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Summary

An insurer remains solvent as long as assets exceed liabilities in value. Both assets and
liabilities fluctuate in value in an unforeseen manner. An insurer with no margin in the value
of its assets over its liabilities is therefore exposed to failure.

The chance of failure is reduced if such a margin is created. This margin may be recognised
as net assets, or capital. Capital is not a costless commodity. As will be seen in Section 6, it
needs to be financed partly from premiums paid by policy owners. The components of
premium providing this finance will appear as profit margins.

Thus, there is a fundamental relationship between solvency, capital and profit.

Policy owners, taken in the aggregate, suffer a loss, consisting of unpaid claims, when their
insurer becomes insolvent. They will therefore be willing to contribute some level of profit
margin to support capital which protects against insolvency.

There is, however, a limit to the level of capital they will willingly support. This level will be
reached when the incremental cost of capital (in terms of premium margin) exceeds the value
provided by it in increased policy owner security.

In a free and rational insurance market, levels of capitalisation and profit margins should settle,
at least on average over a medium term, at values which reflect this balance between security
and the cost of providing it.

One may argue that these levels of capitalisation and profit are related to the US concept of
fair pricing. The quasi-legal framework of Rate Hearings has developed a methodology for
pricing insurance which permits insurers to charge profit margins providing an assessed fair
return on the capital deemed necessary to support the business underwritten. Arguably, these
levels of capitalisation and profit might be those which would arise in a free market
equilibrium.

In order to understand fully the relationship between solvency, capital and profit, it is
necessary first to understand:

. the sources of risk which threaten solvency;

. the relation between capital and solvency;

. market levels of capitalisation;

. the relation between capital and profit margins.

Section 3 of the paper examines the sources of solvency risk. In this context, risk means
relative uncertainty in the quantum of net assets remaining after present assets, together with
investment return generated by them, have been used to pay all liabilities in respect of losses
incurred to date.



This risk is decomposed into three major components:
. liability risk;
. asset risk;

. asset-liability interaction risk.

Asset risk is decomposed further into:

. asset mismatch risk (relating to the mismatch between assets and liabilities);
. asset performance risk for various asset sectors;
. asset mismatch-performance interaction risk.

Section 4 examines the effect of risk (as defined above) on the capital, and therefore total

assets, required to achieve a particular level of security, ie. particular chance of remaining
solvent.

It is found that required assets increase with increasing liability risk. However, the effect of
- increased asset risk on required capitalisation is more complex. The increased asset risk
increases the expected investment return, hence decreasing the discounted value of liabilities.
But this is accompanied by increased volatility of investment returns and so, in some
circumstances, increased risk that assets will be insufficient to meet liabilities.

It is found that the net result of these two effects depends on the level of security required.

When security is high (low), increased asset risk requires an increased (decreased) volume of
assets.

Section 5 relates an insurer’s equilibrium capital base to the probability of solvency it provides.

It is seen that the market equilibrium leads to, at least in first approximation, equal
probabllmcs of solvency across insurers. It follows from this that the equilibrium cap1tahsat10n
of an insurer depends on the risks, both liability and asset risks, to which that insurer is subject.

The precise relationship is given in Section 5.

Section 6 examines the relation between insurer’s capital base and its profit margin. Some
results from the literature are reviewed, and used to conclude that the equilibrium profit
margin is approximated by the Myers-Cohn margin calculated on the basis of the equilibrium
capitalisation discussed in Section 5.

This result addresses one of the unsolved problems of insurance pricing, namely the capital
base which should be allowed for in fair pricing of the Myers-Cohn (or similar) type? The
suggestion made here is that it is the base which would emerge in competitive equilibrium,
- with Section 5 indicating how that capital base would vary across insurers with different
distributions of underwriting by line of business.

With some qualifications, as discussed in Section 6, conclusions of this sort can be extrapolated
to hypothetical single line insurers to determine the capital base, and hence profit margin,



associated with a particular line. This is a form of solution to the problem of allocation of
capital by line.

This suggestion is taken up in Section 7. Formulas given there indicate how the market
average capitalisation ratio can be transformed to that applicable to a single line by reference
to the asset and liability risks of:

. that single line; and
. the market in aggregate;

respectively. It is seen that, at least to first approximation, the equilibrium capitalisation of a
single line of business increases with the total risk of that line.

The results of Sections 5 and 7 are illustrated by means of a numerical example, based on real
data, in Section 8. The capitalisation of the market in aggregate is estimated, as are the
associated asset and liability risks. The asset and liability risks in respect of individual lines are
also estimated, and used to estimate the equilibrium capitalisation of those lines.

The example inevitably involves some assumptions about areas of the market for which
numerical evidence is lacking or deficient. The sensitivity of the results to these assumptions
is tested. It is found that, while variation of the assumptions causes some variation in the
results, the general shape of capitalisation across the different lines of business remains much
the same.



1. Introduction

An insurer remains solvent as long as assets exceed liabilities in value. Both assets and
liabilities fluctuate in value in an unforeseen manner. An insurer with no margin in the value
of its assets over its liabilities is therefore exposed to failure.

The chance of failure is reduced if such a margin is created. This margin may be recognised
as net assets, or capital. Capital is not a costless commodity. As will be seen in Section 6, it
needs to be financed partly from premiums paid by policy owners. The components of
premium providing this finance will appear as profit margins.

Thus, there is a fandamental relationship between solvency, capital and profit.

Policy owners, taken in the aggregate, suffer a loss, consisting of unpaid claims, when their
insurer becomes insolvent. They will therefore be willing to contribute some level of profit
margin to support capital which protects against insolvency.

There is, however, a limit to the level of capital they will willingly support. This level will be
reached when the incremental cost of capital (in terms of premium margin) exceeds the value
provided by it in increased policy owner security.

In a free and rational insurance market, levels of capitalisation and profit margins should settle,
at least on average over a medium term, at values which reflect this balance between security
and the cost of providing it.

In order to understand fully the relationship between solvency, capital and profit, it is
necessary first to understand:

. the sources of risk which threaten solvency;

. the relation between capital and solvency;

. market levels of capitalisation;

. the relation between capital and profit margins.

