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1 Introduction

Let {X,,n=1,2,---} and {Y,, n = 1,2, -} be two sequences of independent and identi-
cally distributed (i.i.d.) non-negative random variables. They have common distribution
functions H(z) = Pr{X; < z} and F(y) = Pr{Y: < y}, respectively, with F(0) = 0.
Define

ot =pr{ D@ <0},

where
k
Uk=u+z(Xt—Yt), k=12,
t=1

or, equivalently, the stochastic process {Ux, k = 1,2, - -} satisfies
Uk:Uk—-l+Xk_Yrk7k:1)2)”'7 (11)

with Up = u > 0. Then ¢ (u) is the ultimate ruin probability in the classical risk model
(1.1).
Let {I,, n =0,1,2,---} be another sequence of non-negative random variables. Cai

(2002a, 2002b) has considered two generalized discrete time risk processes by defining
Ue = (Up-1+ Xp)(A+Ix) = Yi, k=1,2,---, (1.2)
and
U = Upa(U+ i)+ X = Yi, k=1,2,---, (1.3)

respectively, with initial surplus Uy = u.

Mathematically, (1.2) and (1.3) are generalizations of the classical risk model (1.1).
Practically, models (1.2) and (1.3) can be used to include the effect of timing of payments
and interest on a surplus process as explained in Cai (2002a, 2002b). We study these
effects by considering ruin probabilities.

It has been shown in Cai (2002a) that (1.2) implies

Uk=uf1(1+1j)+fj ((X,.(1+I,-)~Y,-) f[ (1+It)), k=12,  (14)

j=1 t=j+1




while (1.3) is equivalent to

Uk=uﬁ(1+lj)+i ((X,- -Y;) ﬁ (1+It)) , k=1,2,--+, (1.5)
j=1 j=1 t=j+1
where throughout this paper we denote Hf,’:a z; = 1 and Zi’:a x;=0if a > b.

The effect of interest on ruin probabilities has been discussed by various authors.
Sundt and Teugels (1995, 1997) have studied the effect of a constant rate of interest on
the ruin probability in the compound Poisson risk model. Yang (1998) has considered a
special case of (1.5) when {I,, n = 0,1,2,---} are identical constants. Cai (2002a) has
discussed i.i.d. rates of interest. However, the assumption of constant or i.i.d. rates is not
particularly realistic since rates of interest are usually statistically dependent over time.
Cai (2002b) has considered a dependent model for rates of interest, in which the rates are
assumed to have an AR(1) structure.

In this paper we consider another dependent model for {I,,, n =0,1,2,---}, in which
{I, n = 0,1,2,---} are assumed to follow a Markov chain. We assume that for all
n = 0,1,2,---, I, takes a finite or countable number of possible values. This set of
possible values is denoted by {io, 1,92, --}. Suppose that for all n = 0,1,2,---, and all

states is; it;’ito)itl) e 7itn_11

Pr{In+1 =14 I I, = is:-[n-—l = itn_l, tee 7II = itnIO = 2.to}
= Pr{In—l—l = 1 l I, = is} =pst = 0, 5t=0,1,2,---, (16)

where 3%,y = 1, for s =0,1,2,---.

Equation (1.6) means that {I,, n =0,1,2,---} constitute a Markov chain and satisfy
the Markov property, i.e. the conditional distribution of any future state I, given the
past states Iy, I1, I, -+, I,_; and the present state I,, is independent of the past states
and depends only on the present state.

This Markov chain interest model was introduced by Norberg (1997). For a continuous-
time Markov chain interest model, see Norberg (1995). Further, {Y,,n = 1,2,---},
{Xn,n=1,2,---}, and {I,, n=0,1,2,---} are assumed to be independent.

