

probability and its correlation across borrowers may be more straightforward to interpret, considering

the distance-to-default allows us to obtain a closed-form solution for its correlation with similar quan-

titative predictions. The correlations based on leverage ratios, however, show a slightly higher average

value of 14.84%.

Default probabilities, distances-to-default, and leverage speak to the quantity of but not the pricing

of default risk. The credit spread, on the other hand, combines the quantity and price of risk. We see

in Table 3 that the average correlation for credit spreads is in fact higher, at 28.08%, than that for

all three physical measures of default risk.

Next, we explore correlations in other asset pricing moments. Equity volatility, which would be

negatively correlated across trees in the absence of financial leverage, exhibits a positive correlation

of about 24%. An interesting observation is that the correlations become more pronounced when

examining equity risk premia across borrowers, with an average correlation of about 38%. Additionally,
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correlations based on debt risk premia and volatility (derived in Appendix E) exhibit a similar pattern,

with even higher levels. The large correlations in debt moments across trees are largely due to the case

when both borrowers become highly creditworthy, whereby fluctuations in debt values mostly reflect

common variation in aggregate risk and the risk-free rate.

Finally, it is useful to compare the simulation outcomes of our model, consisting of an economy of

two borrowers featuring stochastic default boundaries, with a scenario where the default boundaries

remain constant. This counterfactual case can be viewed as two separate economies of one borrower

each, whereby the default boundary of a borrower is independent of the fate of the other. We describe

this analysis in Appendix G.2. Figure A.1 (A.2) plots the distributions of the correlation in default risk

(asset moments) across trees for both cases. Notably, the average correlation level in our baseline

model is clearly shifted towards the right of the distribution obtained in the counterfactual case. This

result confirms that the strong co-movement revealed in Table 3 cannot be due to chance. Hence,

this simulation exercise effectively demonstrates that the co-movement levels across trees, concerning

default risk and asset pricing moments, are not only economically substantial but also statistically

meaningful.

2.9 Summary

Our analysis has highlighted a new form of default risk transmission, where market clearing condi-

tions can generate real effects: contagion in asset prices impacts borrowers’ default policies and thus

their default risk. We have shown that physical default risk can co-move positively across borrowers,

even in the case of uncorrelated fundamentals. A direct implication of this mechanism is co-movement

in credit spreads, equity volatility, and risk premia across borrowers. Our theory thus provides new

testable predictions, both in the cross-section and time series, that can be tackled in future empirical

research.

3 Extensions

This section provides several theoretical extensions. First, we relax the assumption of perpetual

debt, allowing borrowers to issue finite maturity debt with a given rollover structure. All of the

model’s qualitative features carry over to such an extension, with the additional insight gained that
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shorter maturity debt (i.e., the presence of higher rollover risk) increases the co-movement in default

via the risk-premia channel. We then investigate how our findings vary when allowing for correlated

fundamentals across trees.

3.1 A finite-maturity debt structure

Incorporating the financing structure of Leland (1998) allows us to nest the consol debt model

considered in our baseline model, while also studying the consequences of short-term debt on rollover

risk and, subsequently, the transmission of shocks from one tree to another. This extended version of

the model shows that rollover risk and leverage interact with each other in modulating a borrower’s

default decision. Specifically, a borrower with shorter average debt maturity is more susceptible to

experiencing large changes in default risk when another borrower is hit by a shock.

A number of papers on rollover risk find that the liquidity of the bond market matters for asset

prices and thus for a borrower’s endogenous default policy (see, e.g., Ericsson and Renault, 2006; He

and Xiong, 2012; He and Milbradt, 2014). The complementary focus of our model is to explore how

debt rollover risk amplifies the default decision of borrowers that is shaped by variation in equilibrium

risk premia.

3.1.1 Rollover debt structure

We assume that each borrower issues a menu of bonds with different maturities and commits to

rolling over this debt so as to keep the total face value Pi and coupon Ci constant. To maintain a

stationary debt structure, borrowers continuously roll over a fraction mi of total debt, which corre-

sponds to the fraction of debt arriving at maturity. Hence, in every time interval (t, t+dt), borrowers

pay back miPidt in maturing debt and replace it with newly issued debt with (equal) face value pidt,

equal seniority, and equal maturity schedule. Hence pi = miPi . Given all debt has equal seniority, we

assume that borrowers default on all debt simultaneously, at time ⌧i . As in the baseline model, default

occurs when the output X it falls to an endogenous boundary bi ,t that depends on the relative output

share st .

In this extended version, rollover risk arises when a maturing bond is replaced by a new bond

with equal coupon and principal. In contrast to the originally issued bond that is redeemed at par,
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the new bond may not sell at par. Hence, if the borrower’s fortunes take a turn for the worse, the

proceeds of the refinancing may not cover the cost of paying off the maturing bond. When this

happens, borrowers must make up the difference by injecting new funds, and this additional burden

will influence their default decision.

3.1.2 Security valuation

This rollover structure ensures that at all points in time the borrower has current debt with an

exponentially decaying remaining principal (with parameter mi). Therefore, the average maturity of

debt is given by 1/mi , and the total value of debt (at time t) is computed as

Di(X it , st) =

Z 1

0
e�miT pid

i(X it , st ;T )dT, (16)

where d i(X it , st ;T ) denotes the (time-t) value of $1 face value of debt, with a coupon rate ci , maturing

in T years’ time, which is given by

d i(X it , st ;T ) = ciEt
Z t+T

t

Mu
Mt
I{⌧i>u}du

�
+ Et


Mt+T
Mt
I{⌧i>t+T}

�

+
(1� ✏)
Pi

Et

M⌧i
Mt
U i(X i⌧i , s⌧i )I{⌧it+T}

�
. (17)

The first term in (17) is the discounted expected value of the coupon flow, the second term represents

the expected discounted value of repayment of the $1 principal, while the third term reflects the

expected discounted value of the tree’s assets that bondholders recover upon default; where 1/Pi

denotes the share of the total face value of debt of the $1 bond (due to assumed equal priority).

Substitution of (17) into (16) yields the following expression for the total value of debt (see

Appendix H.1):

Di(X it , st) = Et

(Ci +miPi)

Z ⌧i

t
e�mi (u�t)

Mu
Mt
du + e�mi (⌧i�t)

M⌧i
Mt
(1� ✏)U i(X i⌧i , s⌧i )

�
(18)

such that the total required annualized debt service equals the total coupon Ci (= ciPi) plus the

fraction of total principal Pi rolled over in a given year, miPi . The corresponding credit spread is given
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by

CSit =
Ci +miPi
Di(X it , st)

� yt(mi), (19)

where yt(mi) is the yield on a maturity-matched risk-free bond.

Turning to the valuation of equity, we recall that the debt structure described above exposes

borrowers to rollover risk. Borrowers will face a cash shortfall if the newly-issued debt is priced below

par, i.e. Di(X it , st) < Pi . Given that a fraction mi of debt is rolled over at every instant, the net cash

flow over the interval (t, t + dt) is given by mi(Di(X it , st)� Pi)dt. Hence, the value of equity solves

E i(X it , st) = sup
⌧i�t
Et

Z ⌧i

t

Mu
Mt

⇥
(1� ')(X iu � Ci) +mi(Di(X iu, su)� Pi)

⇤
du

�
, (20)

which implies that the degree of rollover risk will affect the optimal default policy of the firm, as any

cash shortfall must eventually be financed by shareholders.

Note that the value of debt enters directly into the borrower’s valuation problem in (20), and the

borrower’s optimal default decision (⌧i) enters into the debtholders’ valuation problem in (18), so

the two problems are coupled in a way that they are not with perpetual debt. Appendix H provides

details of the solution to the system (18)+(20) via the numerical solution of associated boundary-value

problems.

3.1.3 Calibration of the additional parameters

We use the same calibration as described in Section 2.1, with the following additional assumptions

regarding the rollover debt structure. First, in our baseline parameterization, we set the average debt

maturity equal to 10 years, which corresponds to mi = 1/10. We also consider shorter (5 years;

mi = 1/5) and longer (30 years; mi = 1/30) debt maturities to generate predictions for different

degrees of rollover risk. Second, for each bond, we calibrate the principal such that it equals the value

of a perpetual risk-free bond, i.e., Pi = Ci/rt using the risk-free short rate obtained when both trees

have equal output shares (i.e., st = 0.5).21 In the case of 10-year maturity debt, leverage, credit

spreads and equity return volatility of tree A increase to 45.4%, 107bps, and 35.6%, respectively.

These values remain similar to what is found in the literature (e.g., Huang and Huang, 2012). In
21This assumption is meant to ensure that the amount of debt is comparable across the finite and perpetual debt

model versions.
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addition, the levered equity risk premium rises to 3.91%, up from 3.18% with perpetual debt.

3.1.4 Predictions

We now explore how the transmission in default risk across borrowers varies with the level of

refinancing risk. He and Xiong (2012) find that shorter average debt maturity increases a firm’s

refinancing risk when secondary debt markets are illiquid, thereby influencing its optimal default policy.

While our model abstracts from such liquidity considerations, we expect the refinancing channel to

play an important role in driving the response of a borrower’s default decision to shocks affecting

another borrower and, hence, their co-movement in default risk.