These subjects are examined in Sections 3, 4, 5 and 6 respectively.

The calculation of equilibrium capitalisation of insurers with different distributions of
underwriting by line of business, and the associated profit margins, addresses one of the
unsolved problems of insurance pricing. This concerns the amount of capital which should
be regarded as supporting a line of business (“allocation of capital”) in so-called “fair-pricing”
of that line. This subject is pursued in Section 7. A numerical example is given in Section 8.



2. Basic framework and notation

In describing the financial structure of the insurance company analysed in this paper, consider
the sequence of accident years to which business underwritten relates. Let accident year be
denoted by 4. It is convenient to speak in terms of years, but any other unit of time may be
substituted without changing any of the reasoning which follows.

The experience of accident year # will emerge over the years #, i+1, etc. These will be referred
to as development years 0, 1, etc. (of accident year i ). In the following, various quantities
will be indexed by subscripts ¢ and/or § to indicate the accident and/or development periods
to which they relate.

Note that the calendar period corresponding to (3, f) is 4 +f, which will be denoted by k.
Sometimes quantities will be suffixed with this time index.

Sometimes only # or § will occur as a suffix. This will indicate that the other time index has
been integrated out. For example, for some generic variable X,

X =YX

I

5=0
Let

P, = gross premium income;
a; = acquisition costs expressed as a proportion of gross premium;
G, = paid losses (stochastic quantity);
¢ = loss adjustment expenses expressed as a proportion of paid losses;
T = tax rate.

A few derived quantities are now defined:

n; = éo I;Py (1 -a';j) - C;j (1 +‘g)] /P,- 5
j=

with E denoting the expectation operator.

As a matter of convenience, losses payable in each future period are assumed paid at the end
of that period.

Acquisition costs are assumed payable at the time of receipt of the premium to which they
relate. Reinsurance is ignored.
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Let K denote the most recent past value of . Any occurrence of k>K will tacitly refer to
past accident periods <K e.g.

C,- % c,.
ivf=k
173 .4

Now consider the insurance company’s balance sheet at the end of period K. This will take
the following highly simplified form.
ASSETS
Investments

LIABILITIES
Technical liabilities

NET ASSETS

It will be convenient to consider investments as being of two types, according to whether or
not they involve defined cash flows. If they do, they will be referred to here (somewhat
imprecisely, but succinctly) as fixed interest investments. Those without defined cash flows,
e.g. shares, property, will be referred to, again with some imprecision, as volatile investments.

Let
AF = market value of fixed interest investments;
AV = market value of volatile investments;
A = AF + A” = market value of all investments.

Consider now the defined cash flows of investments A¥. Again as a matter of convenience (as

with paid losses), asset cash flows payable in each future year will be assumed paid at the end
of that year. Let ‘

G, = cash flow due to be generated by fixed interest assets AF in future
period £ (a non-stochastic quantity);

F, = corresponding cash flow actually generated (a stochastic quantity, due
to credit risk);
b = E[F,).
Consider future rates of return (RORs) on the different investment types. Let
i,,V = ROR on volatile investments A in period &, including all income and

all capital appreciation, realised or unrealised.
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These are stochastic quantities conditioned by the information available at end of period K.

Define

Vo 14i7

vV_ v v 14
Ry =1y % o 7y

with the convention that R,Z = 1.
Also define
14
P = E [RHV] b
with p,:’_ 10 = E [r,,v] abbreviated to just pr.

The p,:’, are accumulation factors calculated at risk-adjusted RORs applicable to volatile
investments.

Now let

I

rf expected ROR in respect of a 1-year fixed interest investment made at

the start of period &, risk adjusted to reflect the chance of default;
and define if , Rf,, pl,:, similarly to i,,V, R,Z, p,,V,.

. F . . .
Note that the accumulation factors p,; connect fixed interest asset values to their associated
cash flows:

Alper = bEKd)kpr 2.1)
>

where T = max {k: $,, C, # 0}, and provided that the i,,F are stochastically independent of
default risk. It will be assumed that T < throughout this paper.

A sometimes more convenient form of (2.1) is:

F
A" = T v, 0, (2.2)
k>K
with
F F
vi = Per/ Prr - (2.3)

Similarly, define



v v , v
Ve = ka/pKT'

It will be assumed that:

Cov [C,,X]| = O for all k, I>K, (2.4)
where X, can equal i,F, i,V or F}, i.e. assets and liabilities are stochastically independent.

3. Solvency risk and its sources
3.1 Solvency risk
Let
L, =  accumulated value of iabilities at end of period T.

This quantity will be stochastic because of uncertainty in both liability cash flows and asset
values. It will be discussed further in Section 3.2.

For the purpose of the present sub-section, simply let
Ay = B[Ly]. (3.1)

Similarly, define
A, = value of assets accumulated to end of period T.

Again this is a stochastic quantity, whose value will depend on the stochastic RORs included
in the accumulation. This will be discussed in Section 3.3.

Define

S; = Ap - L, = surplus of assets over liabilities accumulated to end of period T,

and

Y, = B[S, = E[A] - AL (3:2)
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Considering just liabilities incurred up to the end of period K, the insurer will remain solvent
if $,. 2> 0. However S, is stochastic, and unknown at that time. The insurer will be
regarded as solventif ¥ > 0.

3.2 Definition of liability and asset values

The liability L must be in some sense the accumulated value of the sequence of paid losses

{Ck}. A question arises over the definition of the accumulation factors when risky assets are
held.

The answer to this question depends on investment strategy. For example, if the strategy were
to cover the liability existing at end of period K by realising only volatile assets until these
were exhausted, and then realising fixed interest assets, the discount factors would be different
from those applicable to the reverse situation in which fixed interest were realised first, and
then volatile.

Strategies such as this are also difficult to deal with analytically, because the value of assets, as
actually realised to pay claims, depends on the cost of those claims.

