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Summary

Consider an excess of loss reinsurance arranged in a number of layers. A loss reserve is

required for each layer.

There are two major reasons why the independent application of some conventional loss
reserving technique to each layer is inappropriate. First, the experiences in different layers in
respect of a particular treaty year will be linked; favourable or adverse experience in one layer
is likely to be reflected in favourable or adverse experience in the next. Second, experience data
will typically become sparse in the higher layers, rendering analysis in isolation from other

layers relatively uninformative.
The purpose of the present paper is to analyse the linkages between the loss experiences of

different layers, and apply these to obtain linked loss reserves. A numerical example is

provided.
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1 Introduction

Consider the case of a reinsurer of two or 'more consecutive layers of an excess-of-loss (XoL)
treaty. Suppose that the usual triangulation of incurred losses is available separately in respect

of each layer, but no other claims information is available.

It would be possible, in reserving, to apply some particular type of analysis, e.g. chain ladder
or some variant thereof, to each layer. To do this independently for each layer would,

however, fail to recognise the coupling of consecutive layers’ experiences.

For example, heavy experience in one layer will increase the frequency and/or the severity of
hits on the next layer above. It is preferable, therefore, for each layer’s experience to be
modelled in a manner which takes due account of the modelled experience in the layer

immediately below.

The following sections make some suggestions as to a very basic form of such modelling.
Undoubtedly, more sophisticated techniques could be developed, as is briefly discussed in

Section 8.

2 Statement of the problem

The purpose of the present section is to describe in precise terms the problem discussed in

Section 1.

Consider K + 1 layers of insurance, labelled layers 0,1,2,...,K. The labelling begins at 0 to
accommodate a ground-up layer which may not be reinsured, but for which experience is
available. The use of a ground-up layer is not essential to the following analysis, however. The

0-th layer may just as well be taken as a reinsured layer.
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The layer number will be represented throughout by a bracketed superscript.

Let

L,.j(.k) = the incurred loss in layer k deriving from treaty year i and asrecorded at the

end of development year j (=1, 2, etc.).

~The data assumed " available comprise an “incurred loss triangulation for each layer, i..

LY, i=1,..1; j=1,2,.,I-j+1; k=0,1,...K.

A = upper limit of layer k,
pVi(k) = dg('k)’ k=0;
—_ di(k) _ di(k-l)$ k= 1,2,...K;

= height of layer k.
With this notation, layerk(>0) reinsures W,.(k) excess of 4%V,

Incurred losses in a layer may be zero. The zero and non-zero cases are considered separately

in each layer:
PP = Prob[LP=0], 2.1)
4P = P |LP=0], (2.2)

for values ofi,j representing the future, i.e. i +j>I+1.

It will be convenient to represent the loss L,.J(.k) as a multiple of the relevant layer height. Thus,

define
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® _ ,® K
5 = L tw, (2.3)
and
® _ B, g
RP = 4P1wl®. (24)
Further, define

A Q(k) - n® _n®

i 1~ Ly

- AL®  p® (2.5)
ij i

and AR,.J(.k) similarly. It is assumed that AL,](.k)z 0.

A version of the chain ladder will be applied to the bottom layer. Age-to-age ratios will
therefore be required. In fact, it will be useful to define

0 0
Z, = log[LD, /L], (2.6)

3 General structure of the model

Since layer O is a ground-up layer, it is assumed here that
0
PP =o. (3.1)

It is possible, of course, for the contrary to occur, i.e. for the line of business under
consideration to have a non-zero probability of generating no claims at the primary level. It

would be unusual to protect risks of this type with a sequence of XoL layers.

In any event, the possibility is ignored here. Its inclusion would not require any major

structural change to the paper. It would be necessary simply to, model the function Pij(o).
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4

The functionsP,? are modelled for k > 0. In fact, the modelling is generally divided into

three cases:
LY=o (3.2)
LY +0,ALY = 0 (3.3)
ALY # 0, , (3.4)
where
AL® = L® - 19, (3.5)

The model excludes the possibility of Lij(k) = 0 when Lg?l > 0, and so the first and third of

the enumerated cases are in fact mutually exclusive, as are other pairs of cases.

The relevance of the case AL® = 0 is that it implies AL®*D = 0. The distribution of AL®D
will be continuous for strictly positive values but will have a discrete mass at zero. The
separation of cases (3.3) and (3.4) recognises this in the modelling of AL®*D. Case (3.2) is
a special case of AL®=0.

4 Modelling the upper layers

4.1 Probability of nil incurred

To calculate the array of values P(®

4 > one must consider the evolution of each underwriting

year, in particular transitions of L,.S’?l = o to L,.j(.k) =B.
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It is assumed that the different underwriting years develop independently, and so any
particular underwriting year may be considered in isolation from the others. In this case, the
suffix ¢ is constant, and so is suppressed through the remainder of the present sub-section

unless the contrary is explicitly stated.