First, we provide intuition regarding how a borrower’s debt maturity impacts its optimal default

boundary and, as a result, shapes the default risk transmission mechanism uncovered in this paper.

Recall that when a bond matures, it is replaced by a new bond with the same coupon and principal.

However, the market price of the new bond may deviate from the principal of the maturing bond. As

the bond yield increases (through higher default risk or risk premium), rollover losses arise from issuing

new bonds to replace maturing bonds. To avoid default, equity holders may be willing to bear the

rollover losses and bail out maturing bond holders to the extent that the equity value remains positive,

i.e., the option value of keeping the borrower alive justifies covering the expected rollover losses. With

shorter debt maturity, the increase in rollover risk exerts greater pressure on the equity holders to

inject funds and makes them less patient, which translates into a higher optimal default boundary, as

illustrated in Panel C of Figure 3. The consequence is thus an increase in the level of default risk.

This rollover channel generates another central prediction of the model: with shorter debt maturity,

a borrower’s endogenous default decision becomes more sensitive to shocks hitting another borrower.

To understand this prediction, consider, as before, a negative shock to tree B, while keeping the

output of tree A unchanged. The higher risk premium for tree A increases the cost of replacing each

dollar of maturing debt: It increases the pressure on shareholders to bail out existing bondholders and

makes the former less patient, thus increasing the default boundary further as the share of tree A

rises. Shorter debt maturity exacerbates this effect and will alter the trade-off between defaulting and

keeping the borrower alive by injecting funds in favour of defaulting. Panel C of Figure 3 shows that

the optimal default boundary and the distance-to-default are thus more sensitive to a change in the

27



share of tree A (i.e., shocks to tree B) for borrowers with shorter debt maturity.

As a result, the degree of rollover risk, dictated by the maturity structure, directly regulates a

borrower’s default decision following shocks to other borrowers: the endogenous change in default

risk becomes particularly severe for borrowers with shorter-term debt. Consequently, we observe a

strengthening in the co-movement in default risk for borrowers with greater rollover risk.

More formally, we can compute the sensitivity of the default boundary to changes in the output

share, given in (13), and subsequently the distance-to-default correlation, given in (12). Table 2

presents the correlation between the distance-to-defaults of tree A and tree B for a range of debt

maturities. For an average maturity of 10 years (mi = 0.1), we find that fA(0.5) = �fB(0.5) ⇡ 0.0700,

which yields ⇢DD(0.5) ⇡ 13.93%, compared to 9.51% stated earlier for the perpetual debt case. The

correlation further increases to 15.32% for a 5-year average debt maturity.

Confirming these results, Figure 9 shows that the term structure of the default risk correlation is

monotonically downward sloping. Notably, we find that the slope is more pronounced for low maturities;

this means that changing a debt’s maturity from 10 to 5 years increases default risk co-movement

more than a change from 10 to 15 years reduces it.

FIGURE 9 ABOUT HERE

Rollover risk also has a meaningful effect on credit spreads. Panel C of Figure 5 shows that the

credit spread of tree A is much more sensitive to shocks affecting tree B when rollover risk is higher,

that is in the case of shorter debt maturity.

In sum, we find that a shock to one borrower generates a greater impact on the creditworthiness

of another borrower if the latter has higher rollover risk, i.e., the risk arising from shorter maturity

debt and more frequent debt refinancing. The model thus predicts a stronger level of co-movement

in default risk and credit spread as average debt maturity decreases.

3.2 Correlated trees

Our baseline model features independent output streams, given our objective to study a new mech-

anism for default risk transmission that arises through market clearing rather than through correlated
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fundamentals. In many practical situations, such an assumption would not be realistic. In this section,

we revisit our model findings when the fundamentals of the two trees are subject to correlated shocks.

Table 4 reports how the total correlation across the trees’ distance-to-default (⇢DD) varies with

the correlation across fundamentals (⇢), ranging between �0.25 and 0.25. We also report the excess

correlation, defined as the correlation in distances-to-default minus the correlation in output shocks,

i.e., ⇢DD � ⇢. Overall, the consideration of a non-zero correlation in output shocks does not change

our main results qualitatively. The economy continues to feature excess default risk co-movement

across borrowers, whether the correlation between trees is positive or negative. In addition, the term

structure of the excess default risk correlation remains downward sloping in all cases (see Figure 9).

TABLE 4 ABOUT HERE

Observe, however, that the excess co-movement in default risk strengthens as the correlation

between trees becomes weaker. The excess correlation in distances-to-default increases from 7.31%

when the correlation in output shocks is 0.25 to 10.46% when the correlation is �0.25. This result

arises because a higher output correlation reduces the variability of the output share, and thus the im-

portance of the risk premium channel, which is the key mechanism in our paper. The central takeaway

from this analysis is that, while co-movement in default risk naturally increases across borrowers with

more correlated fundamentals, the spillover effects we identify act as a substitute to such fundamental

correlation. The excess level of co-movement indeed strengthens when both output streams become

less exposed to a common source of shocks.

4 Applications

The theory we present in this paper demonstrates how an economy comprising borrowers with

independent fundamentals can exhibit co-movement in default risk. The default risk linkages we

emphasize, arising from the transmission of risk premia, have broad implications for various areas of

financial economics, such as corporate and sovereign debt markets. In the following sections, we delve

into several practical applications derived from the predictions of our model.
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4.1 Corporate sector

The U.S. economy has experienced significant clusters of corporate defaults over the past century,

prompting research efforts to understand the underlying sources of such co-movement in default risk.

This is all the more relevant in a world with expanding markets for securities exposed to correlated

default risk, such as collateralized debt obligations.

One prominent candidate for the source of default clustering is the joint exposure of firms to

common factors such as economic growth, aggregate uncertainty, and monetary policies. While these

factors can potentially lead to correlated changes in firms’ default rates, the literature suggests that

this channel alone cannot fully account for the extent of corporate default clustering observed in the

U.S. (e.g., Das et al., 2007). Azizpour et al. (2018) further demonstrate that contagion serves as a

significant source of default clustering, even after controlling for firms’ joint exposure to observable

and latent systematic factors. This finding aligns with a substantial body of literature exploring default

risk contagion in the corporate sector.22

Our paper contributes to the literature by offering a rationale for the observed co-movement in

default risk among firms that do not share strong ties in terms of their fundamentals, business relations,

or systematic risk exposure. In addition, we propose a transmission channel that induces co-movement

in default risk between firms, even in the absence of financial-network linkages (Allen and Gale, 2000),

self-fulfilling beliefs (Goldstein and Pauzner, 2004), or competition across firms (Chen et al., 2023).

The transmission channel we propose is distinct from traditional notions of default contagion, as there

is no direct causal link between the default events of two borrowers. Instead, our channel operates by

facilitating the transmission of shocks from one borrower to the endogenous default decision of other

borrowers. This mechanism highlights a new dimension of default risk co-movement that goes beyond

traditional explanations.
22For example, Lang and Stulz (1992) and Jorion and Zhang (2007) empirically document spillovers from bankruptcies

to intra-industry equity prices and default swap spreads, while Jorion and Zhang (2009) find that defaults can have spillover
effects on business partners. The default by one firm may also have a direct impact on the conditional default rate of
other firms, as in the network models of Acemoglu et al. (2015) or Elliott et al. (2014). Chen et al. (2023) show that
competition is a source of credit contagion, as firms compete more aggressively when they are in financial distress. In
addition, Kodres and Pritsker (2002) propose an information-based mechanism for contagion to explain contagion across
financial markets, while Bae, Karolyi, and Stulz (2003) study credit risk contagion across international markets.
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4.2 Bailouts and bankruptcy cascades

During times of crisis, governments often provide financial assistance to the corporate sector in

an effort to minimize the number of bankruptcies. Notable examples include the government aid

extended to the U.S. airline industry following the September 11, 2001 attacks,23 the bailouts of

the banking and automotive industry during the Great Recession,24 and the unprecedented economic

rescue packages implemented worldwide in response to the COVID-19 crisis.

However, a contentious issue arises when determining which firms should receive the most sub-

stantial government support. In many cases, bailout funds are directed towards large firms, which may

not necessarily be the most vulnerable entities in the economy. Nevertheless, such interventions can

be justified within the context of our model if the policymakers’ objective is to mitigate the risk of a

widespread wave of corporate bankruptcies.

Our theory suggests that reducing default risk for a specific group of firms generates positive

spillover effects on the broader corporate sector. When certain firms receive support and their credit-

worthiness improves, it leads to a favorable repricing of the remaining firms in the economy, resulting

in reduced systematic risk for the latter firms. As a result, these firms experience lower funding costs,

decreased rollover risk, and lower default probabilities.

This implies that targeted financial support provided to any sector or industry can have beneficial

spillover effects throughout the economy. By reducing default risk for some firms, the support naturally

transmits to others, improving the stability and resilience of the corporate sector as a whole. The

default linkages predicted by our theory provide insights into how corporate bailouts can mitigate the

likelihood of bankruptcy cascades, particularly during economic crises.