The present paper will adopt a simple strategy whereby all drawdowns on the asset portfolio
to pay claims will involve the same proportions by asset sector. Specifically, the amount C
will be realised in the proportions AF / A from fixed interest assets and A¥/A from volatile
assets.

This strategy may sometimes be viewed as over-simplified. For example, it is more natural for
a running off operation than for a going concern. For present purposes, however, it does

avoid obscuring the simple valuation concepts with structural complexities.

The investment strategy can always be changed, and the reasoning which follows will change
correspondingly. The concepts will remain in place, but the complexity may increase.

Under the investment strategy adopted here,
F 14
L= EKC,[(AF/A)R,,T + (A7/A)R,]. (3.3)

‘This is a stochastic quantity since the C,, R:T and R:; are stochastic.

Since it is assumed that paid losses and investment returns are stochastically independent, (3.3)
yields:

A= EKY"[(AF /A)per + (A7/A)py7). (3.4)



3.3 Surplus assets
The definition of surplus in Section 3.1 left open the value to be assigned to accumulated
assets. Again, this will depend on investment strategy, specifically the balancing of assets

between the fixed interest and volatile sectors from time to time.

Again, this paper will take a rather simple approach by assuming that, apart from the
drawdowns discussed in Section 3.2, all assets of a particular sector and all revenue generated
by them are retained in that sector.

Then

A, = AFTRZ. + A"R).
= A[(A*/A)Ry;, + (A"/A)RY]. (3.5)
Substitution of (3.3) and (3.5) into the expression for S, gives:
Sy = (AT/A) [ARg, - kEKCkR,fT]
>

+ (A"/A) [ARgr - T C,RY]
kE>K

(3.6)
and, using (3.4),
F F F
%, = (AT/A) [Apgr - .,’:KY*"‘T]
AY/A) [Apl. - ¥ v.pl].
* A/A) (Ao ,,>KY"p"T] (3.7)

It will be reasonable to regard assets and liabilities as of equal value (in expectation) at end of
period K if

r.=0. (3.8)



ie. E[A]=A,

be. A= T y,[(A7/M)pir + (A/A)pir)/ [(A%/ ) b + (A7/A)pfe].

(3.9)
This indicates that the value of liabilities at end of period K should be taken as:
A = (o) T v[A7/B)pir + (A7/A) pir] (3.10)
= I ViPur /P (3.11)
with
Py = (AT/A)pir + (A¥/A)pyr. (312)
3.4 Asset and liability risks
Consider the accumulated surplus S.. as represented by (3.6), and rewrite this as:
Sy = (AfRg. + A'RY) - kEIKCk[(AF/A)R,,FT + (A"/A)R] .
Then substitute (2.2) for AF:
Sp = T [0uPer®er/ hr) - (A/AICRy]
"W Rer - EK(AV/ A Gyl (3.13)

The two components of surplus are those generated by fixed interest and volatile assets
respectively, relative to the respective portions of liabilities covered by these asset sectors.

Note that S. may be written in the general form:

8, = f(R,C),
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where f is a real-valued function, R is the vector of values R,,I;. and R:;-, and C is the vector
of claim costs C, .

Similarly,
X, = flp,v). (3.14)
Then
S - Ty = f(R,O) ~flpy)
= [f(p,C) ~ fo:1)] + [ARY) - Flp,)]
+ [fR,C) - f(p,C) - FR,Y) + f(p,Y))]
=A, +A, + A, (3.15)
where
A, = £(p,C) - f(p,¥) = liability component, (3.16)
A, = FR,Y) - f(p,) = asset component, (3.17)
AAL = f(R>C) - f(p,C) - f(RaY) + f(p>Y)
(3.18)

= asset-liability interaction component.
An explicit expression can be obtained for each of the components (3.16)-(3.18) by writing
out the functions f in full. As one example,

A, = T[4/ Ayl + &7/ M)el] (,-C)), (319)

which is the accumulated sum of deviations of liability cash flows from their expectations. It
is the variation of accumulated surplus from its mean when asset performance is known and
liability cash flows are the only source of variation.

Similarly, A, is the variation in accumulated surplus when liability cash flows are certain and
asset performance is the only source of variation.

Finally, A,; is the additional variation of accumulated surplus due to the joint uncertainty in
asset performance and liability cash flows. Its meaning is best illustrated by example.

Consider the case in which liability cash flows are perfectly matched with default free fixed
interest assets, these being the only assets, i.e.
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AT = A AV =0,

b, = ¥, (3.20)

Substitution of these identities into (3.18) leads to the following result:
i\pF _ F
AAL = le:K(Yk =C) Rz = Pir)- (3.21)

Each term in this sum is the product of Lability uncertainty and asset uncertainty.

3.5 Decomposition of asset risk

The asset risk defined in (3.17) can be decomposed further:

L]

F F_F , F v
A, kzxd)k (Rgr= Prr) ka/ Prr * AV(RKT_pIIC’T)
>

- kng,,kAF/A) Rir-Per) + (AY/A) Ry p1)]

i}

S (V- d)Pir + T (6,0 RE/ 05 - v,RE]
E>K kE>K
+ AY(Rer—prp) - RAALYEY [(Rez-pi7) = Rip-pip)]

=AM+A +AV+A

aor + Bay Amp (3.22)
with
Ay = T (1,4 bir s (3.23)
k>K
By = A7 Rer=prr) = (A7/A) T v, Raz-0i), (3.24)
Byr = (A7/A) T v, (Riz-0i), (3.25)
Bpm = Z [0Pir (Rer/ ) = ViRiz) (3.26)

Now A, = = 0 if expected revenue from fixed interest assets matches expected claim costs year
by year. Thus, A,  may be regarded as an asset mismatch component of A, .
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Similarly A aop a0d A, may be regarded as fixed interest asset performance and volatile

asset performance components. Finally, A Amp 1S @ mismatch - performance interaction
component.