The event L,.j(.k) = a is abbreviated to {j,k,a}. Similarly, the twofold event L,.J(,k_l) = q, L,.J(.") =p
is denoted by {j,k,a,B}. When 4 appears in place of « in this last expression, it denotes
4®D

g

The expression {j,k,a(>0),p} will denote {j,k,a,B}, i.c. relating to a specific value of a, but
subject to the restriction that ¢>0. In distinction from this, {j,k, >0, B} will denote the event

L,.j(.k'l) > 0, L,.j(.k) = B, i.e. unrelated to a specific value of a.

Transitions of the type mentioned above will be influenced by experience in the next layer

below, specifically by Lg:ll) and L,-J(.k_l) (suffix ¢ shown for consistency with the earlier

notation).

It will be necessary, therefore, to consider transitions of pairs

k-1 (3 k- E
P2 A I A A (4.1)

or, in the abbreviated notation,
-1,k 0,p} —{j,kv,6) (4.2)

There are three distinct types of state to be recognised in such transitions. On the left side, for

example, of (4.2) they are:

a:ﬁ:o;
a+0,p=0;
a=*0,p =0
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respectively.

The matrix of transitions between these states, written in the unabbreviated notation, appears

as follows.
L¥P=o, LFP=y#0,  L¥P=y=0
LP=0 LP=0 LP=8+0
L%P=0,1% =0 * * *
L¥P=a+0,L% =0 | 0 * *
LEP=a=0,1% =p=0 0 0 1

where the entries * are complementary to the remainder of the rows to give a unit row sum.

Let this matrix be denoted by Mj(k). Appendices A and B develop the methodology for

evaluating Mj(k) for various k(>0) andj. The following results are reproduced from there.
The quantiticé found there to be required are:

Prob[{j,k,0} | {jk-1,4}, {j-1,k ,0}],

Prob[{j,k-1,y>0} | {j-1,k-1,0}],

Prob[{j-1,k-1,a,0}].

Denote the three respective sets of these quantities by Nj(k), Rj(k‘l), S;(_k; . Note that the

original target of the investigation, Prob[{j,k,a}], may be expressed in terms of S}(k) , thus:
Prob[{j,k,a}] = Prob[{j,k0,a)] + Prob[{j,k, p>0,a}]. (4.3)

The 6}(") and Mj(k) may be evaluated recursively with the following order of evaluation, and

with J denoting I-i+1, i.e. latest development year:
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S (all j), 8P (all k) [given]
then
MO, j=J+1, J+2, ete.
SP, j=J+1, J+2, etc,
M®, 59, et
Here S}(o) is treated as given since, by convention, {;,0,&,0} = {;,0,0}, so that (3.1) gives
Prob[{j,0,0}] =0.
Similarly Mj(l) is a special case of Mj(k). Specifically, (A.6) gives (approximately):
Prob[{j,1,y>0,8} | {j-1,1,0,p}]
= Prob[{,1,8} | {j,0,4), {j-1,1,a,B}], (4.4)
and this last quantity is dealt with below.
The remainder of the recursion follows the schematic appearing hereunder. This is the same

as the first schematic of Appendix A, but rearranged to show the .S}.(k) as the target of the

recursion, in accordance with (4.3).
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)
® ® ®
Sj-1 4. M,

A

® &1 @1

N 4 R
(k-1) *&-1) -1)
M; 45 Si-1

The equations required for the recursion, in order, are (from Appendix A):
For Sj(k),

Prob[{j,k,0,0}] = Prob[{j-1,k,0,0)] x Prob[{j,k,0,0}|{j-1,k,0,0}], (4.5)

Prob[{j,k,a>0,0}] = Prob[{j-1,k,0,0)] x Prob[{j,k,&>0,0}|{j-1,%,0,0}]

+ Prob[{j-1,k,y>0,0}] x Prob[{j,k,a>0,0} l{j-1,k,4,0}].  (4.6)

For Rj(k),

Prob[{j,k,y>0] | {j-1,k,0}]

= {Prob[{i,ky>0) | {j-1,k,0,0] x Prob[{j-1,k,0,0}]

+ Prob[{j,k,y>0) | i-1,6.4,01] x Prob[{j-1,k0>0,0)1}/ Prob[(j-1,50)]. (4.7)
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Note the special case for k=1,
in which
Prob[{j-1,1,0,0}] = 0, (4.8)
because of (3.1).
For M,
Prob[{j,k,v>0,8] | {j-1,k,a(>0),p}]
= Prob[{j,k,8} | {j,k-1,4}, {j-1,k,a(>0),p}1, (4.9)
Prob[{j,k,y>0,8} | {j-1,k,0,0}]
= Prob[{j,k,6} | {j,k-1,4}, {j-1,k,0,0}]
x Prob[{j,k-1,y>0} | {j-1,k-1,0}]. (4.10)

The conditional probability which appears on the right sides of (4.4), (4.9) and (4.10)
respectively is discussed in Appendix B. There the following approximation is adopted:

Prob[{j,k,0} | {7,k-1,1%}, §-1,51%D o}
if ij-1

= {1 +exp £, Agd DI, (4.11)
with

fg.p) = B,lg/A+q)] log B,p), g=1;

= -0 q<1 (4.12)
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10

for constants B, p, > 0.