4.3 Sovereign debt markets

Default linkages also play a significant role in sovereign debt markets, particularly during periods

of sovereign debt crises characterized by waves of defaults. This was evident during the European

sovereign debt crisis when the fear of contagion was frequently mentioned in the financial press as a
23Congress passed The Air Transportation Safety and System Stabilization Act, which created the office of the Air

Transportation Stabilization Board in the Department of the Treasury. They were able to issue $10 billion in loan
guarantees to help the airlines in the aftermath.

24With bankruptcy looming for General Motors and Chrysler by 2009, the governments of both the United States
and Canada intervened, supplying $85 billion that enabled the two companies to restructure their debt.
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primary driver of sovereign credit spreads. The concern was that a higher probability of default for one

sovereign, such as Greece, could lead to spillover effects, elevating default risk and borrowing costs

for other sovereigns like Italy or Spain. European policymakers frequently cited this contagion effect

to justify sovereign bailouts and interventions.

A growing theoretical literature has emerged to forward our understanding of the contagion across

sovereigns, which has gained significant attention among economists and investors alike. One line of

research explores the links between financial networks and default spillovers to model contagion for

European sovereigns (e.g., Elliott et al., 2014). However, the impact of financial interconnectedness

on sovereign borrowing costs does not appear to be economically significant, as highlighted by Glover

and Richards-Shubik (2021). Benzoni, Collin-Dufresne, Goldstein, and Helwege (2015) propose an

alternative approach by considering an underlying fundamental economic regime that is shared among

all Eurozone member states, yet remains unknown to investors. Their findings demonstrate that

a combination of Bayesian updating and fragile beliefs results in equilibrium credit spreads that are

substantially higher and more correlated compared to a scenario where there is no uncertainty about

the state of the economy.

Complementing this literature, our theory provides insights into understanding default risk linkages

in the sovereign debt market. Despite the absence of direct financial or economic linkages between

sovereigns in our model, we observe substantial co-movement in default probabilities and credit spreads.

This mechanism is particularly relevant for understanding the patterns of default linkages among

countries with weak economic interdependencies.

For instance, during the European debt crisis from 2010 to 2012, the initial shock originating in

Greece, characterized by a sharp decline in GDP and a surge in debt levels, rapidly spread to other

countries. Gabaix and Koijen (2022) extensively documented these spillover effects. As predicted by

our model, the contagion effects were most pronounced in countries with high levels of indebtedness

and a significant proportion of short-term government debt to refinance. The co-movement in bor-

rowing costs, combined with heightened rollover risk, likely played a pivotal role in transmitting default

risk among southern European countries and Ireland.

Our theory can also be useful to understand how a sovereign default crisis can propagate across

the world to emerging countries that are fundamentally unrelated. An illustrative case is the events
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leading to the Russian sovereign default on August 18, 1998, which had repercussions reaching Brazil

and other Latin American countries, despite their limited commercial ties with Russia. For example,

Brazil’s exports to Russian markets accounted for merely 0.2% of its total exports at that time.

Moreover, the correlation in GDP growth rates between Brazil and Russia over the 1990-1998 period,

based on World Bank data, was approximately �0.14, indicating that the two economies had largely

independent fundamentals. However, Brazil’s bond spreads experienced a substantial increase in the

months leading up to the Russian crisis. From 387 basis points in April, the spreads rose to 546 basis

points in July and further spiked to 1182 basis points in September 1998. Interpreted through our

model, the negative real GDP shocks suffered by Russia contributed to heightened risk premia and

credit spreads in Brazil even before the actual default event. The subsequent downgrade of Brazilian

debt by Moody’s in September 1999 underscores the impact of increased refinancing costs on Brazil’s

default probability.

Overall, our theory can contribute to a better understanding of credit risk spillovers in the sovereign

debt market. The central channel for the default risk transmission is the rise in risk premia, which

leads to higher borrowing costs for other countries. This framework allows us to explain how adverse

economic shocks in one country can affect default risk and credit spreads for other countries, even

in the absence of strong fundamental links. While there are likely other mechanisms at play in the

transmission of default risk, we are proposing a new, theoretically-motivated channel that appears to

be consistent with what we observe empirically.

Understanding the source of default linkages in sovereign debt markets is critical for policymakers.

It enables them to develop effective strategies to address the systemic risks associated with sovereign

debt crises. By intervening and providing support to distressed sovereigns, policymakers can contain the

spread of defaults and mitigate potential contagion effects, thereby promoting stability and resilience

in the global financial system.

5 Conclusion

In this paper, we propose an equilibrium asset pricing model with two independent borrowers and

uncover a new form of default risk linkages. Specifically, we show that a negative output shock to one

borrower not only reduces its own creditworthiness, but also induces the other borrower to become a
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larger player in the economy and to bear more systematic risk. The increased risk premium tilts its

endogenous default decision towards a more rapid default.

A positive (excess) correlation in default risk across borrowers then emerges, together with co-

movement in credit spreads, risk premia, and equity volatility, even when their fundamentals remain

independent. We also demonstrate that the transmission in default risk across borrowers is modulated

by their refinancing needs. A borrower with more short-term debt bears greater rollover risk and

becomes more exposed to this form of spillover.

The default risk linkages we highlight in this paper have broad implications. We explore various

applications of our framework, such as corporate borrowing and default clusters, the structuring of

corporate sector bailouts during crises, and the observed contagion in the sovereign debt market,

particularly in emerging and European countries.

Our theoretical analysis also allows interesting extensions. For instance, the model could be

enriched by incorporating a larger number of borrowers. This extension would be particularly relevant

in a scenario where the initial distribution of output shares is uneven, as seen in a market where a

dominant borrower influences several smaller ones. This concept aligns with the notion of a granular

economy (Gabaix, 2011). Notably, this situation holds particular relevance in the current context,

where a handful of mega-tech stocks dominate the US equity market. We leave such analysis for

future research.
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Table 1. Model calibration
This table reports parameter values in the model calibration. Bold figures correspond to the baseline case. Values are
annualized when applicable.

Parameter Notation Values
Output growth (tree A) µA 0.02
Output growth (tree B) µB 0.02
Output growth volatility (tree A) �A 0.20
Output growth volatility (tree B) �B 0.20
Correlation between output shocks ⇢ [-0.25, 0, 0.25]
Debt coupon (tree A) CA [0.2, 0.4, 0.6]
Debt coupon (tree B) CB 0.4
Bond maturity 1/m [5, 10, 30, 111]
Bankruptcy cost ✏ 0.622
Tax rate ' 0.15
Preference for time � 0.06
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Table 2. Default risk correlation and rollover risk
This table presents the correlation between the distances-to-default of trees A and B (given by ⇢DD) in different economic
environments. Each row reports the predictions for a given average debt maturity (equal to 1/m), where lower debt
maturity translates into higher rollover risk. Each column considers a different output share of tree A (measured by
s), where variation in the output share is obtained by changing the output level of tree B, keeping the output level
of tree A constant. The output shocks are independent across trees (⇢ = 0). Each panel presents predictions for
different liquidation outcomes in default. In Panel A, the baseline case, shareholders recover nothing in default and
the full liquidation costs are paid by the debtholders. In Panel B, shareholders and debtholders recover half of the
liquidation costs, following a Nash bargaining game (Fan and Sundaresan, 2000). Sections 2.1 and 3.1.3 discuss the
model calibration.

Share of tree A (s)

20% 35% 50% 65% 80%

Panel A: baseline model

Debt maturity (1/m)
Perpetual 9.89% 9.65% 9.51% 9.65% 9.89%
30 year 12.40% 11.95% 11.80% 11.95% 12.40%
10 year 14.48% 14.00% 13.93% 14.00% 14.48%
5 year 15.77% 15.41% 15.32% 15.41% 15.77%

Panel B: with renegotiation in default

Debt maturity (1/m)
Perpetual 9.91% 9.64% 9.55% 9.64% 9.91%
30 year 11.90% 11.33% 11.17% 11.33% 11.90%
10 year 13.77% 12.95% 12.75% 12.95% 13.77%
5 year 14.86% 14.05% 13.78% 14.05% 14.86%
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Table 3. Default risk co-movement in simulated economies
This table presents results on the co-movement in default risk and asset pricing moments across trees based on a large
cross-section of simulated economies. We simulate 20,000 two-tree economies at the daily frequency over a 10-year
period using the parameters of the baseline calibration in Table 1. Panel A reports the default probability computed at the
1-, 5-, and 10-year horizons. The empirical counterparts are the cumulative default rates for all-rated corporate bonds
in the U.S. from Standard and Poor’s (2021). Panel B reports the unconditional default risk correlation across trees,
averaged across simulations. Panel C reports the unconditional correlation in key asset pricing moments across trees,
also averaged across simulations. Additional statistics include the median and the 5th/95th percentile of all simulations.
Section 2.1 discusses the model calibration, while Appendix G provides details on the simulation procedure.