3.6 Measurement of risk

Let

A=8.-X%X, (3.27)
By (3.15) and (3.22),

A=A +A, +A,

=Ap + (Bpm *BpptBppthy,,) + By (3.28)
By (2.4),
Cov[A,,A,] = 0, (3.29)
and Appendix A shows that
Cov[A,A,,] = Cov[A,,A,,] = 0. (3.30)
Therefore,
v{a] = V{a] + v{a,] + V{A,]. (3.31)
This may be expressed verbally as:
Total risk = liability risk
+
asset risk
+
asset-liability interaction risk, (3.32)

where
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V[A] = total risk,
V[A, ] = liability risk,

V[A A] = asset risk,

V[A,, ] = asset-Liability interaction risk, (3.33)

Note that it is not possible to express asset risk asa similar sum of variances on the basis of
(3.22). For example, it is unhkcly that R,,T and R ¢ would be stochastically independent, and
so neither would A, and A,

4. Capital and Risk

4.1 Asset-liability ratio

Consider the case in which A defined by (3.27) may be adequately approximated by a normal
distribution:

A ~ N(0,6?%) (4.1)

The insurer’s survival probability is given by:
Prob[S,20] = Prob|A /o> -X/a], (4.2)
where the variable within the last square bracket is unit normal.
Thus the survival probability is p if:
X /o = Zys (4.3)
with ®(z)) = p
By (3.2), (4.3) may be re-expressed as:
E[A]/Ar = 1+ z,0 BTy

with
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w = {V[A] }*/A,. (4.5)

If both numerator and denominator on the left of (4.4) are divided by pgr» as defined by
(3.12), the result is

A/A = 1+z2,0, (4.6)

where use has been made of (3.9) and (3.10).

Note that substitution of (3.31) in (4.5) yields:

w? = wz + u)i + o)iL, (4.7)
where
wy = V[A,] /A2, for X = L,AAL. (4.8)

Gl ;, w,, w,, the liability, asset, and asset-liability intcrgction risk measures respectively.

4.2 Liability risk

Consider how required assets vary with the liability risk measure &, . Assume that A and ® A
are held constant. Then, from (4.6),

dA = Ade w

= AzP((oLd(OL + wAdeAL)/(O; (4.9)

by (4.7). Hence the following result.

Proposition 4.1. Assets required to achieve a prescribed probability of survival p increase
with increasing liability risk measure, if asset-liability interaction risk measure increases in
sympathy. o

In practice, it will be difficult to check the proviso in this statement. However, the example
given in (3.21) indicates that it is likely to hold in usual circumstances; and that, in any event,
®,, is likely to be small, of order w, ©, , in which case even failure of the proviso would be
unlikely to change the conclusion of Proposition 4.1.
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4.3 Assetrisk

Now consider how the volume of required assets varies with changes in the composition of
the asset portfolio.

Recall (4.5) and (4.6), to obtain

A=A+ zp{V[A] }%A/AT
= A + 2, {V[A] Proer (4.10)
by (3.4) and (3.10).

Then

dA = AN + 2 [Voper AV[A] - VIA] dper}/ prr (VIA] V% (4.11)
for variations in the asset portfolio.

Recall (3.31) and disregard V{A AL] as second order. Then (4.11) becomes:
aA = dA + zp{[%pKT avia,] - via,] APy

+ [Yopgr aV[A,] - VIA Mot/ prc{VIATY, (4.12)

It is difficult to consider variations of this type in generality. Consider therefore the special
case of a shift between the fixed interest and volatile asset sectors, but with no change in intra-
sector structure.

To define this idea precisely, let Tt = AV/ A =proportion of assets in volatile sector.

This notation allows (3.3) - (3.5) to be written as:

L= EKC,,[(I-ﬂ)Rﬁr + nRy), (4.13)
AL = EKYk[(l-ﬂ) Pir + TPir); (4.14)

A, = A[(1-m)Rg; + TR,]. (4.15)
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The shift between asset sectors described above will consist of a variation & in . Appendix
B evaluates the various contributions to #A under this variation.

Appendix B.2 shows that, for dn > 0,

dA <0, (4.16)
provided that
p:’T / pr decreases with increasing k. (4.17)
Appendix B.3 shows that, for dn > 0,
Vaper dV[A] - V[A,] dpg; < 0, (4.18)
if (4.17) holds and
Cov[C,,C,] > O for all k, 1. (4.19)

The behaviour of the remaining contribution to A in (4.12) is more complex. From
Appendix B.1,

YaPrr dV[AA] - V[AA] dpr

= (@n) Cor[P + Q, pxrQ - (pr - Prr)P), (4.20)
where

P = ARgy - Z 1R, (4.21)

Q = AlRer - Rep) = T v, (Rer - Ri). (4.22)

The right side of (4.20) is not conveniently quantifiable, but in practice it is likely that
volatility of fixed interest returns will be low. In the special case in which it is zero, covariances
involving P vanish, and the right side of (4.20) reduces to:

(@r) ™ per VIO)] (4.23)
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>0, for dn>0. (4.24)

More generally then, (4.20) is positive for 4n > 0, provided that fixed interest volatility is
sufficiently low.

From this and (4.18), it is seen that the muldplier of 2, in (4.12) consists of one negative and
one positive quantity when the relevant conditions hold. Which of these quantities dominates
depends on the relation between:

(a) the intrinsic liability risk; and
(b)  the magnitude of net assets.

This can be seen by examining (B.17) and (B.18) in relation to (a), and (4.23) and (B.6) in
relation to (b).

It is seen from (B.17) and (B.18) that, if all terms Cov[Ck,C,] become small, then (4.18)
becomes small, and the multiplier of z, in (4.12) is dominated by the asset contribution.

Consider the case of large net assets. By (B.6), O will be large (in probability). Then (4.23)
and the associated discussion show that the asset contribution to the multiplier 2, is again
dominant. Note that large net assets are associated with large 2, .

All of this discussion is summarised in Propositions 4.2 and 4.3.

Proposition 4.2. When asset risk is increased (in the sense defined above), the discounted
value of liabilities decreases (see (4.16)) provided that condition (4.17) holds. O

Condition (4.17) is a weak requirement. For example, in the simple case in which asset
returns from disjoint time intervals are stochastically independent,
vV ) F I v,k
Per/Pir = I (P /e1)
L=k+1
= (comst.)™, (4.25)

in the special case for which p,V/ pf = const. such as in model of log normal R,V (e.g
Rubinstein, 1976, p.416).