We define the finite time and ultimate ruin probabilities in model (1.4) with the interest
model (1.6), initial surplus u, and a given I = i,, respectively, by

baluis) = Pr{O(Uk <0)| I =is}

k=1




= PI{O (uﬁ(1+Ij)+Zk:(Xj(1+Ij)~Yj) ﬁ (1+It)<0) |Io=’i3}

k=1 t=j+1

and

bluyiy) = Pr{G(Uk <0)| I = z}

k=1

= Pr{[j (uﬁ(1+1j)+i(xj(1+1,—)—yj) ﬁ (1~+It)<0> IIOrzis}.

k=1 \ j=1 j=1 t=j+1

Similarly, we define the finite time and ultimate ruin probabilities in model (1.5) with the

interest model (1.6), initial surplus u, and a given I = s, respectively, by

paluyia) = Pr{{J(Uc <0) | Io =iy}

k=1
_ P{U (ufll(1+1j>+§;(xj—n)tﬁl<1+1t><0) |10=is},
and — } ) i
o(u,i5) = Pr {k©1(Uk <0)|Iy= is}
- Pr{kq (uﬁ(1+1j)+i(xj —}fj)tf1+1(1+1t) <o) | 10=z'5}.
Thus, — ) ) i

Jim ¢n(u,is) = ¢(u,1,) and  lim on(u,is) = @(u,is). (1.7)

Like in the cases of constant, i.i.d., and AR(1) interest rates, it is intuitive (and

straightforward to prove) that !

d(u,is) < p(u,is) < Y(u), u>0, (1.8)

which states that the ruin probability (u) in the classical risk model is reduced by adding
interest income to the surplus. Also, (1.8) shows the effects of the timing of payments on
the ruin probabilities ¢(u,1s) and ¢(u,is).

It is very difficult to obtain exact expressions for ¢(u,is) and ¢(u,is). An analytic

analysis commonly used in ruin theory is to derive inequalities for ruin probabilities.
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For the ruin probability in the classical risk model, we have the well-known Lundberg
inequality which states that if £(X;) > FE(Y1) and there is a unique constant R > 0
satisfying

E e R0-] =1, (1.9)
then
Y(u) < e u>0.
Thus, any useful upper bounds for ¢(u, ;) and ¢(u,is), say
$(u,is) < Alw,i) and @(u,is) < Au,is), u >0,
should satisfy
Alu,is) < Alu,is) < e u>0. (1.10)

In this paper, we derive probability inequalities for ¢(u,is) and ¢(u,is), which both
generalize Lundberg’s upper bound and satisfy (1.10). In Section 2, we first give recursive
equations for ¢,(u,is) and @,(u,is) and integral equations for ¢(u,is) and p(u,is). We
then derive probability inequalities for ¢(u,s) and ¢(u,is) in Section 3 by an inductive
approach. In Section 4, we obtain different probability inequalities for ¢(u, is) and p(u, is)
by a martingale approach. The relationships between Lundberg’s inequality and the
inequalities derived in this paper are also discussed. Finally, a numerical example is given

to illustrate these results in Section 5.

2 Recursive and integral equations for ruin probabil-
ities

Throughout this paper, we denote the tail of a distribution function B by B(z) = 1—B(z).

We first give a recursive equation for ¢,(u,s) and an integral equation for ¢(u, is).

Lemma 2.1 Forn=1,2,---

sy, is) = Zpst / F(u +2)(1 +iy)) dH (z)
+ ;)pst/o /O(u+13)(1+‘it) On((u+2)(1 +14) — y, i) dF(y)dH(z)

)



and
Bu, i) = ﬁ_’f [T E (ot 2) 1+ i) dH ()

e S [T w0480 -y, i) aP@an(e)
Proof. Given Y7 =y, X; = z, and I; = 4, from (1.4), we have
Oh=@w+X)(1+hL)-Yi=(u+z)(1+4)—y=h—y,
where h = (u+ z)(1 +4;). Thus, if y > h, then
Pr{U, <0|Y1=y,Xi =2, =4, =15} =1,

which implies that for y > h,

n+1
PI‘{U(Uk<O) l Yl =y,X1 =a:,I1=it,Io=is} = 1,

k=1
while if 0 < y < h, then

Pr{U; <01 =y, Xi=2,1 =i;,Ip =15} =0. (2.1)