Baseline model Empirical data

Panel A: default probabilities

1-year default rate 1.41% 1,86%
5-year default rate 6.29% 7.72%
10-year default rate 11.79% 11.37%

Mean Median 5th 95th

Panel B: default risk correlations across trees

Distance-to-default 10.06% 10.05% 6.09% 14.01%
10-year default probability 10.84% 10.88% 4.55% 16.88%
Leverage 14.84% 15.00% 10.30% 18.94%
Credit spread 28.08% 28.97% 12.79% 41.02%

Panel C: correlations in asset pricing moments across trees

Equity volatility 23.75% 21.93% 3.15% 52.06%
Equity risk premium 37.60% 40.23% �37.87% 86.45%
Debt volatility 45.47% 43.56% 6.19% 89.48%
Debt risk premium 68.22% 78.18% 18.36% 95,79%
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Table 4. Default risk correlation with correlated trees
This table presents the main output of the model for distinct levels of correlation across output shocks (given by ⇢). Each
panel reports the distance-to-default (DD) of both trees, the correlation between their DD (⇢DD), and the corresponding
excess correlation (⇢DD � ⇢). Each column considers a different output share of tree A (measured by s), where variation
in the output share is obtained by changing the output level of tree B, keeping the output level of tree A constant.
Section 2.1 discusses the model calibration.

Share of tree A (s)

20% 35% 50% 65% 80%

Panel A: independent trees (⇢ === 000)

Distance-to-default (DD) of tree A 7.62 7.35 7.17 7.05 6.96
Distance-to-default (DD) of tree B 13.89 10.15 7.17 4.25 0.69
DD correlation (⇢DD) 9.89% 9.65% 9.51% 9.65% 9.89%
Excess DD correlation (⇢DD � ⇢) 9.89% 9.65% 9.51% 9.65% 9.89%

Panel B: negatively correlated trees (⇢ === ���000.222555)

Distance-to-default (DD) of tree A 7.74 7.41 7.23 7.08 6.96
Distance-to-default (DD) of tree B 13.90 10.18 7.23 4.31 0.81
DD correlation (⇢DD) �13.76% �14.44% �14.54% �14.44% �13.76%
Excess DD correlation (⇢DD � ⇢) 11.24% 10.56% 10.46% 10.56% 11.24%

Panel C: positively correlated trees (⇢ === 000.222555)

Distance-to-default (DD) of tree A 7.50 7.26 7.11 7.02 6.93
Distance-to-default (DD) of tree B 13.86 10.12 7.11 4.16 0.57
DD correlation (⇢DD) 32.28% 32.31% 32.31% 32.31% 32.28%
Excess DD correlation (⇢DD � ⇢) 7.28% 7.31% 7.31% 7.31% 7.28%
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Effect amplified 
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Figure 1. The default risk co-movement mechanism

This figure summarizes the mechanism through which negative shocks to one firm can increase the default risk, equity
volatility and risk premium of other firms, even those that are fundamentally unrelated.
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(C) Equity risk premium of tree A
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(E) Debt valuation of tree A
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(F) Leverage ratio of tree A

Figure 2. Equilibrium asset pricing quantities

This figure presents the equilibrium asset pricing quantities of our model with two levered trees. Panel A reports the
level of aggregate consumption volatility, while Panel B reports the equilibrium risk-free rate. Panels C and D present
the equity risk premium and equity value of tree A, for the unlevered and levered cases. Panel E reports the debt value
of tree A. Panel F reports the leverage ratio of tree A, which is defined as the value of debt over the value of equity plus
debt. Predictions are plotted against the output share of tree A (measured by s), where variation in the output share is
obtained by changing the output level of tree B, keeping the output level of tree A constant. Section 2.1 discusses the
model calibration. Values are annualized where applicable.
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(B) Effect of leverage
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(C) Effect of maturity
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Figure 3. Optimal default policy in a two-tree economy

This figure presents a borrower’s optimal default policy in a model with two levered trees. Panel A shows the conditional
default boundary of tree A, where a higher value means higher default risk (or lower distance-to-default). In Panel B,
each curve presents the endogenous default boundary of tree A for a different level of debt coupon, generating different
leverage ratios. In Panel C, each curve presents the endogenous default boundary of tree A for a different average debt
maturity, capturing different degrees of rollover risk. The default boundaries are expressed as a fraction of the initial
output level. The predictions are plotted against the output share of tree A (measured by s), where variation in the
output share is obtained by changing the output level of tree B, keeping the output level of tree A constant. Sections
2.1 and 3.1.3 discuss the model calibration.
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Figure 4. Co-movement in default probabilities

This figure illustrates the co-movement in physical and risk-neutral default probabilities across independent borrowers.
The difference between the two measures of default probability identifies the risk premium associated with default risk.
The predictions are plotted against the output share of tree A (measured by s), where variation in the output share is
obtained by changing the output level of tree B, keeping the output level of tree A constant. Section 2.1 discusses the
model calibration.
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(C) CS of tree A (by maturity)
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Figure 5. Co-movement in credit spreads

This figure illustrates the co-movement in credit spreads (CS) across independent borrowers. Panel A (B) presents
the predictions for tree A (B) for different levels of debt coupon, generating different leverage ratios. Panel C (D)
presents the predictions for tree A (B) for various average debt maturities, capturing different degrees of rollover risk.
The predictions are plotted against the output share of tree A (measured by s), where variation in the output share is
obtained by changing the output level of tree B, keeping the output level of tree A constant. Sections 2.1 and 3.1.3
discuss the model calibration.
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(C) Unlevered volatility of tree A
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Figure 6. Co-movement in equity volatility

This figure illustrates the co-movement in equity volatility across independent borrowers. Panels A and B present the
levered equity volatility of tree A and B, respectively. Panels C and D reproduce Panels A and B in the case of unlevered
trees, which corresponds to the case of Cochrane et al. (2008). The predictions are plotted against the output share of
tree A (measured by s), where variation in the output share is obtained by changing the output level of tree B, keeping
the output level of tree A constant. Section 2.1 discusses the model calibration.
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(C) Unlevered ERP of tree A
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Figure 7. Co-movement in equity risk premium

This figure illustrates the co-movement in equity risk premium (ERP) across independent borrowers. Panels A and B
present the levered equity risk premium of tree A and B, respectively. Panels C and D reproduce Panels A and B in the
case of unlevered trees, which corresponds to the case of Cochrane et al. (2008). The predictions are plotted against
the output share of tree A (measured by s), where variation in the output share is obtained by changing the output level
of tree B, keeping the output level of tree A constant. Section 2.1 discusses the model calibration.
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Figure 8. Co-movement in equity volatility and risk premia across unlevered trees

This figure summarizes the mechanism driving the negative co-movement in equity volatility and risk premia across
unlevered trees, as in Cochrane et al. (2008). The case of levered trees is illustrated in Figure 1.
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Figure 9. The term structure of excess default risk correlations

This figure illustrates the term structure of the excess default risk correlation, computed as the correlation between each
tree’s distance-to-default (⇢DD) minus the correlation between their output shocks (⇢). We consider different levels of
average debt maturity, between 1 and 30 years, given by (1/mi). The predictions are plotted for different levels of output
correlation (⇢), at the output share st = 0.5. Sections 2.1 and 3.1.3 discuss the model calibration.
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Internet Appendix to

Default Risk Linkages in a Structural Credit Model

(Not for publication)

This Internet Appendix presents supplementary material and results not included in the main body of

the paper.



A Numerical procedure for the baseline model

This appendix provides details on the numerical solution of the borrowers’ equity valuation in (8)

and the debt valuation in (10). The borrowers’ endogenous default decision and the two-dimensional

stochastic discount factor imply that (8) is a fully two-dimensional optimal stopping problem. We first

solve this optimal stopping problem via the numerical solution of an associated free-boundary problem,

whose solution provides both the equity value as a function of X it and st , and the default boundary

as a function of st . Once the borrower’s optimal default strategy is determined, the debt value in

(10) can be solved numerically via an associated fixed-boundary problem, providing the debt value as

a function of X it and st .

Before turning to the levered problem, recall that the value of the unlevered tree is given by (9),

i.e. U i(st) = (1 � ')X itV i(st), where V i(s) has the following closed-form solution (Cochrane et al.,

2008):

V i(s) =
F
�
1, 1� �, 2� �; ss�1

�

 (1� �)(1� s) +
F
�
1, ✓, 1 + ✓; s�1s

�

 ✓s
(A.1)

with � = (⌫ �  )/⌘2, ✓ = (⌫ +  )/⌘2,  =
p
⌫2 + 2�⌘2, ⌫ = µB � µA � �2B/2 + �2A/2 and

⌘2 = �2A + �
2
B � 2⇢�A�B, where F denotes the standard hypergeometric function (see Abramowitz

and Stegun, 1972, Chapter 15).

Next, we assume that the optimal default time in (8) is of the form ⌧i = inf{u � t |X iu  bi(su)},

i.e. the first time that the output process Xt drops below some (st-dependent) boundary. Setting

X it = x and st = s, standard arguments (e.g., see Peskir and Shiryaev, 2006) reveal that borrower i ’s

optimal stopping problem must also satisfy the following free-boundary problem:

8
>>>><

>>>>:

L(Xi ,s)E i(x, s)� r(s)E i(x, s) + (1� ')(x � Ci) = 0, x > bi(s),

E i(x, s) = 0, x  bi(s),
@Ei

@x (x, s) = 0 and @E
i

@s (x, s) = 0, x = bi(s),

(A.2)

where r(s) is the risk-free rate defined in (7) and L(Xi ,s) is the infinitesimal generator of the two-

A–1



dimensional diffusion (X it , st) under the risk-neutral measure, given by

L(Xi ,s) =
1

2
�2i x

2 @
2

@x2
+
1

2
⌘2s2(1� s)2

@2

@s2
+ �i(�i � ⇢��i)(IA � IB)xs(1� s)

@2

@x@s

+
⇥
⌘2(IA � s) + �i(�i � ⇢��i)(IB � IA) + ↵(s)

⇤
s(1� s)

@

@s

+
⇥
µi � �2i + �i(�i � ⇢��i)

�
IA + (IB � IA)s

�⇤
x
@

@x
, (A.3)

where

↵(s) := µA � µB � s�2A + (1� s)�2B + 2(s � 1/2)⇢�A�B (A.4)

and Ij denotes the indicator function which is equal to one when i = j , and zero otherwise. Note that

the two derivatives at x = bi(s) in (A.2) correspond to the smooth pasting conditions which ensure

optimality of the boundary bi(s).