Here g and Agq are defined in terms of / in the same way as Q and A Q are defined in terms

of L (see (2.3) and (2.5)).

At the end of the recursion illustrated by the earlier schematic, all S}(k) (and other quantities)

will be available. These may be used as inputs to (4.3) to yield Prob[{j,k,0}],the probability

~-of nil incurred.

4.2 Size of non-zero incurred

Section 4.1 calculates probabilities of zero incurred and of non-zero incurred. In the event that

incurred is non-zero, it will be necessary to estimate its expected size.

Amounts of incurred losses are expressed in terms of R,.j(.k) (see (2.4)), whose evolution with
development year is now examined.

(&-1) ®-1) . *-1) .
If movement occurs between Q" and Q, 1> 1Le. AQy >0, it may generate movement
between Q,](k) and_Qgil, ie. AQS)~1>0. Even if there is no movement in layer k-1, ie.

A Q,.j(.k_l) = 0, movement may still occur in layer k.
This may reasonably be modelled as:

ARP = a®ARF?D + RP g®(, (4.13)
for constant a®>0 and suitable function g®(.).

Note that, in the absence of movements in layer k-1, g®(j) acts as an age-to-age factor, and
must therefore converge to 0 sufficiently rapidly with increasing j if R,-J(.k) is to be

asymptotically constant.
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A simple possibility is
g®G = p®j~, (4.14)

~where b®(>0) is a constant, and -s would need to exceed 1 for R,.j(.k) to converge with

increasing j .

“Estimates 4%®, §®() of a®, g®(j) are made on the basis of observed R,.j(.k) and the relation

(4.13). This is done by means of regression in the present paper.
Relation (4.13) then enables R,.S’.?l to be predicted recursively on the basis of AR,.](.k'l) and Rij(.k).

This means that future values of R,.j(.k), J=I-i+2, I-i+3, etc. may be predicted on the basis
of R,.ff)_ ;+1 provided that future values of R,.J(.k—l) are available.

5 Modelling the bottom layer

By (3.1), it is assumed here that
© _
P = 0. (5.1)

With this assumption, age-to-age factors are meaningful. The bottom layer is modelled here

by means of a regression-based variation of the chain ladder.

Consider the variable Z,,

defined by (2.6). It is assumed that
Z, + K ~ log N(u,, o)), (5.2)

for a suitable constant X, and with p,, o;. specific parametric forms depending on i, 5.
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In fact, it will be assumed here that

13
1}

y = @)+ ), (5.3)

Q
|

y =0/ hy(), (5.4)
for suitable functional forms &,(.), k,(.) and h,(.), and for constant 62>0.

Values of o® and of the parameters involved in these functional forms are estimated (by
regression techniques in the present paper), leading to fitted values ?ij corresponding to

observations log(Z, + K). The model values of the age-to-age factors E[L,.f(?+l / L,.j(.o)] are
calculated as:

exp { exp[f, + % 8*/hy()]1-K), (5.5)

where 62 is the estimate of o2.

6 Assembling the predictions

Sections 4.1, 4.2 and 5 deal with three sets of predictions. Each individual prediction is
dependent on data and/or one or more other predictions. They therefore need to be evaluated
in a specific order, as set out below.

Bottom Layer (Section 5)

For each treaty year, develop the most recent incurred loss figure through future years by
means of the chain ladder factors (5.5).
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Upper Layers - size of non-zero incurred (Section 4.2)

Predict future values of R,.](.l) on the basis of the predicted R,.j(.o). Hence develop future values
of A,-j(-l) .

) o .«
j from 4;", and so on.

Then develop future 4
~Upper layers - probability of nil incurred (Section 4.1)

The precedence of the quantities required for prediction of the P,.j(k) was examined in detail in
Section 4.1. The schematic there indicates that the future .S}(l) can be evaluated recursively
over increasing j on the basis of the S}(o) (which are degenerate because of (3.1)). . The S}(l)
then yield predictions of the P,.j(.l). The P,.J@ are then predicted on the basis of the 5}(1) , the P,.j(.3)

from the .S}.(z) , and so on.
Upper layers - incurred losses
These are predicted by means of the simple formula:

ELP = 1-PP1 4P, (6.1)

7 Numerical example

The following example uses a real data set which has been disguised by adjustment. The
adjustment has been made carefully, however, in such a way as not to disturb the main features

of the data.

Because the recommended treatment of upper layers differs from that of the bottom layer, the

example deals with the bottom layer and one upper layer. Because it is desirable to illustrate
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the methodology with a sparse data triangle, the upper layer chosen has k>1. For the sake of
the example, suppose k=3.

Although details of layers other than k=0, 3 are not given here, they have in fact been used

--in the estimation of layer-independent parameters, such as appear in (4.12).