Let {Y,,n =1,2,---},{Xn,n = 1,2,---}, and {I,, n = 0,1,2,---} be independent
copies of {Yp,n = 1,2,---},{X,,n = 1,2,---}, and {[,, n = 0,1,2,---}, respectively.
Thus, (2.1) and (1.4) imply that for 0 < y < h,

n+1
Pr{U(U;c <0 |YT=y,Xi=z1 =141 =is}
k=1
n+1

= PI‘{U(Uk<0) I Y=y Xi=z1 =’it,10=is}
k=2

= Pr {nol ((h y) H(1+I)+Z(X (14 1I;)-Y)) H 1+It)<0> |Il':it}

k=2 j=2 =2 t=35+1
n k

- Pr {U ((h y)II<1+fj>+i<X,-<1+fj>-m I (1+z}><osfo=it)}

k=1 j=1 j=1 t=j+1
= Pu(h—y, %) = Gu((u+2)(1+1i) —y, i),

where the second equality follows from the Markov property of {I,,n = 0,1,2,---} and
the independence of {X,,n =1,2,---}, {Y,,n=1,2,---}, and {I,,n =0,1,2,---}.
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Therefore, by conditioning on Y3, X;, and I, we get

+

n+1
¢n+1(u,is) = Pr { U (Uk < O) I Io = is}
k=
n:-l
Zpst/ / Pr {U(Uk <0) | i=y,Xi=2,L =il = zs}dF(y)dH(-’E)
t= 0
;pﬂ /O Au+w)(1+it) dF(y)dH(.’II)
e oo plutx)(1+i)
S [T bl o)1+ ~ v, i0dF@)iH()

S pa [ Pl(ut )1 +i0)dH (z)

t;pst /0 /0 ) (ut ) (1 +i0) — g, i0)dF(y)dH (@), (2.2)

which also yields the integral equation for ¢(u,is) in Lemma 2.1 by letting n — oo in

(2.2) using the Lebesgue dominated convergence theorem and (1.7). O

We now give a recursive equation for ¢, (u,,;) and an integral equation for ¢(u, ;).

Lemma 2.2 Forn=1,2,---,

and

Pria(u, i) = z,pst | P +i)+2) ai (@)

+ S py / / W+ i) + 7 — g, i) dF(y)dH(z)

t=0

o(u, is) Zpst/oooﬁ’ (1+414) + z) dH (z)
=0

t

>, oo pu(l4ig)+z
+ 3 pa /O [ o(u(l +i) +a —y, i) dF(y)dH (z).
t=0

Proof. In this case,




By similar arguments to those in the proof of Lemma 2.1 and by conditioning on Y3, Xj,
and I, we get

a1, g) = Pr {nOI(Uk <0) | fo= zs}
~ pst/ / Pr {nﬂ U <0) | Vi=y, Xi= 2,11 =iy, Ip = z} dF (y)dH (z)
- Z pa [ ( [ F @+ [T w4 b2 =y, i) dF(y)) dH (x)
_ Z D / ( u(l+i) + o) + [ (L4 i)+ 7 — g, o) dF(y)) dH (),

which also gives the integral equation for ¢(u,is) in Lemma 2.2 by letting n — co. O

3 Probability inequalities by an inductive approach

Using the recursive equations for ¢,(u, is) and p,(u, is), we can derive probability in-
equalities for ¢(u, is) and ¢(u, is) by an inductive approach. We first define a generalized
adjustment coefficient with the interest model (1.6) and discuss its relationship with the

classical adjustment coefficient R given by (1.9).