To approximate the solution to (A.2) numerically, we discretize the problem using a second-

order finite differencing scheme and then solve the resulting system of equations using the Projected

Successive Over Relaxation (PSOR) algorithm. A more detailed description of the PSOR method,

along with proofs of convergence, can be found in Cryer (1971). More details about the discretization

and implementation of the algorithm can also be made available from the authors upon request.

Once the default boundary bi(s) has been obtained via (A.2), it can then be used to solve for

the value of debt in (10). Similar to the borrowers’ equity problem, the value of debt satisfies the

following (fixed) boundary value problem:

8
><

>:

L(Xi ,s)Di(x, s)� r(s)Di(x, s) + Ci = 0, x > bi(s),

Di(x, s) = (1� ✏)U i(x, s), x  bi(s).
(A.5)

To approximate the solution to (A.5) numerically, we again discretize the problem with the same

second-order differencing scheme and solve the resulting system of equations. Since the boundary bi

is known, the standard Successive Over Relaxation (SOR) algorithm suffices.

Finally, in order to obtain accurate results for the numerical solution to (A.2) and (A.5), we define

the boundary conditions on both E i and Di for s = 0 and s = 1. For both of these limits, the optimal

stopping problem in (8) has a closed-form solution, which we will outline below.
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A.1 The limit as s ! 1

The limit as s ! 1 corresponds to the solution to the problem when tree A dominates the economy

and tree B is atomistic. In this limit E i(x, s)! E i1(x) and the free-boundary problem in (A.2) reduces

to 8
>>>><

>>>>:

L1
Xi
E i1(x)� r1E i1(x) + (1� ')(x � Ci) = 0, x > b1i ,

E i1(x) = 0, x  b1i ,
dEi1
dx (x) = 0, x = b1i .

(A.6)

where r1 = r(1) = � + µA � �2A and

L1Xi =
1

2
�2i x

2 @
2

@x2
+ (µi � �2i + �i(�i � ⇢��i)IB)x

@

@x
. (A.7)

Problem (A.6) can be solved explicitly, which yields

E i1(x) = (1� ')
hx
�
�
Ci
r1
�
⇣b1i
�
�
Ci
r1

⌘⇣ x
b1i

⌘�i1i
, (A.8)

where �i1 is the negative solution to 12�
2
i �
i
1(�

i
1� 1)+ (µi � �2i + �i(�i � ⇢��i)IB)�i1� r1 = 0 and the

smooth pasting condition determines b1i to be

b1i =
��i1Ci

r1(�i1 � 1)
. (A.9)

Similarly, we have lims!1Di(x, s) =: Di1(x) and (A.5) reduces to

8
><

>:

L1
Xi
Di1(x)� r1Di1(x) + Ci = 0, x > b1i ,

Di1(x) = (1� ✏)U i(x, 1), x  b1i .
(A.10)

It is also known from Cochrane et al. (2008), and is easy to show from (A.1), that lims!1 V i(s) = 1/�,

which yields

lim
s!1
U i(x, s) = (1� ')x lim

s!1
V i(s) = (1� ')

x

�
. (A.11)
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Therefore, solving problem (A.10), we obtain

D1i (x) =
Ci
r1
+

h
(1� ✏)(1� ')

b1i
�
�
Ci
r1

i⇣ x
b1i

⌘�i1
. (A.12)

A.2 The limit as s ! 0

The limit as s ! 0 corresponds to the solution to the problem when tree B dominates the economy

and tree A is atomistic. In this limit E i(x, s)! E i0(x) and the problem in (A.2) reduces to

8
>>>><

>>>>:

L0
Xi
E i0(x)� r0E i0(x) + (1� ')(x � Ci) = 0, x > b0i ,

E i0(x) = 0, x  b0i ,
dEi0
dx (x) = 0, x = b0i ,

(A.13)

where r0 = r(0) = � + µB � �2B and

L0Xi =
1

2
�2i x

2 @
2

@x2
+ (µi � �2i + �i(�i � ⇢��i)1A)x

@

@x
. (A.14)

Under the assumption that ⌫ +  > ⌘2, problem (A.13) can be solved explicitly, yielding

E i0(x) = (1� ')
h x

� + ⌫ � 12⌘2
�
Ci
r0
�
⇣ b0i
� + ⌫ � 12⌘2

�
Ci
r0

⌘⇣ x
b0i

⌘�i0i
, (A.15)

where �i0 is the negative solution to 1
2�
2
i �
i
0(�

i
0 � 1) + (µi � �2i + �i(�i � ⇢��i)1A)�i0 � r0 = 0.25

Finally, the smooth pasting condition determines b0i to be

b0i =
�i0Ci

r0(�i0 � 1)
(� + ⌫ � 12⌘

2). (A.16)

Similarly, we have lims!0Di(x, s) =: Di0(x) and (A.5) reduces to

8
><

>:

L0
Xi
Di0(x)� r0Di0(x) + Ci = 0, x > b0i ,

Di0(x) = (1� ✏)U i(x, 0), x  b0i .
(A.17)

It is also known from Cochrane et al. (2008), and is easy to show from (A.1), that lims!0 V i(s) =
25If ⌫ +   ⌘2 then E i0(x) ⌘ 1, consistent with the infinite value of the unlevered tree in this parameter regime

(see Cochrane et al., 2008).
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1/(� + ⌫ � 12⌘
2) if ⌫ +   ⌘2 (and 1 otherwise), which under this condition yields

lim
s!0
U i(x, s) = (1� ')x lim

s!0
V i(s) =

(1� ')x
� + ⌫ � 12⌘2

. (A.18)

Therefore, solving problem (A.10), we have

D0i (x) =
Ci
r0
+

h(1� ✏)(1� ')b0i
� + ⌫ � 12⌘2

�
Ci
r0

i⇣ x
b0i

⌘�i0
. (A.19)

B Proof of Proposition 1

This appendix outlines the computation of the correlation between the distances-to-default of the

two borrowers, providing a proof to expression (12).

Proof. Working in the (XAt , XBt )-space rather the (XAt , st)-space, the boundary bi becomes only a

function of the other tree’s output process X�it . The distance-to-default of borrower i is then given

by:

DDit =
1

�i
ln
⇣ X it
bi(X

�i
t )

⌘
, for i = A,B, (A.20)

where bi(X�it ) denotes the default boundary of borrower i .

Applying Itô’s formula to (A.20) yields

dDDit = µDDi (X
i
t , X

�i
t )dt + dB

i
t �

��i
�i

X�it b
0
i(X

�i
t )

b(X�it )
dB�it

= µDDi (X
i
t , X

�i
t )dt + dB

i
t � ↵i fi(X�it )dB�it , (A.21)

where we have defined ↵i = ��i/�i and fi(x) = xb0i(x)/bi(x), which denotes the elasticity of borrower

i ’s default boundary to x , such that fi(X�it ) is the elasticity of borrower i ’s default boundary to the

output of the other borrower (�i).

Defining ⇢DD(XAt , XBt ) = Corr
�
dDDAt , dDD

B
t

�
and using dBitdB

�i
t = ⇢dt, it can be seen from

(A.21) that

⇢DD(X
A
t , X

B
t ) =

⇢[(1 + fA(X
B
t )fB(X

A
t )]� ↵AfA(XBt )� ↵BfB(XAt )q

[1� 2⇢↵AfA(XBt ) + ↵2Af 2A (XBt )][1� 2⇢↵BfB(XAt ) + ↵2Bf 2B(XAt )]
. (A.22)
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While (A.22) is expressed in terms of (XAt , XBt ), it can easily be converted to an expression in

(XAt , st) by recalling that st = XAt /(XAt +XBt ), such that

bA(X
B
t ) = bA(st) & b0A(X

B
t ) = �

s2t
XAt
b0A(st),

bB(X
A
t ) = bB(st) & b0B(X

A
t ) =

st(1� st)
XAt

b0B(st).

Therefore, we have

fA(X
B
t ) = �st(1� st)

b0A(st)

bA(st)
and fB(X

A
t ) = st(1� st)

b0B(st)

bB(st)
. (A.23)

Finally, defining fi(s) := s(1 � s)b0i(s)/bi(s) and observing that fA(XBt ) = �fA(st) and fB(XAt ) =

fB(st), we arrive at expression (12), completing the proof.