The incurred loss data for the example are set out in Appendix C. Those of Layer 3 (Table
'C.3) are seen to be quite sparse and generally unsuitable in isolation for application of
conventional projection techniques. It is here that the activity in the lower layers, e.g. Tables

C.1 and C.2, becomes useful.

The schema described in Sections 4 to 6 has been applied and selected numerical details given
in Appendix D. Appendix D.1 deals with Layer 0 and Appendix D.2 with Layer 3. The

results obtained are as follows.
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Table 7.1
Projected claim costs
Incurred losses
Treaty Layer 0 Layer 3
year to 1995 projected to 1995 projected
ultimate ultimate
$M $M $M $M
1983 294 299
1984 168.1 174.3 11.6 12.2
1985 779 83.4 0 1.0
1986 129.6 142.4 1.8 27
1987 125.6 142.2 0 2.5
1988 180.5 212.7 45.0 48.8
1989 91.0 1194 0 3.6
1990 127.2 182.9 93.7 102.8
1991 49.6 102.1 7.7 12.1
1992 55.3 157.3 10.0 174
1993 44.6 209.7 0 21.1
1994 7.8 122.0 10.0 41.8

In practice, the projected results in respect of the more recent treaty years might require re-

consideration due to their relative unreliability, but this has not been done here.

8 Further research

All of the above development has been carried out on the basis of aggregate data. In practice,
it may be possible to obtain individual loss data, particularly in those layers where simple

triangulation provides little information.
Some additional data would enable some exploration of individual claim size distribution,

which could then supplement the above models of loss development. The precise form of the

additional analysis would depend on the form of additional data available. For example, a
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complete history of development of each claim might be available; or alternatively, individual

estimated loss sizes might be available only at the latest date of experience tabulation.

19/03/96 03:00PM SA\GAMSONM\GENERAL\GI16.50



17

APPENDIX A
. Probabilistic relations between layers

A.1 An approximation

Lemma. Let X be a random variable, and 4, B specific events. Then, as a first order
approximation in X,

. -Prob[X>0, AIB] = Prob{4 X = E[X|X>0, B],B] x Prob[X>0|B]. {A.1)

Proof. Let p denote a generic pdf. Then

Prob[X>0, 4 |B]

[ px=x, 41Bydx

x>0

[ p4x=x, B) p(x=xB)dsx.

x>0

(A2)

Now expand p(4 | X=x,B) in a Taylor series about x = E[X|X>0,B] = p say. Then

p(4|X=x,B) = p(4|X=p,B) + G-w) g’;’ (A|X=x,B)|,., + O -p) (A.3)

Substitute (A.3) in (A.2) to obtain as an approximation:

Prob[X>0, 4|B] = p(4|X=p,B) [ p(X=x|B)
x>0

+ 2 p(4|X=x,B),., lo(x—u)p(X=x|B)

(A4)

By definition of p, the second integral in (A.4) is zero. Then (A.4) is equivalent to result
sought.

a

A.2 Transition probabilities

Consider the matrix Mj(k) set out in Section 4.1. It contains three elements (denoted by *)
requiring calculation. Each is of the form:

Prob[{j,k,y>0,8}| -1,k a,B}]. (A.5)
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By the lemma, this may be approximated by:
Prob[{j,k,8}|§j,k-1,4},{j-1,k &, B}] x Prob[{j,k-1,y>0}|{j-1,k,e,B}], (A.6)
where the context makes clear that 4 denotes A,.j(.k_l).

-..Consider the. specific cases of ., B that arise in the final member of (A.6). These are
enumerated in Section 4.1 just prior to setting out Mj(k). Evidently,

Prob[{j,k-1,y>0}|§j-1,k,e,p}] = 1 for a>0. (A.7)
This relates to the second and third rows of Al}(k).
In this case (A.6) may be reduced to give:

Prob[{j,k,vy>0,8}| -1,k &, B}]
= Prob[j,k,8}|{j,k-1,4}, §i-1,k 0,p} for a>0. (A.8)

Consider the alternative cases in which a = 0, i.e. the (1, 2) and (1, 3) elements of Mj(k).
Here B = 0 necessarily. Then

Prob[{j,k-1,y>0}|{j-1,k,0,0}] = Prob[{j,k-1,y>0}|{j-1,k-1,0}]. (A.9)

From (A.6), (A.8) and (A.9), all transition probabilities may be calculated from probabilities
of two forms, viz:

Prob[{j,k, 6| {j,k-1,4},{j - 1,k,a,B}], (A.10)
and

Prob[{j,k,y>0}| {j-1,k 0}]. . (A.11)

A.3 The probability (A.11)

Recall the general result for conditional probabilities:

i Prob[A|B,] Prob[B,]

Prob{A4|B,or...orB,] = m-l (A12)

Y Prob[B,) ’

m=1

provided that the events B,,...,B, are mutually exclusive.