The constant in (4.25) will exceed 1 reflecting the higher volatility of the ¥ asset sector, and
s0 (4.25) will reduce as k increases.

Proposition 4.3 Suppose that (4.17) and (4.19) hold. When asset risk is increased (still in
the same sense as above), assets required to provide a defined confidence of adequacy will
increase or decrease depending on the level of confidence. For low levels of confidence 250%
(e.g. p =50% in (4.12)), required assets decrease. For high levels of confidence, required assets
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increase. This last result holds at sufficiently high levels of confidence without the assumption
of (4.19).

The value of p at which required assets are unchanged by increased asset risk reduces as all the
liability (co)variances Cov Ck,C,] diminish toward zero. O

The practical meaning of Propositions 4.2 and 4.3 is that whether the net asset position of an
insurer is improved or worsened by an increase in asset risk will depend on the basis used by
the insurer to set its loss reserves. If this basis comprises the median discounted liability
(¢ =50%, z =0), then net assets will be improved; if the basis includes a prudential margin
providing high confidence of adequacy (p-100%), then net assets will be worsened.

The same result may be put another way. Suppose the insurer in question reserves on the
median discounted liability basis. Then the required capitalisation of that insurer will depend

on the degtee of confidence which the capital base is to provide. If it is high (low), then an
increase in the insurer’s asset risk will necessitate an increase (decrease) in the capital base.

5. Capital and Solvency

Taylor (1995) examined the pricing by, and capitalisation of, insurers in equilibrium of a free
competitive market. The main result concerning solvency, given on p. 418 of that work, is
that a certain risk parameter 4 is constant across all insurers.

According to equation (45) of the paper referred to, 4 is defined by:

log(1+n+8) = do - Ye® - Yo?, (5.1)

where, in the present notation,

l+n = ratio of discounted premium, net of acquisition costs, to corresponding
discounted losses and associated expenses;

6 = ratio of net assets to discounted losses and associated expenses deriving
from the next year’s premium income;

o; = log{1 + V{A,]/A%} (5.2)
oy = log{1 + V[A,]/AY, (5.3)

o = o +a.. (5:4)
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In fact, Taylor works with a single period model, and defines the quantities appearing in (5.1)
accordingly. The present paper simply extrapolates those definitions to the current multi-
period model. In these definitions, discounting is carried out at risk free RORs.

To interpret 4, consider the case in which the insurer holds only risk free assets, so that the
risk free discounting in 1, & corresponds to the real situation.

Consider the case in which losses arising from a year’s premium income are log normally
distributed with dispersion parameter ¢. Then the probability that the premium income plus
capital are sufficient to cover discounted claims is  where

® (z) = p,
with
2, = [log(1+n + 8)]/o. (5.5)
By (5.1) and (5.5),
d =z, + Y50 + Yoy /0. (5.6)

Tglus, constancy g)f d across insurers implies constancy of p except to the extent that ¢ and
0;,i.c. 0, and o}, vary across insurers.

Indeed, (5.6) yields:

5, + %0 <d < z, + ©. [by (5.4)] (5.7)

If o is small relative to z,, then 4 is a reasonable approximation to z,.

These findings may be summarised as follows.

Proposition 5.1 In a competitive freec market in equilibrium, insurers with risk free asset
portfolios all have the same security, in the sense of probability of adequacy of existing capital
plus premiums to meet corresponding discounted claim cost, except to the extent that asset
risk and liability risk vary across those insurers.

In fact, the constant probability p is given by ®(d) = p with 4, the parameter from Taylor
(1995), defined by (5.1), provided that asset risk and liability risk are small relative to 4. [

It follows therefore, at least to a reasonable degree of approximation, that each insurer’s
equilibrium capitalisation, as represented by 8, will follow from (5.1), 1, o, and o, , thus:
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& = exp(do - Yha® - Yaod) - (1+7). (5.8)

6. Capital and profit margin

Let 6 and n be referred to as capitalisation and profit margin respectively. The present
section will consider the equilibrium relation between the two.

Taylor (1995, pp. 420-423) shows that equilibrium premiums consist of discounted expected
claim cost, but adjusted to include the insurer’s insolvency put. It is seen, however, that the
adjustment is virtually negligible for most practical purposes.

Taylor’s work excludes tax effects. Elsewhere these are seen to be considerable. The simplest
example of this is provided by Fairley (1979), who calculates the “fair” profit margin:

-xit + Ni%t /(1-1), (6.1)
where
X = ratio of undiscounted technical liabilities to premium;
N = ratio of net assets to premium;
i° = risk free ROR;
iL = CAPM risk adjusted ROR applicable to discounting technical
liabilities.

Note that Fairley defines profit margin as the addition to undiscounted losses and expenses,
whereas 1 relates to discounted losses and expenses. In the latter case, annual profit is
depressed by ki’ relative to the former, and so (6.1) gives the fair profit margin as:

n = Ni’t/(1-1). (6.2)

In this case the profit margin arises entirely from the operation of tax; n = 0 if © = 0.

The fact that a fair price consists of discounted expected costs plus a margin dependent on tax
on earnings of the capital base reflects the fact that these earnings are subject to a form of
double taxation, relative to earnings on investments held directly by shareholders. For the
carnings of an insurer’s capital base are taxed once in the hands of the insurer, and again in the
hands of the shareholder.

The Faitley approach is unduly simple, but it has been shown (Taylor, 1994) that, under
assumptions which spell out precisely the steady state conditions to which it applies, it yields
the same result as more sophisticated approaches, such as that of Myers and Cohn (1981).
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In summary, then,

(1)  The equilibrium profit margin consists of tax effects and a virtually negligible
insolvency put adjustment.

(2)  The Fairley profit margin consists entirely of tax effects.

(3)  The Myers-Cohn profit margin is the same as the Fairley under suitable assumptions.

These results yield the following conclusion.