C Additional results

This Appendix provides a robustness analysis and presents additional results not contained in the

core of the paper. We first show that the results regarding the co-movement in default risk remain

similar when we consider a bargaining game in default between shareholders and debtholders. We then

explore how the degree of default risk co-movement varies with a borrower’s characteristics.

C.1 Alternative specifications for recovery in default

We here verify that our key predictions are robust to changes in who gets what in default. Liq-

uidation costs are a primary ingredient for corporate financing choices, but typically do not alter the

default decision of a borrower (see Leland, 1994).26 Therefore, for a given capital structure, the role

of a costly liquidation might seem a second order concern. Yet, as Fan and Sundaresan (2000) show,

when liquidation costs alter the outcome of bargaining in distress, then the ex post endogenous default

decision does change. In addition, liquidation costs matter for the level of credit spreads insofar as

they alter the payout to bondholders at default.
26The typical intuition is that, while the borrower bears liquidation costs ex ante via higher yields, the ex post impact

is on the lenders who recover less in distress.
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To account for these effects, we consider liquidation costs that are split between shareholders and

bondholders. Specifically, bondholders now recover a fraction 1� ✏/2, while shareholders recover the

fraction ✏/2 in default. This sharing rule can be viewed as the outcome of a Nash bargaining game

between shareholders and bondholders, with equal bargaining power. Panel B of Table 2 shows that,

accounting for costly liquidation in default, as in Fan and Sundaresan (2000), does not qualitatively

change our findings regarding the transmission of default risk across borrowers.

C.2 The role of firm characteristics

It is reasonable to expect that borrower A’s characteristics play a crucial role in determining its

sensitivity to changes in borrower B’s fundamentals, thereby influencing the extent of default risk

co-movement. We explore whether this is the case.

Table A.1 demonstrates that the level of default risk correlation between the two borrowers slightly

increases as borrower A features higher expected output growth (µA) and volatility (�A). This indicates

that both dimensions contribute to amplifying borrower A’s default risk exposure to shocks experienced

by borrower B. However, it is important to note that the quantitative impact is relatively small.

Therefore, we can conclude that the degree of default risk co-movement is not critically dependent

on the specific characteristics of a borrower. This finding emphasizes the robustness of our predictions.

TABLE A.1 ABOUT HERE

D Establishing the coupon independence of ⇢DD

This Appendix provides details on the coupon independence of the correlation between the changes

in distances-to-default, ⇢DD(st), defined in (12). Note that the expression (12) is valid for both our

baseline model and our extension with rollover debt, developed in Section 3.1.

We see that the correlation is driven exclusively by the functions fi(st), which represent the sensi-

tivity of the borrowers’ default boundary to the output share st . This is key because a boundary bi(s)

that scales linearly with the coupon Ci will result in a coupon-independent correlation, as we show
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below. Consider the case that bi(s;Ci) = Cibi(s; 1), we then obtain

fi(s;Ci) = s(1� s)
b0i(s;Ci)

bi(s;Ci)
= s(1� s)

Cib
0
i(s; 1)

Cibi(s; 1)
= s(1� s)

b0i(s; 1)

bi(s; 1)
= fi(s; 1),

which proves that the sensitivities fi(st) are independent of the chosen coupon level Ci when the

scaling property applies, and so is the correlation ⇢DD.

All that remains is to establish that the optimal default boundary scales linearly with the coupon

level for both our baseline and extended model.

For the baseline model, this can be established directly from (8), which defines equity value.

Specifically,

E i(X it , st ;Ci) = sup
⌧i�t
Et

hZ ⌧i

t

Mu
Mt
(1� ')(X iu � Ci)du

i

= Ci sup
⌧i�t
Et

hZ ⌧i

t

Mu
Mt
(1� ')

�Xiu
Ci
� 1

�
du

i

= CiE
i
�Xit
Ci
, st ; 1

�
, (A.24)

since the multiplicative nature of geometric Brownian motion means that the ratio X iu/Ci for u � t

is equivalent to a Brownian motion with the same dynamics but started at X it/Ci , rather than X it , at

time t.

Since the equity value satisfies the scaling in (A.24) we see that the optimal default boundary for

an arbitrary coupon Ci can be determined from the optimal stopping boundary for a unit coupon but

whose output process starts at X it/Ci . Hence bi(st ;Ci) = Cibi(st ; 1), establishing the desired scaling

in our baseline model.

Establishing the scaling property for the extended rollover debt model is a little more involved since

the borrower’s default decision depends directly on the valuation of debt. However, we can establish

that the same scaling occurs in the debt valuation, defined in (10), with the following arguments.

First, we observe from (9) that

U i(X it , st) = (1� ')X itV i(st) = Ci(1� ')
Xit
Ci
V i(st) = CiU

i(
Xit
Ci
, st)
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and hence the rollover debt value can be written as

Di(X it , st ;Ci) = Et
h
(Ci +miPi)

Z ⌧i

t
e�mi (u�t)

Mu
Mt
du + e�mi (⌧i�t)

M⌧i
Mt
(1� ✏)CiU i(

Xi⌧i
Ci
, s⌧i )

i

= CiEt
h
(1 +mi P̂i)

Z ⌧i

t
e�mi (u�t)

Mu
Mt
du + e�mi (⌧i�t)

M⌧i
Mt
(1� ✏)U i(

Xi⌧i
Ci
, s⌧i )

i

= CiD
i(
Xit
Ci
, st ; 1), (A.25)

where we have assumed that the total face value Pi is proportional to the coupon level Ci , and thus

P̂i = Pi/Ci is a coupon-independent constant. In our baseline parameterization in Section 3.1, we set

Pi = Ci/r(0.5), hence P̂i = 1/r(0.5).

Finally, given the scaling in (A.25), we can establish the scaling in the rollover equity value in (20)

as follows:

E i(X it , st ;Ci) = sup
⌧i�t
Et

hZ ⌧i

t

Mu
Mt

⇥
(1� ')(X iu � Ci) +mi(D(X iu, su;Ci)� Pi)

⇤
du

i

= Ci sup
⌧i�t
Et

hZ ⌧i

t

Mu
Mt

⇥
(1� ')(X

i
u
Ci
� 1) +mi(D

�Xiu
Ci
, su; 1

�
� P̂i)

⇤
du

i

= CiE
i
�Xit
Ci
, st ; 1

�
.

Hence, the optimal default boundary scales linearly with the coupon choice, establishing the coupon

independence of ⇢DD in both the baseline and the rollover debt cases.

E Equity return volatility and equity risk premium

This Appendix derives the equity return volatility and equity risk premium of the levered trees. The

expressions for the debt return volatility and debt risk premium are obtained by simply replacing E i

for Di in (A.30) and (A.33), respectively.

The equity value of levered tree i , denoted by E it = E i(X it , st), is a function of the following two

state variables:

dX it
X it
= µidt + �idB

i
t (A.26)

dst = st(1� st)
⇥
↵(st)dt + �AdB

A
t � �BdBBt

⇤
, (A.27)
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where

↵(st) = µA � µB � st�2A + (1� st)�2B + 2(st � 1/2)⇢�A�B. (A.28)

Using Itô’s formula, the equity value of levered tree i has the following dynamics:

dE it =

(
@E it
@X it
X itµi +

@E it
@st
st(1� st)↵(st) +

1

2

@2E it

@X it
2X
i
t
2
�2i +

1

2

@E it
@s2t
s2t (1� st)2⌘2

+
@2E it
@X it@st

X itst(1� st)�i(�i � ⇢��i)(IA � IB)

)

dt (A.29)

+


@E it
@X it
X it�i +

@E it
@st
st(1� st)�i(IA � IB)

�
dBit �

@E it
@st
st(1� st)��i(IA � IB)dB�it

where ⌘2 = �2i + �
2
�i � 2⇢�i��i and Ij denotes the indicator function which is equal to 1 when i = j ,

and zero otherwise.

The conditional equity variance is then given by

varEi ,t =

@E it
@X it
X it�i +

@E it
@st
st(1� st)�i(IA � IB)

�2
+


@E it
@st
st(1� st)��i(IA � IB)

�2

� 2⇢

@E it
@X it
X it�i +

@E it
@st
st(1� st)�i(IA � IB)

� 
@E it
@st
st(1� st)��i(IA � IB)

�
(A.30)

such that the equity return volatility equals �Ei ,t =
q

varEi ,t/(E it)2. As there is no closed-form solution

for the equity value, we need to evaluate the two first-order derivatives @E
i
t

@Xit
and @E

i
t

@st
numerically.

To compute the equity risk premium, we note that

ERP it =
1

dt
Et


dE it + (1� ')(X it � Ci)dt

E it

�

| {z }
Expected (total) return on equity, Rt

� r(st)| {z }
Risk-free rate

(A.31)

where, from (A.29), we have

Rt =
1

E it

h@E it
@X it
X itµi +

@E it
@st
st(1� st)↵(st) +

1

2

@2E it

@X it
2X
i
t
2
�2i +

1

2

@E it
@s2t
s2t (1� st)2⌘2

+
@2E it
@X it@st

X itst(1� st)�i(�i � ⇢��i)(IA � IB) + (1� ')(X it � Ci)
i
. (A.32)
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However, noting that E i(X it , st) must satisfy the differential equation in (A.2), our expression for

ERP it in (A.31)-(A.32) simplifies to

ERP it =
1

E it

@E it
@X it
X it

⇥
�2i � �i(�i � ⇢��i)(IA + (IB � IA)st)

⇤

+
1

E it

@E it
@st
st(1� st)

⇥
⌘2st � �B(�B � ⇢�A)

⇤
. (A.33)

F The default probability

This Appendix describes the computation of a borrower’s default probability, when its default

boundary, bi(s), is determined from the solution to problem (8). We show that the probabilities

under both the physical risk-neutral measures can be computed via the numerical solution of a time-

dependent partial differential equation (PDE) with two state variables (i.e., X it and st).