- In the present context, this gives:
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Prob[{j,k,y>0}|{j-1,k,0}]

= {Prob[4),k,v>0} {j-1,k,0,0 )1 x Prob[{j-1,k,0,0}]

+fProb[{j,k, y>0}{j-1,k, a(>0),0}]x Prob[{j-1,k,a(>0), O}]}/Prob[{j—l,k, 01, (A.13)
where the variable of integration is «.

The first probability within the integral may be approximated by the replacement of a with
its expected value, conditional on positivity (in much the same way as in the lemma), reducing
it to:

Prob[{j,k,y,0t|{i-1,k,4,0}] (A.14)
Substitution of (A.14) in (A.13) then gives:

Prob[{j,k,y>0}| {j-1,k,0}]

= {Prob[{j,k,y>0} {j-1,k,0,01] x Prob[{j-1,k,0,0}]

+ Prob[{j,k,y>0}{j-1,k 4,0} xprob[g—l,k,a>o,o}]}/Prob[{j—1,k,0}]. (A.15)

The conditional probabilities appearing here are in fact the (1, 3) and (2, 3) clements of Mj(k).
Their multipliers are unconditional probabilities relating to the end of development year j-1.

A.4 Unconditional probabilities

Consider the unconditional probabilities appearing in (A.15), viz. Prob{j-1,k,a,0}. These may
be calculated by the usual forward recursion involving the transition matrix Mj(k).

Prob[{j-1,k,0,0]] = Prob [{j-2,k,0,0]] xProb[{j-1,k,0,0}|{j-2,k,0,0}], (A.16)
Prob[{j-1,k,0>0,0]] = Prob [{j-2,k,0,0} xProb[{j-1,k,a>0,0}{i-2,k,0,01]
+ Prob [{j-2,k,¥>0,0)] xProb[j-1,k,a>0,0}|(i-2,k,4,0, (A.17)

where the second of the two members on the right is an approximation obtained by
application of the lemma to a more precise expression.

Thus, unconditional probabilities at time j-1 are expressed in terms of unconditional
probabilities at time j-2 and the transition matrix Mj(_k,)
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A.5 Summary of the recursion

By Appendices A.2 to A.4 (in particular, (A.10), (A.11) and (A.15) - (A.17)), the quantities
required for the computation of Mj(k are:

Prob[,k,8) | {,k-1,4%§-1,k e, Bl], (A.18)
Prob[{j,k-1,y>0} | {j-1,k-1,0}, (A.19)
Prob[{j-1,k-1,a,0}]. (A.20)

Denote the respcctlvc sets of quantities (A.18), (A.19) and (A.20) by N; ® R(k D and S(k D,
Estimation of N is the subject of Appendix B. With this notation, thc recursion dcvclopcd
in Appendices A 2 to A.4 may be represented diagrammatically as follows.

®
M
® &1 &1
N; 4; R;
(k-1) *-1n . *k-1)
M; Ay Si1

k-1 k-1) (k-1
s 450 MY

An abbreviated form of this diagram which recognises just the nodes involving M and S is as
follows.
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(k-1) (-1)
M s

*-1) (k-1)
S'_2 . Mj_l

This indicates that the recursion, over j and k, must be carried out in the following order:
52 (allj), §° (all k) [given]
Then
M®, j=J+1, J+2, etc.
SP, j=J+1, J+2, etc.
Mj(z), Sj(z), etc.,
where J denotes I-i+1.
Note that the values of Mj(l) require various quantities related to the 0-th layer, e.g.
R = Prob[L®>0 | LY = 0).

The modelling of such quantities is treated separately in Section 5.
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APPENDIX B
Main model for transitions between layers

Appendix>A.5 identifies
Prob[{j,k,6} | {,k-1,4%%-1,k B}, (B.1)
as a quantity required for the calculation of Mj(k) .

One interpretation of this conditional probability is that the probability of incurred losses in
layer k flipping from zero to non-zero in development year j depends on incurred losses in
layer k-1 inyear j and year j-1; equivalently, on the level of incurred losses in layer in year
and their change in year k.

Thus the probability (B.1) may be expressed in terms of L,.j(.k_l) and AL%D; or, by (2.5),

: : @-1) @-1) L
equivalently in terms of Q" and AQ; 7).

That is, for example,

Prob[fj,k,0} | g’k‘l,lg_l)},b'-l,k 1D o)

] ’J‘l ]
K k-1 _ (k1) g 1) _ (1) (K
- Prob[L,.j(.)=O | Lij(' )=li1(' ¢ Lig'—l)=li5'-1), Liszlzo]
k-1 k-1
= flay >, Ag P, (B.2)

where g, Ag are defined in terms of  in the same way as O, AQ are defined in terms of L (see
(2.3) and (2.5)).

Since Q expresses losses L as a multiple of layer width, it is reasonable to adopt the same
function for all layers on the right side of (B.2). For convenience this function is written in
the logistic form:

= ® _ E-1)_ G-y LD _,¢k-1) o B _

= Prob[L°=0 | LFV=1*D, LD 14D 1B <0

= {1vew 19 agSPI, (B3)
where the function £ is still to be specified.
Note that f(g,p) will usually be -= if g<1 (no exhaustions of layer k-1). Subject to this,

(@.p)=+> as p = (dll g);

=~ as p =0 (all q); (B.4)
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and it may further be reasonably assumed that:
of/dp, of/9q>0 for g>0 and all p. (B.5)

Note that f{(g,p) is bounded above for fixed p and g==; otherwise, the probability in (B.3)
would approach 0 by virtue of large q,.j(.k'l) , even if Aq,.(;:ll) were small.