Proposition 6.1 Provided that the insurance industry equilibrium involves a low risk of
insolvency (rendering negligible the insolvency put discussed above), the equilibrium profit
margin will be approximated by the Myers-Cohn margin calculated on the basis of the
equilibrium capitalisation discussed in Section 5. O

This proposition addresses one of the unsolved problems of insurance pricing, namely the
capital base which should be allowed for in fair pricing of the Myers-Cohn (or similar) type?
The suggestion made here is that it is the base which would emerge in competitive
equilibrium, and Section 5 indicates how that capital base would vary across insurers with
different distributions of underwriting by line of business.

Conclusions of this sort can be extrapolated to hypothetical single line insurers to determine
the capital base, and hence profit margin, associated with a particular line. This is a form of
solution to the problem of allocation of capital by line.

It ' would probably be a fully satisfactory solution if the capital bases of different lines were
additive, ie. if the capital required to support underwriting in a number of lines
simultaneously were merely the aggregate of the amounts of capital required to support each
of those lines in isolation from the others.

The proviso here does not hold, however. Since the underwriting results of different lines are
less than fully correlated (considerably less, in fact), their combination will produce risk
reduction in the sense that liability risk (as defined in this paper) of the aggregate will be less
than the weighted average of individual line liability risks. It then follows from (5.5) that
capital is not even approximately additive.

7. Capitalisation of single line insurers

This section pursues the suggestion made in Section 6 that the earlier results can be
extrapolated to hypothetical single line insurers.
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The capitalisation equation of an insurer is given by (5.8). Let the equation as written there
represent the “typical” insurer. Let the same equation with variables 8, 1, o, o, replaced by
&%, 0°, o*, o, apply to another insurer, e.g. a single line insurer.

Note that, according to Section 5, 4 is a constant applicable to all insurets.

Solve (5.8) (equivalently (5.1)) for 4 to obtain:
d= [log(l +1 +6)]/o + l/2(02+0,24)/0
= log{(1+n+8)"° exp Ys(c? +oz)/o}. 7.1)

Then substitute this in the starred version of (5.8):

8 = (exp &) exp-¥a(0+ay) - (L+n’)
= (L+n+8)™ exp Y[(@* +ap)o’/0 - (67 + )] - (L+n). (75
Two observations may be made on this result.

First, if 6 is substantially larger than o, o, o, 02, then the first factor on the right side of

(7.2) will be dominant, and a first approximation to (7.2) will be:
8" = (1+n+8)°"”° - (1+7"). (7.3)

This approximation yields the following result.

Proposition 7.1 When approximation (7.3) is valid, the capitalisation of a single line of
business increases with the total risk 6* of that line. O

The second observation concerns the effect of 1, n* on (7.3). Since they act in opposite
directions (and in fact are likely to be small relative to &, 8*), their net effect on &* will be
small.

8. Numerical example

8.1 General discussion

The present section provides a numerical example of the results of Sections 4 to 7. The
example is based on real data from the whole insurance industry of one particular country.



8.2 Industry capitalisation

Figure 8.1 plots a history of market capitalisation.
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Fig. 8.1
Solvency margins
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It is seen that net assets have stood at about 60% of technical liabilities over the latest three
years, slightly below the average over the 14 years. For the present example, it will be assumed

that 6 = 0.6.
8.3 Assetrisk

Table 8.1 is a broad reflection of the industry asset deployment.
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Table 8.1
Asset allocation

%
Cash 5
Fixed Interest 56
Property 6
Local shares 23
International shares 8
Other 2
Total 100

Table 8.2 details the assumptions made in respect of asset volatility.

Table 8.2
Asset volatility

% p.a.
Cash 2
Fixed Interest 5
Property 18
Local shares 20
International shares 20
Other 10
Total 7.4

The “total” is 5.6% if calculated as a root weighted mean square with weights as in Table 8.1.
The figure of 7.4% p.a. includes allowance for sector return correlations. These have been
based on an empirical study of the financial markets under consideration, but in the interests
of brevity have not been reproduced here.

The extent to which a particular line is subject to asset risk is likely to be related to the duration
of its liabilities. This will be related in turn to the ratio of technical liabilities to premium
income.



Table 8.3
Duration of Liabilities
Line of business Proportion of Estimated duration
premium income of liabilities
% years
Fire 8 1.88
House 15 1.39
Contractors 1 2.37
Marine 3 1.43
Motor:
Property 37 0.84
Bodily injury 11 4.76
Worker’s compensation:
Large states 3 4.03
Small states 2 4.03
Public Liability 9 4.02
Other 11 1.68
Total 100 2.05

Note: The “estimated duration of liabilities” is calculated as the ratio of technical
liabilities (loss and unearned premium reserves) to net written premium less
explicit acquisition cost (¢.g. commission, brokerage, etc.).

Industry-wide asset risk is then estimated from Tables 8.2 and 8.3 as follows. If X denotes
the (continuous) ROR earned on surplus assets, and D the duration of liabilities, then the
average accumulation factor for those assets is:

F = ¢PX, (8.1)

If X ~ N(u,06%),then F ~logN (Dy, Dc?), and the coefficient of variation of F is w(F) with

exp(Da?) - 1

L+e*@E)P -1, (8.2)

W*(F)

whereF1 isFinthecase D = 1.

Now w(F)) is the value of 7.4% found in Table 8.2, and D = 2.05 from Table 8.3. Thus,
(8.2) gives

WX(F) = [1 + (0.074YF%® -1
whence (F) = 10.6%. '
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This is an estimate of the coefficient of variation V%[A A] / A. However, to the extent that
assets are matched to liabilities, asset variation will cancel corresponding liability variation.
This means that the asset coefficient of variation is reduced by a factor of

(A-eA)/A = 1-e(A/A), (8.3)
where € is the effectiveness with which the industry matches its assets to liabilities.

Then the effective value of w(F) becomes

©(F) = 10.6% x [1-e(A/A)]

10.6% x (1-¢/1.6), [by Section 7.2]. (8.4)

8.4 Liability risk

Empirical estimates of liability risk for individual lines of business were made by Cumpston
(1992). As has been noted elsewhere, liability risk consists of a systematic component which
is independent of portfolio size and a non-systematic component with dies out with

increasing portfolio size.