Proposition 3.1 Let F(X;) > E(Y;). Suppose that there exists R > 0 in (1.9) and
7s > 0 satisfying

E(eTSYI) E(e—fsxl(l‘Hl) |Ip=1s)=1, s=0,1,2,---. (3.1)
Then,
R, = ogigloo{TS} > R (3:2)

and for all s =0,1,2,-
E(efi) E(e” X0+ ) | [ = 4,) < 1. (3.3)
Proof. For any s =0,1,2,---, by considering the following functions
fo(r) = E(e™)E(e ™0+ | [y = 4,) — 1 = E(erM=X 0+ | [) = 4.) — 1
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and
g(r) = B(e~*) —1, (3.4)
we have,

f1r) = E((%i = Xa(1+ )2 =50 [g = 5,) > 0

— )

which implies that fs(r) is a convex function with f,(0) =0 and
fl0O)=EY1 - Xi(1+ L) |lh=1i5) < EMV—X1|Io=1,) = E(Y1 - X1) <0.

Similarly, g(r) is a convex function with g(0) = 0 and ¢'(0) = E(Y; — X1) < 0. Therefore,
7, and R are the unique positive roots of the equations f(r) = 0 and g(r) = 0 respectively
on (0,00). Furthermore, if 7 > 0 and g(r) > 0, then r > R; if 0 < 7 < 7, then f,(7) < 0.

However,
1= E(eTS(Yl—X1(1+Il)) | Iy = is) < E(eTs(Yl'—Xl) |Io — is) — E(eTs(Yl‘Xl)),

i.e. g(r;) > 0, which implies that 7, > R and R; = ming<s<oo 7s > R, i.e. (3.2) holds.
In addition, for all s =0,1,2,--+, R; = ming<t<oo 7t < 75, Which implies that fi(R;) <0,
i.e. (3.3) holds. a

We now obtain a probability inequality for ¢(u, is) by an inductive approach.
Theorem 3.1 Under the conditions of Proposition 3.1, for all s =0,1,2,---,
$(u, i) < Gy B(eM) B(em MU [y = 4y), u >0 (3.5)

where

fr1 — ingde C A W)

t>0 eRI‘F’(t) (3.6)

Proof. For any z > 0, we have

Fle) = (u@) e [ eap(y)

eRiz P(z)
< e [T eRvap(y) (3.7)
< Be R glefah), (3.8)

9




Then, for any v > 0 and any 5 > 0,
di(u, is) = Pr{Yi > (u+ X))+ 1) | Iy =15}
= g)pst [)OO F((u+2)(1 +14,))dH(z),
which, together with z replaced by (u + z)(1 + 4;) in (3.8), implies that
d1(u, is) < gpst (ﬁl B [* e‘R“"”"‘*“)dH(w))
< 8 E(eRlYI)ipst /O°° e~ R+ g 7 ()
- 38 E(CRIYI);ze—m(wxl)(uh) | To = 4,).
Under an inductive hypothesis, we assume for any u > 0 and any i, > 0,
On(u, i) < By E(efh) E(e X040 | ) = 4), (3.9)

Thus, for 0 < y < (u + z)(1 + ), with u and i replaced by (u + z)(1 + i) — y and 3
respectively in (3.9), I; > 0, and (3.3), we have

On((u+2)(1+14) —y, i)
By E(efr) B (e~ Pallwta)(+i)-v+X0)(A+0) | 1) — 4,)

IA

I

By B(eR1) E(e~Ra(@4)14i-n) (i) =R Xa (D) | [0 — )

VAN

8 E(eRm) E(e—R1X1(1+Il) | Io = 4;) e~ Ba((uta)(1+ic)~y)

7AN

B, e~ Fallwta)(1+i)-y), (3.10)
Therefore, by Lemma 2.1, (3.7), and (3.10), we get

s 00 . 00
bl 1) < Sopa (B [t )

= ® _Ri(utaz)(144r) /
+ ;pst (,31 /0 e A
= Sopa(n [ et [¥ Ruap)an())
t=0 0

= B E(eRIYI)ZPst/ ) 2 (€)
t=0 /0

- ﬁlE(eRlyl)E(e'Rl(u+X1)(l+Il) | Iy = 1)

(utz)(1+4t)

eFVdF (y)dH (x))

10



Hence, for any n = 1,2,---, (3.9) holds. Therefore, (3.5) follows by letting n — oo in

(3.9).