With this last observation taken into account, together with (B.4) and (B.5), a reasonable form
to assume for fitting of f* to data is:

fa.p) =B,[g/(1+q)] log B,p), g=1;
= T, q<1: (B6)

with By, B, positive constants.
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APPENDIX C |
Data for numerical example

C.1 Incurred Losses

The example is concerned with the modelling of layers k=0. The experience in layer 3 is,
however, dependent on that in layer 2.

The following are triangulations of incurred losses for layers £=0,2,3.

Table C
Layer0 .

Treaty Incurred losses to end of
year | 1984| 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

US$000US$000US$000 US$000, US$000 US$000 US$000| US$000 US$000, US$000 US$000 US$000

1980| 3,175| 2,880(10,177| 10,177| 13,522| 13,5622| 13,393| 13,393| 13,393| 13,393 12,289 12,289
1981| 8,255| 8,380/14,380| 14,380| 14,630 16,491 17,426 19,426 13,191, 21,016| 42,871 21,103
1982| 898 878 878 688 688 688 688 688 688 688 688 688
1983 2,055(20,070|23,114| 26,852 31,541| 29,915| 26,234 | 27,770} 29,011| 28,940| 29,626| 29,428
1984 281(24,521(48,521| 97,925|101,255|115,101 (110,344 | 140,672} 143,979 | 163,217 | 167,623 | 168,077

1985 0|20,772| 49,438 86,483| 91,173| 85,040 84,653| 83,897 | 84,755| 82,909| 77,860
1986 0| 10,275| 71,040 99,494|113,687|121,807|112,025| 121,764 | 129,391 | 129,629
1987 0| 29,780| 56,137 | 72,902| 89,189 98,204 (113,639}120,470| 125,616
1988 0| 15,000 15,328 54,685|123,488|149,694176,693 | 180,549
1989 ‘ 0 0| 1,250| 21,231 48,202| 75,254 90,957
1990 0| 16,288| 78,577 | 68,328|121,708|127,232
1991 0 0| 8,175| 23,873| 49,615
1992 0| 7,500| 16,254 55,280
1993 0| 17,295| 44,586
1994 0| 7,750
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Table C.2
Layer 2
Treaty Incurred losses to end of

year 1984 1985| 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
US$000US$000US$000 US$000] US$000 US$000 US$000] US$000 US$000| US$000 US$000| US$000
1984 0| 8,750| 9,688, 9,892| 10,072 10,075 10,075 10,075| 10,075| 10,076 10,076 | 10,076
1985 0 0 0 0 0 0 0 0 0 0 0
1986 0 0 0 0 0| 7500, 7,500 8,657 8,792, 7,500
1987 0 0 0 0| 11,444 11,444 11885 8,771 8,7
1988 0 0 o 0, 1,080, 9,116| 15,000{ 22,500
1989 0 0 0 0 0f 2,851 1,129
1990 : -0 -0} --5,000| 10,000/ -30,000{ 50,000
1991 0 0 0 10,000| 10,000
1992 0 0 0| 10,847
1993 0 0| 5,000
1994 0] 5,000

Table C.3

Layer3

Treaty Incurred losses to end of

year | 1984| 1985| 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
US$000PS$000US$000 US$000| US$000 US$000 US$000, US$000 US$000, US$000 US$000, US$000
1984 0{ 8,750 9,688| 9,892| 11,620( 11,624| 11,624| 11,624 11,624| 11,625 11,625 11,625
1985 0 0 0 0 0 0 0 0 0 0 0
1986 0 0 0 0 0 0| 2632 1,810 1,810| 1,810
1987 0 0 0 0 0 0 0 0 0
1988 0 0 0 0 0| 15,000{ 27,232| 45,000
1989 0 0 0 0 0 0 0
1990 0 0| 10,000| 20,000( 52,000 93,650
1991 0 0 0] 5,191 7,740
1992 0 0 0| 10,000
1993 0 0 0
1994 0| 10,000

The bold heading of the final column of each table draws attention to the fact that this is a 19-
month experience period. All other experience periods are annual.

Note that the data in Table C.1 satisfy assumption (3.1) except in development year 1. This
is sufficient for present purposes.