Recall the definition of ®, in (4.8), but now denote this quantity by w,(q) , where g is the
market share (of losses) of the insurer under consideration. Then

@ (g) = @ +w, /1, (8.5)

2 2 . . 2
where @], w, are the systematic and non-systematic parts of w; for the whole market.

For the present example oo,’: needs to be line-specific. Therefore, generalise (8.5) to the
following:

2 2 2 .
W (g) = wy + wy/q,, (8.6)

where ! denotes the line of business.

Cumpston’s estimates of , and 10w, are set out in Table 8.4. Note that 10w, is the non-
systematic component for an insurer with 1% market share.
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Table 8.4
Liability risk by line
Liability coefficient of variation
Line of business Systematic Non-systematic for Total for 1%
1% market share market share
% % %
Fire 7 5 9
House 7 2 7
Contractors 7 13 15
Marine 7 8 11
Motor:
Property 6 2 6
Bodily injury 12 14 18
Worker’s compensation:
Large states 22 7 23
Small states 14 7 16
Public Liability 10 8 13
Other 7 4 8
Total 74

The “total” line is subject to the same sort of comment as in Table 8.2. Subjective estimates
of correlations between line-specific systematic components of variation have been chosen but
in the interests of brevity, not reproduced here.

pJ

Thus, for an insurer with 1% market share in all lines, Liability risk is given by:

©, = 7.4%. (8.7)

This result does not change much for larger market shares. For example, if the 1% share is
replaced by 10%, w,; changes to 6.7%.

8.5 Total risk

- Consider an insurer with 1% market share in all lines. Substitute (8.4) and (8.7) in (5.2)-(5.4)
to obtain

a7 = log[1+(0.074)%] = (0.074) (8.8)

and
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o® = log{[1+(0.074)"] x [1+(0.106)*(1-¢/1.6)?]}. (8.9)

The value of € is unknown. However, most insurers make some broad attempt to match
assets to liabilities. It may be reasonable to assume that € = %4, in which case (8.9) gives:

o = 9.6%. (8.10)

Strictly, the coefficients of variation reproduced in Table 8.4 apply to outstanding losses only,
whereas (8.8) and (8.9) treat them as applicable to all technical liabilities. To the extent that
they do not reflect the uncertainty in unexpired risk, a distortion will have been introduced in

(8.8)-(8.10). Proportionately, any inaccuracy of this type will affect short tail classes more
than long tail.

8.6 Industry average security

This is measured by 4, given by (5.5) and (5.6). The inputs to these equations are 6 = 0.6
(Section 7.2), 0, = 7.4% (from (8.8)), 6 = 9.6% (from (8.10)), and .

The value of 1 is unknown. Determination from market data would be difficult, since 1 is
likely to be swamped by the effect on profit of revisions to outstanding losses. However, as
pointed out in Section 7, the effect of 1 on estimated single line capitalisation will be small.
A modest allowance of 1 = 5% is made here.

With these inputs to (5.5) and (5.6),

4 = (log1.65) /0.096 + %[0.096 + (0.074) /0.096]
= 5.26.

Equation (5.6) shows that this is close to z,, implying that the industry operates at an
extremely high level of security. There are several reasons why 4 might have been falsely
inflated.

First, the line specific coefficients of variation appearing in Table 8.4 may have been under-
estimated.  Second, inaccuracies of the type contemplated at the end of Section 8.5,
particularly in relation to property catastrophes, might have lead to under-estimation of the
unexpired risk variability implicit in the estimate of 4. Third, market frictions in capital raising
probably mean that the capital base held by an insurer at any given time supports not only the
business underwritten up to that time, but also a certain part of future underwriting,

All of these matters would need to be considered in a practical application of this paper’s
results. Note, however, that any mis-estimation of & does not necessarily affect an estimated
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single line capital base materially. Equations (7.2) and (7.3) show that this depends mainly
on 6" /o, ie. on the estimated relativities of line-specific total risk parameters rather than their
absolute values.

8.7 Single line insurer capitalisation

Now consider a hypothetical single line insurer. Required capitalisation is given by (7.2).
With the same parameters as used in Section 8.6, and assuming that n* = n = 5%, (7.2)
becomes:

8" = (1.65)™*/° exp[0.007350* /o - Ys(0*? + o;)] -1.05, (8.11)
with @ given by (8.9) and ¢* by its starred counterpart:
¢’ = 022 + log{l + [w*(F)]"[l - e/(l +6*)]2}. (8.12)

Note that, when (8.11) and (8.12) are combined, they yield an implicit equation for 8*. This
needs to be solved numerically.

The value of o; is based on Table 8.4 but, as was the case with o, , it depends on the market
share of the single line insurer under consideration. A typical single line insurer will usually
have a larger market share of that line than the typical multi-line insurer. Suppose the single
line insurer’s market share is 10%. Then (8.11) and (8.12) yield the following results, in the
case £ = %.
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Table 8.5
Single line insurer capitalisation

Single line insurer with 10% market share

Line of business Liability risk  Asset risk Totalrisk Capitalisation
% % % %

Fire 7.2 5.8 9.3 57
House 7.0 4.9 8.6 51
Contractors 8.1 6.9 10.7 69
Marine 7.4 5.0 9.0 54
Motor:

Property 6.0 3.5 7.0 39

Bodily injury 12.8 11.7 17.3 138
Worker’s compensation:

Large states 22.1 121 25.2 251

Small states 14.2 10.9 17.9 144
Public Liability 10.3 10.1 144 105
Other 7.1 5.5 9.0 54

Note:  “Capitalisation” 8" is , i.c. ratio of net assets of the single line insurer to discounted losses
and associated expenses deriving from the next year’s premium income.

8.8 Sensitivity Analysis

The results in Table 8.5 are based on several assumptions concerning unknown market
parameters, most notably:

. market share of typical multi-line insurer;
. market share of typical single line insurer;
[} £ ’
[ n .