Under the physical measure, the dynamics of X it and st are given by (1) and (3), respectively.

Setting X it = x and st = s, the physical default probability Px,s(⌧i < T ), for a fixed horizon T , is

given by the solution to the following boundary-value problem (for i = A,B):

8
>>>><

>>>>:

@
@tP

i(t, x, s) + LP
(Xi ,s)

P i(t, x, s) = 0, for x > bi(s) and t 2 [0, T ),

P i(t, x, s) = 1, for x  bi(s) and t 2 [0, T ),

P i(t, x, s) = 1{x<bi (s)}, at t = T, for all x,

(A.34)

where LP
(Xi ,s)

is the infinitesimal generator of the two-dimensional diffusion (X it , st) under the physical

measure, given by

LP(Xi ,s) =
1

2
�2i x

2 @
2

@x2
+
1

2
⌘2s2(1� s)2

@2

@s2
+ �i(�i � ⇢��i)(IA � IB)xs(1� s)

@2

@x@s

+ µix
@

@x
+ ↵(s)s(1� s)

@

@s
, (A.35)

where ↵(s) is as given in (A.4). Note that line two in (A.34) ensures that the default probability

is equal to one at all points when borrower i defaults. Moreover, line three ensures that the default

probability at maturity T is either zero or one, depending on whether the borrower’s output is above

or below the default boundary.
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The solution to problem (A.34) is approximated numerically via standard finite-difference methods.

Specifically, we discretize the PDE using a Crank-Nicolson differencing scheme to account for the time

variation in the probability. We then use backward time-stepping, from t = T where the solution is

known; see line 3 in (A.34). At each time step, the resulting linear system of algebraic equations is

solved via an iterative Successive Over Relaxation (SOR) algorithm (see Smith, 1985). Using a Crank-

Nicolson discretization allows the use of larger timesteps due to the unconditional stability imposed

by the scheme, and the SOR method allows for faster convergence than the simpler Gauss–Seidel

method. A more detailed description of the discretization and implementation of the algorithm can

be made available from the authors upon request.

The risk-neutral probability can be determined via an equivalent boundary-value problem to (A.34),

but whose infinitesimal generator is given by L(Xi ,s), defined in (A.3). Specifically, the risk-neutral

default probability, Qi , is given by:

8
>>>><

>>>>:

@
@tQ

i(t, x, s) + L(Xi ,s)Qi(t, x, s) = 0, for x > bi(s) and t 2 [0, T ),

Qi(t, x, s) = 1, for x  bi(s) and t 2 [0, T ),

Qi(t, x, s) = 1{x<bi (s)}, at t = T, for all x.

(A.36)

The solution to (A.36) is approximated numerically using the same method as for the physical proba-

bility problem given in (A.34).

G Simulation analysis

This Appendix describes the simulation procedure discussed in Section 2.8. We simulate 20,000

two-tree economies at the daily frequency over a 10-year period. Specifically, for each economy we

simulate each tree’s output process, given by (1), for 2,520 daily periods (assuming 252 trading days

per year). We further assume that the Brownian shocks are independent across trees to highlight the

excess default risk correlation induced by the mechanism proposed in this paper.
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G.1 Baseline model

Given each tree’s output level at time t, the output share st is computed. Should a tree’s output

level drop below the default boundary bi(st), then a default occurs and that tree’s output level is set to

zero for all remaining periods; hence the output share process jumps to either zero or one, depending

on which tree defaults. In the event of a second default in the 10-year period, the simulation ends for

this particular economy.

Next, given each simulated path of the process (X it , st), we obtain the associated sample paths

of each tree’s distance-to-default and other metrics presented in Table 3. This yields two time-series

(one for each tree) for each of our metrics of interest. For each economy, we compute the empirical

correlation of each metric between the two trees, using data up to the time of the first default (or

all 10 years if no defaults occur in a given economy). We then average these correlations across

economies and compute their 5th, 50th, and 95th percentiles.

To generate an initial cross-section of economies, each tree starts at t = 0 with an output level

drawn randomly between 0.25 and 1.50, such that the initial distance-to-default varies across trees.

Since both trees are drawn independently from the same distribution, there will also be variation in the

initial output share level, with the expected output share across simulations equal to 0.5. This initial

output distribution is calibrated such that the simulated default frequencies match those observed

empirically. As reported in Panel A of Table 3, the average cumulative 1-, 5-, and 10-year default

rates are 1.41%, 6.29%, and 11.79% across the simulated economies, while they are respectively

1.86%, 7.72%, and 11.37% based on the cumulative default rates for all-rated corporate bonds in the

U.S. from Standard and Poor’s (2021). The model parameters and the initial output distribution are

therefore properly calibrated. Table 3 presents the full simulation results for the correlations between

default risk measures in Panel B and asset pricing moments in Panel C.

In addition, we present the sampling distributions of our simulations based on default risk metrics

and asset pricing moments in Figures A.1 and A.2, respectively. We can clearly see that the correlations

across trees in our model are significantly different from zero.

FIGURES A.1 and A.2 ABOUT HERE
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G.2 Counterfactual analysis

For comparison, we repeat the above simulation procedure for the counterfactual case of borrowers

with constant default boundaries, so that a borrower’s default policy is independent of the fate of the

other borrower. One can view this as a scenario of two separate economies, each with one borrower,

instead of one economy with two borrowers.

Specifically, we replace the endogenous default boundary b(st) with a static boundary b(s0), cor-

responding to the default boundary applicable to the initial state of the economy s0. Thus, each tree’s

default decision no longer depends on stochastic fluctuations in the output share, effectively cutting

off the default risk linkage channel described in this paper. In such simulations, we should therefore

expect that the correlation between trees for any metric is, on average, zero. Importantly however, the

distribution of simulated correlations across samples with a static boundary gives a clean indication

of the sampling error introduced by our simulation procedure in the absence of the default linkage

channel. To help with comparisons between the static and stochastic boundary simulations, we also

choose to use the same random numbers across both simulations. The results reported in Figures

A.1 and A.2 are clearly shifted towards the left and centered around zero in this exercise. The results

obtained in the base case are significantly different from those counterfactual results and, therefore,

unlikely due to random occurrence.

H Security valuation with rollover debt

This Appendix derives the expressions for the value of finite-maturity debt and the corresponding

equity, respectively given in (18) and (20). It also provides details on the numerical solution procedure.
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H.1 Deriving the value of debt in equation (18)

First substitute (17) into (16) and perform the following manipulations:

Di(X it , st) =

Z 1

0
e�miT pid

i(X it , st ;T )dT

= Et
h
pici

Z 1

T=0

Z t+T

u=t

Mu
Mt
e�miT I{⌧i>u}dudT + pi

Z 1

0

Mt+T
Mt
e�miT I{⌧i>t+T}dT

+ (1� ✏)
pi
Pi

Z 1

0

M⌧i
Mt
U i(X i⌧i , s⌧i )e

�miT I{⌧it+T}dT
i

= Et
h
pici

Z 1

u=t

Mu
Mt

⇣Z 1

T=u�t
e�miT dT

⌘
I{⌧i>u}du + pi

Z ⌧i�t

0

Mt+T
Mt
e�miT dT

+ (1� ✏)
pi
Pi

M⌧i
Mt
U i(X i⌧i , s⌧i )

Z 1

0
e�miT I{⌧it+T}dT

i

= Et
hpici
mi

Z ⌧i

t
e�mi (u�t)

Mu
Mt
du + pi

Z ⌧i

t

Mu
Mt
e�mi (u�t)du

+ (1� ✏)
pi
miPi

M⌧i
Mt
U i(X i⌧i , s⌧i )e

�mi (⌧i�t)
i

= Et
h
(Ci +miPi)

Z ⌧i

t
e�mi (u�t)

Mu
Mt
du + e�mi (⌧i�t)

M⌧i
Mt
(1� ✏)U i(X i⌧i , s⌧i )

i
,

where we use pici/mi = ciPi = Ci and pi = miPi to obtain the last equality.

H.2 Numerical procedure for the rollover model

We assume that the optimal default time in (20) is of the form ⌧i = inf{u � t |X iu  bi ,m(su)}.