The coverage provided by layers 2 and 3 is as follows.
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Table C.4
Layer Limits
Layer 2 Layer 3
Year . . .
Lower limit | Upper limit | Lower limit Upper limit
$M M $M $M
1984-88 26.25 33.75 33.75 48.75
1989-94 175 225 225 325
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APPENDIX D

‘Numerical Results

D.1 Bottom Layer

27

The model is set out in Section 5. The particular forms chosen for 4,(.), h,() and hy(.) were:

() = k, max(0,i-1981) + k,max(0,i- 1983)

+ ky max(0,i-1989) + k, I(i=1990) ,

b)) = ks + ks log j + &, ],

1/5 + (j-6)2/36 for j>2;

il

hy ()

25 [1/5 + (j-6)*/36] for j<2,

(D.1)

(D.2)

(D.4)

where I(.) is an indicator function which takes the value 1 when the condition occurring as

argument is satisfied, and 0 otherwise.

The function h,(.) defines a piecewise linear function of treaty year with changes of slope at
1981, 1983 and 1989, and with treaty year 1990 regarded as exceptional.

The function A,(j) is chosen to produce rough homoscedasticity.

The data set out in Appendix C were analysed by the GLIM package. Outliers, defined as
observations producing standardised residuals numerically greater than 3, were given no
weight in the regression. This yielded the following parameter estimates.

Table D.1
Parameter Estimate
k, -0.3603
k, +0.6045
k, -0.3796
k, -0.4908
kg +1.970
ke -3.074
k, +0.1637
o? 1.505

The value K in (5.2) was set to zero, and cases of Z; <0 were excluded from the regression.
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Note that hyj) does not converge to zero for increasing j. It does however provide
reasonable values over the range of j(1 to 16) dealt with here. Incurred loss development is
ignored beyond development year 16.

The following residual plots indicate reasonable effectiveness of A,(.) in tracking variations
related to treaty year; and of A,(.) in removing heteroscedasticity.

b .
Figure D.1 Figure D.2
Standardised residuals by Standardised residuals by
treaty year development years
300 3.300
000 3.000
700 R R 2.700 R R
400 2.400
100 2.100
800 1.800
500 2 R R R 1.500 R R R R R
200 2 R R 2 1.200 2 R R R
900 R 2 R R R 0.900 R 2 R R R
600 R 3 R R 2 R R 0.600 R 2 R R R
300 R R 2 R R 2 R 0.300 3 2 R 2 R
000 R 2 R R R R R 0.000 2 2 R R 2
300 3 2 R R 2 4 R -0.300 R 2 2 2 R 2 R R R R
600 2 3 R R R R R -0.600 R R 2 R R R 2 R
900 4 3 R R R R -0.900 R R R R R 2 2 R R
200 R R 3 R -1.200 R R R R R R
500 R R -1.500 R R
800 -1.800 R
100 R -2.100 R
400 -2.400 R
700 -2.700
1978.00 1981.00 1984.00 1987.00 1990.00 1993.00 1996.0 0.00 - 3.00 6.00 9.00 12.00 15.00

Model age-to-age factors were produced for this model in accordance with (5.5). These were
chained, then applied to the 1995 incurred losses, to give the following results. Further
development of treaty years earlier than 1983 has been ignored.
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Table D.2
Incurred Losses
Treaty year to 1995 projected ultimate
$000 $000
1983 29,428 29,930
1984 168,077 174,306
1985 77,860 83,364
1986 129,629 142,355
1987 125,616 142,212
1988 180,549 212,745
1989 90,957 119,402
1990 127,232 182,878
1991 49,615 102,113
1992 55,280 157,285
1993 44,586 209,722
1994 7,750 5 122,022

The reliability of the estimates decreases with increasing treaty years.

D.2 Upper layers

D.2.1 Probability of nil incurved

The model summarised by (4.11) and (4.12) was fitted to data comprising all transitions from
zero incurred at the beginning of a development year to zero or non-zero incurred respectively
at the end of that year. Note that B, B, do not depend on layer in (4.12), and so (4.11) was
fitted for all £ = 1,2,3,4,5 simultaneously.

The results were as follows.

Table D.3
Parameter Estimate
B, 0.8236
B1 3.6529

D.2.2 Size of non-zevo incurved

The model summarised by (4.13) and (4.14) was fitted to data comprising all non-zero
incurred losses from tables such as C.1 to C.3 for layers £ = 1 to 5.
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After a small amount of experimentation, s = 3 was chosen in (4.14) and 5® = p,
independently of £. In addition, data became so sparse in the upper layers that a®, a® and a®
were assumed equal.

The resulting version of (4.13) was fitted to the data using weighted least squares with weight j 4/ (i +5)?
associated with observation A Qy(.k) to achieve rough homoscedasticity with respect to

- development year j and experience year i +j (here i=1 corresponds to treaty year 1984, the

carliest for which upper layer experience is available).

This weighting factor indicates:

. the strong increase in reliability of the model with increasing development year;
. the fact that variability of experience appears to have increased over past experience
years.

The results were as follows.

Table D.4
Parameter Estimate
a® 0.1428
a® 0.3591
a®(=a®W=4®) 0.6952
b 8.265

D.2.3 Numerical projections

The models described in Appendices D.2.1 and D.2.2 are applied to produce Tables D.5 and
D.6 respectively, applicable to Layer 3.