Table 8.6 indicates the sensitivity of the results to variations in these parameters one at a time.
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Table 8.6
Sensitivity analysis

Single line insurer capitalisation

Market share
Line of business Typical multi- Typicalsingle ¢ = 100% n = 10%
line insurer line insurer
= 10% = 30%
% % % %
Fire 62 56 57 56
House 55 51 53 50
Contractors 75 63 70 70
Marine 59 52 57 54
Motor:
Property 42 39 41 37
Bodily injury 153 133 155 149
Worker’s compensation:
Large states 280 250 320 277
Small states 160 143 167 155
Public Liability 116 103 111 111
Other 59 54 55 54

There is some variation between the (widely) different scenarios, but the general shape of
capitalisation across the different lines remains much the same.
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Appendix A
Independence of total risk components

A.1 Independence of A, and A,,

By (3.16) and (3.18),

Cov [A,A,,] = Cov [f(p,C) -f(p,Y), FR,C) ~F(R,Y)]
- Y[f(p,C) -f(p7)]. (A1)

Consider now the first argument of the covariance on the right side of (A. 1). By (3.19),
f@:0)~fo:1) = ~ T [(A7/A)per + (AT/B)ppr] [, -, (A2)
>
Similarly, in the case of the second argument,

f®O)~fR;) = - T [(A7/ MRz + (A7/A)Ry7] [C,-v,) (A3)

k
Now (A.2) and (A.3) give the covariance on the right side of (A.1) as:

;K[ (A7 /B)pir + (A7 /B)pyr] [(AT/ M) iy + (A7/A)p] Cov[C,C), (a0

when the stochastic independence of assets and liabilities is recognised (see (2.4)).

The variance on the right side of (A.1) may also be evaluated by means of (A.2), and is also
found to be equal to (A.4). Thus

Cov [A,4,,] = O. (A.5)

A.2 Independence of A, and A,,

The covariance of A, and A,, may be approached similarly:

Cov [AA,AAL] = Cov [f(R:Y) _f(p3Y)a f(RaC) —f(p,C)]
- VIf®R,v) -flo, 1)) (A.6)

By the same sort of reasoning as in Appendix A.1, it may be shown that both variance and
covariance terms appearing on the right side of (A.6) are equal to:



Thus,

VA Rer-par) + kEk{¢(pfr/ Prr) Rer -~ Prr)

- Y{(AT/A)Ryr + (A" /A)Ry]}.

Cov [A,,A,,] = 0.

32

(A7)

(A.8)
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Appendix B

Variation in composition of asset portfolio

B.1 Asset risk

Consider A, as defined by (3.17):

with

fRY) =

By (2.1), this is:

A, = fR,Y) - flp,Y),

Z &, Pir(Rer/0r) + ARy
>

- v [(A7/A)RE: + (A7/MRY]

fR,Y) = A[1-m)Rgp + nRY]

E 4
-X Y,,[(l“‘”-)RkT + “RkT]
k>K

= [ARgr- T v, Ry
k>K

+ w[ARgr-Rep) - fka(RJ;-R:;)],

with 7 as defined in Section 4.3.

Thus,

with

Via, - vlp+rq)

P = ARg,- T y,RS
k>K

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)



Q = ARgr—Rgy) - 1, (Ryr-Ryz).

For a variation 4n in =, (B.4) gives:
dv[A,] = 2(dw)Cov[Q,P+nQ].
Note also that, by (3.12),
F vV _F
Prr = Prr * ™ (Pxr~Pxr)-

By (B.4), (B.7) and (B.8),
YapdV[A,] - V[A,Jdp

= @m){p" + n(e"-p")] Cov[Q,P+nQ] - (p7-p") VP +nQ]},
= (dm)Cov[P+nQ,p"Q - (p”-p)P],

where it has been convenient to suppress the subscripts on p temporarily.

B.2 Discounted liability

Consider the term 4A appearing in (4.11). Recall (3.4) and (3.10):
A = Ar/per-
Therefore,
(Pxp)’A = Prp dAp = Ay dppy
By (4.14),

dA,. = (dm) .EKY*("ZT"’fT)'

By (B.8),
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(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)
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vV _F
Apgr = (A7) (Prr—Pxr)- (B.13)
Substitution of (B.8), (B.12), (4.14) and (B.13) into (B.11) gives:
F ,V _F
(Per)dA = (@) T 1,[ogr (Per=Per) ~Pir (Prr=Picr)]
>
F F[V /F vV ,F
= (dr) pKTkEKYk Pir[Per/ Pir = Prr /Prr]
>
<0, for dn>0, (B.14)
if P:’T/ pr decreases with increasing k.
B.3 Liability risk
Consider A, as represented in (3.19). This may be written as:
F vV _F
A = kEK(Yk -G [PkT * T (Pyr - ka)]' (B.15)
>

Following an argument parallel to that in Appendix B.1, write

V(A = vip+=Q], (B.16)
with P,Q now defined as follows:
P =Y (C,-,)Pir
bx( 2~ Ye) Per (B.17)
Q-= kEK(Ck_Yk)(pZ;'—pr)' (B.18)

By the same argument as followed (B.4), it is shown that (B.9) holds once again, but this time
- with A, replaced by A; and with P,Q defined by (B.17) and (B.18).

Consider the second argument of the covariance in (B.9). Itis

p'Q-(p”-p")P = kEK(C,,_Y,,)[pf(T(p:’T_pr) - (Pxr-PxDPir)  (B.19)
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Note that the square bracketed term is the same as appeared in (B.14), where it was found to
be <0, provided that pZT/ pr decreases with increasing £ .

Thus, the current version of (B.9) gives Y2p,. dV{AL] - V[AL] Apgpr as AT times a
covariance of two linear combinations of terms C,~Y,, one linear combination having all
coefficients positive, the other all negative. The result is a linear combination of terms
Cov[Ck, Cz] with all coefficients negative.

It then follows that:

Vaper AVIA,| - VA, ] dpyp < 0, for dn > 0, (B.20)

Cov[C,,C] > 0 for all kL. (B.21)
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