Setting X it = x and st = s reveals that borrower i ’s optimal stopping problem must also satisfy the

following free-boundary problem:

8
>>>><

>>>>:

L(Xi ,s)E i(x, s)� r(s)E i(x, s) + (1� ')(x � Ci) +mi(Di(x, s)� Pi) = 0, x > bi ,m(s),

E i(x, s) = 0, x  bi ,m(s),
@Ei

@x (x, s) = 0 and @E
i

@s (x, s) = 0, x = bi ,m(s),

(A.37)

where r(s) is the risk-free rate defined in (7) and L(Xi ,s) is the infinitesimal generator of the two-

dimensional diffusion (X it , st) under the risk-neutral measure given in equation (A.3).
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Similarly, the debtholders’ problem in (18) must also satisfy the following fixed-boundary problem:

8
><

>:

L(Xi ,s)Di(x, s)� (r(s) +mi)Di(x, s) + Ci +miPi = 0, x > bi ,m(s),

Di(x, s) = (1� ✏)U i(x, s), x  bi ,m(s).
(A.38)

Recall that, in the perpetual debt model outlined in Section 1, the borrower’s default decision

does not depend on the value of debt. In other words, the (perpetual) equity free-boundary problem

can be solved first to determine the stopping boundary bi and then the debt problem can be solved

subsequently, given the computed bi . In the presence of rollover risk, however, the debt and equity

boundary value problems, given in (A.37) and (A.38), are coupled due to the value of debt entering

into the borrower’s cash flow. Hence, the two boundary value problems must be solved jointly.

To approximate the solution to (A.37) and (A.38) numerically, we discretize both problems using

a second-order finite differencing scheme. The resulting system of coupled equations are then solved

iteratively using an approximation for the default boundary from the PSOR algorithm at each iteration

as the boundary for the debt equation, and the approximated debt value from the SOR algorithm at

each iteration in the equity equation. This process is then repeated until convergence. More details

about the discretization and implementation of the algorithm can be made available from the authors

upon request.

In order to obtain accurate results for the numerical solution to (A.37) and (A.38), we need to

correctly define the boundary conditions on both E i and Di for s = 0 and s = 1. The limiting optimal

stopping problems are solvable in closed form, as we show below.

H.2.1 The limit as s ! 1

Setting E i1(x) := lims!1 E
i(x, s) and Di1(x) := lims!1D

i(x, s), problems (A.37) and (A.38)

reduce to the following as s ! 1:

8
>>>><

>>>>:

L1
Xi
E i1(x)� r1E i1(x) + (1� ')(x � Ci) +mi(Di1(x)� Pi) = 0, x > b1i ,m,

E i1(x) = 0, x  b1i ,m,
dEi1
dx (x) = 0, x = b1i ,m,

(A.39)
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and 8
><

>:

L1
Xi
Di1(x)� (r1 +mi)Di1(x) + Ci +miPi = 0, x > b1i ,m,

Di1(x) = (1� ✏)U i(x, 1), x  b1i ,m,
(A.40)

where, as before, r1 = � + µA � �2A and L1
Xi

is defined in (A.7).

Given a putative boundary b1i ,m, problem (A.40) can be solved explicitly yielding

Di1(x) =
Ci +miPi
r1 +mi

+
h
(1� ✏)(1� ')

b1i ,m
�
�
Ci +miPi
r1 +mi

i⇣ x
b1i ,m

⌘�i ,m1
, (A.41)

where �i ,m1 is the negative solution to 12�
2
i �
i ,m
1 (�

i ,m
1 �1)+(µi��2i +�i(�i�⇢��i)IB)�

i ,m
1 �r1�mi = 0.

Equation (A.41) can then be substituted into (A.39) which can then be solved explicitly, revealing

E i1(x) = (1� ')
x

�
�
h'Ci
r1
+ ✏(1� ')

b1i ,m
�

i⇣ x
b1i ,m

⌘�i1

+
'Ci
r1
�
Ci +miPi
r1 +mi

�
h
(1� ✏)(1� ')

b1i ,m
�
�
Ci +miPi
r1 +mi

i⇣ x
b1i ,m

⌘�i ,m1
, (A.42)

where �i1 is the negative solution to 12�
2
i �
i
1(�

i
1� 1)+ (µi ��2i +�i(�i � ⇢��i)IB)�i1� r1 = 0. Finally,

the smooth pasting condition applied to (A.42) yields

b1i ,m =
�

(1� ')
�
1� ✏�i1 � (1� ✏)�

i ,m
1

�
h'Ci
r1
�i1 �

Ci +miPi
r1 +mi

�i ,m1

i
. (A.43)

Pleasingly, as mi ! 0, corresponding to static perpetual debt, we see that �i ,m1 ! �i1 and b1i ,m ! b1i ,

given in (A.9).

H.2.2 The limit as s ! 0

Setting E i0(x) := lims!0 E
i(x, s) and Di0(x) := lims!0D

i(x, s), problems (A.37) and (A.38)

reduce to the following as s ! 0:

8
>>>><

>>>>:

L0
Xi
E i0(x)� r0E i0(x) + (1� ')(x � Ci) +mi(Di0(x)� Pi) = 0, x > b0i ,m,

E i0(x) = 0, x  b0i ,m,
dEi0
dx (x) = 0, x = b0i ,m,

(A.44)
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and 8
><

>:

L0
Xi
Di0(x)� (r0 +mi)Di0(x) + Ci +miPi = 0, x > b0i ,m,

Di0(x) = (1� ✏)U i(x, 0), x  b0i ,m,
(A.45)

where, as before, r0 = � + µB � �2B and L0
Xi

is defined in (A.14).

Given a putative boundary b0i ,m, problem (A.45) can be solved explicitly yielding

Di0(x) =
Ci +miPi
r0 +mi

+
h
(1� ✏)(1� ')

b0i ,m
�
�
Ci +miPi
r0 +mi

i⇣ x
b0i ,m

⌘�i ,m0
, (A.46)

where �i ,m0 is the negative solution to 12�
2
i �
i ,m
0 (�

i ,m
0 �1)+(µi��2i +�i(�i�⇢��i)1A)�

i ,m
0 �r0�mi = 0.

Substituting (A.46) into (A.44), which can then be solved explicitly, we obtain,under the assumption

that ⌫ +  > ⌘2, that:

E i0(x) =
(1� ')x
� + ⌫ � 12⌘2

�
h'Ci
r0
+
✏(1� ')b0i ,m
� + ⌫ � 12⌘2

i⇣ x
b0i ,m

⌘�i0
+
'Ci
r0

�
Ci +miPi
r0 +mi

�
h(1� ✏)(1� ')b0i ,m

� + ⌫ � 12⌘2
�
Ci +miPi
r0 +mi

i⇣ x
b0i ,m

⌘�i ,m0
, (A.47)

where �i0 is the negative solution to 1
2�
2
i �
i
0(�

i
0 � 1) + (µi � �2i + �i(�i � ⇢��i)1A)�i0 � r0 = 0.27

Finally, the smooth pasting condition applied to (A.47) yields

b0i ,m =
� + ⌫ � 12⌘

2

(1� ')
�
1� ✏�i0 � (1� ✏)�

i ,m
0

�
h'Ci
r0
�i0 �

Ci +miPi
r0 +mi

�i ,m0

i
. (A.48)

Again, as mi ! 0, we can see that �i ,m0 ! �i0 and b0i ,m ! b0i , given in (A.16).

27Recall that the equity value will be infinite if ⌫ +   ⌘2.
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Table A.1. Default risk correlation by firm characteristics
This table reports the correlation between distances-to-default of trees A and B (given by ⇢DD) for varying firm charac-
teristics. Each column considers a different level of expected output growth (µA), while each row considers a different
level of output growth volatility (�A). The output shocks are independent across trees (⇢ = 0). Section 2.1 discusses
the model calibration.

Expected output growth (µA)

1.5% 2.0% 2.5%

Output volatility (�A)
15% 7.14% 8.18% 9.17%
20% 8.76% 9.51% 10.42%
25% 10.04% 10.86% 11.58%
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(A) Distance-to-default
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(B) 10-year default probability
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(C) Leverage
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(D) Credit spread
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Figure A.1. The Distribution of default risk correlation

This figure plots the distribution of the correlation in default risk across trees based on model simulations. We simulate
20,000 two-tree economies at the daily frequency over a 10-year period using the parameters of the baseline calibration in
Table 1. Each panel reports the distribution of the unconditional default-risk correlation based on all simulations. The full
model with optimal stochastic default boundary, at the core of the default-risk co-movement across trees, is compared to
the case of a static default boundary. Panel A has the distance-to-default, Panel B has the default probability computed
at the 10-year horizon, Panel C has the leverage ratio, and Panel D has the credit spread. The vertical lines illustrate
the averaged correlation levels. Section 2.1 discusses the model calibration, while Appendix G provides details on the
simulation procedure.



(A) Equity risk premium
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(B) Equity volatility
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(C) Debt risk premium
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(D) Debt volatility
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Figure A.2. Distribution of the correlations in asset pricing moments

This figure plots the distribution of the correlation in asset pricing moments across trees based on model simulations.
We simulate 20,000 two-tree economies at the daily frequency over a 10-year period using the parameters of the baseline
calibration in Table 1. Each panel reports the distribution of the unconditional asset pricing moment based on all
simulations. The full model with optimal stochastic default boundary, at the core of the default risk co-movement across
trees, is compared to the case of a static default boundary. Panel A has the equity risk premium, Panel B has the
equity volatility, Panel C has the debt risk premium, and Panel D has the debt volatility. The vertical lines illustrate
the averaged correlation levels. Section 2.1 discusses the model calibration, while Appendix G provides details on the
simulation procedure.
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