As indicated by (4.11) and (4.13), these results will depend on year-by-year activity in layers
0 to 2 which is not shown here.
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Table D.5
Probability of nil incurred losses in Layer 3

Treaty Projected probability of nil incurred losses to end of

year 19941 1995 1996] 1997 1998/ 1999 2000| 2001 2002| 2003| 2004| 2005| 2006| 2007
1994 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
1993| 100% 73% 47% 31% 21% 15% 12% 10% 9% 8% 7% 6% 5%
1992 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
1991 0% 0% 0% 0% 0% 0% ‘0% 0% 0% ‘0% ~ 0%
1990 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
1989 100% 95% 91% 88% 85% 82% 80% 78% 76%
1988 0% 0% 0% 0% 0% 0% 0% 0%
1987 100% 93% 87% 81% 77% 73% 70%
1986 0% 0% 0% 0% 0% 0%

1985 -100% 96%| -93%; --89% 87%
1984 0% 0% 0% 0%

Table D.6
Expected value of non-zero incurred in Layer 3
Treaty Model expected value of incurred losses (provided non-zero) to end of '
year 1994} 19985 1996] 1997] 1998| 1999 2000| 2001 2002] 2003] 2004] 2005] 2006] 2007
US$000|US$000|US$000|US$000 |US$000|US$000 |USH000 | US$000 | US$000 | US$O00 | US$000 | US$000 |USH000 |US$000

1994] 10,000| 24,864| 28,661| 31,652| 34,060 35966 37,421| 38,432 39,242 39,913] 40,486, 40,980/ 41,415 41815
1993 11,339 13,102| 15,130| 16,888; 18326/ 19,411| 20,062| 20582| 21,017| 21,393} 21,722 22,016 22,295 '
1992| 10,000| 11,264| 12,754| 13,998| 14,958 15,520| 15970| 16,347 16,671| 16,953 17,203( 17,436
1991| 7,740 8547 9.485| 10,222| 10,647| 10,990{ 11,275| 11,518 11,728| 11,913| 12,083
1990| 93,650 95674| 97,310| 98,587 99,622|100,476|101,190|101,795]|102,312| 102,766
1989| 12,986 13462| 13,815 14,096] 14,330| 14,529 14,701| 14,852 14,993

-1988| 45,000| 45.856| 46586( 47,187| 47,692| 48,123| 48,496| 48,831
1987| 6,747 7,021} 7300| 7539 7,747\ 7930, 8,100
1986) 1,810 2,025 2,236| 2421} 2586 2,740
1985| 6,717| 6892 7,054| 7,195 7,322
1984 11,625\ 11,837 12,041| 12,227

Comment is required on the bold figures in Table D.6. These are assumed values of A( ) for

1995 in those cascs wherc L; & - 0. These values are required by (4.13) for the pro;cctlon of
future values of A

These artificial values of A,.J(.3) have been obtained by averaging the values of R,.j(.3) observed for
1995 in respect of certain treaty years i .

With a couple of exceptions, the “certain™ treaty years are those preceding the entry under
consideration.

Thus, for example, that for i=1987 is taken as the average over i=1984,1986. The same

average is taken for i=1985. The average for i=1993 omits the experience of i=1990 since

itap abnormal. Itis calculated as Average (10000, 7740, 45000 X %5, 1810 X %5, 11625
where the factors of %5 reflect the change of layer limits between 1988 and 1989.

The results of Tables D.5 and D.6 are combined by means of (6.1) to produce Table D.7.
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Table D.7
Ex ed value of incurred (zero or non-zero) in Layer 3

Treaty Model expected value of incurred losses to end of
year 1994 1995| 1996] 1997| 1998 1999] 2000 2001 2002| 2003 2004 2005| 2006] 200

US$000{US$000 | US$000 | US$O00 | US$000 [ USSO00 | US$000 | USS000 | US$S000 |US$000|USS$000 [US$000 [USS000 | USS00

1994 10,000, 24,864| 28,661 31,652 34,060 35966 37,421| 38,432| 39,242| 39,913| 40,486| 40,980 41,415| 41,81
1993 6| 3503| 7988 11,679| 14,476 16446| 17,573 18439| 19,143 19,737| 20,245| 20,689 21,101
1992 10,000| 11,264| 12,754| 13,998| 14,958 15520( 15,970| 16,347| 16,671 16,953] 17,203| 17,436
1991 7,740 8547| 9,485 10,222| 10,647| 10,990| 11,275| 11,518| 11,728| 11,913| 12,083
1990 93,650| 95,674 97,310 98,587 99,622|100,476(101,190|101,795|102,312( 102,766

1989 .0 648 1,197| 1,687 2,135 2550 2934] 3,294 3,646
1988 45,000| 45,856| 46,586| 47,187| 47,692 48,123| 48,496 48,831
1987 0 491 968 1,395 1,779] 2129| 2,458
1986 1,810 2025) 2,236/ 2421| 2586 2,740
1985 0 261 524 757 972

1984 11,625{ 11,837 12,041| 12,227
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