Similarly, we can obtain the following probability inequality for ¢(u, is).

Theorem 3.2 Let R > 0 be the constant satisfying (1.9). Then,
o(u, i) < BE(e B+ | [h=4,), u>0

where

IB—'I =i ftoo eRde(y)
>0  eRtF(t)

Proof. Similarly to (3.7) and (3.8), we have for any z > 0,

F(z)

VAN

ge~t [~ eRvap(y)
< Be f B(efN),

Then, for any v > 0 and any i; > 0,
| o1(u, i) = Pr{¥1>u(l+5N)+ X [Io =i}
= gpst [)oo F(u(1+14,) + 2)dH(z),
which implies by (3.14) that
o1(u, i) < ti_o:op“ (ﬁ B(e™) /0°° e—R(u(1+i¢)+z)dH(x))

— ,BE(GRYI) zpst Aw e-—R(u(]+it)+x)dH(x)
t=0

- ﬂE(eRYl) E(e—R(u(1+Il)+X1) | Ip = 1,)

— ﬁE(eRYl)E(e—RXl) E(e—Ru(l+Il) I Iy = is)

= BE(e 0+ [, = 4,).

Under an inductive hypothesis, we assume for any « > 0 and any ¢5 > 0,
Only, i) < BE(e |1 =4,).

11
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Thus, for 0 < y < u(l + 4;) + z, with v and ¢, replaced by u(1 + 4;) + z — y and 4,
respectively in (3.15), and I; > 0, we have
on(u(l+i) +z—y, i) < ﬁE(e~R(u(1+z’:)+z—y)(1+h) | Io = )
< ﬂe—R(u(l+iz)+:c—y)‘ (316)

Therefore, by Lemma 2.2, (3.13), and (3.16), we get

oo oo . IeS)
Cni1(u, i) < D pa <ﬂ / e~ Ru+i)+a) e™dF (y)dH (33))
=0 0 u(l+4¢)+z

[o.¢]

oo pu(l+ig)+z .
T A )
t=0

o0 00 X 00
= 3 pu (ﬂ /0 e~ Rlu(l+i)+2) /0 eRde(y)dH(x))
t=0

— ,BE(CRYI) Zpst /0°° e__R(u(l+it)+:L‘)dH($)
t=0

— IBE(eRYl)E(e—RXl)E(e—-Ru(l-{-h) l Iy = is)

— ﬁE(e——Ru(l‘FIl) IIO — Zs) .

Hence, for any n = 1,2,---, (3.15) holds. Therefore, (3.11) follows by letting n — oo in
(3.15). |

Refinements of the upper bounds in Theorems 3.1 and 3.2 can be obtained when F' is
new worse than used in convex ordering (NWUC). A lifetime distribution B is said to be
NWUC if for all z > 0, y > 0,

/:, B(t)dt > B(z) /yoo B(t)dt.

+y
The class of NWUC distributions is larger than the class of decreasing failure rate distri-

butions. See Shaked and Shanthikumar (1994) for properties of NWUC and other classes

of lifetime distributions.

Corollary 3.1 Under the conditions of Theorems 3.1 and 3.2, if F' is NWUC, then,
d(u, i) < E(e X0+ 10— ) u>0 (3.17)

and

ou, i) < (E(M)TE(Ee | =14,), u>0. (3.18)

12




Proof. By Proposition 6.1.1 of Willmot and Lin (2001), we know that if F' is NWUC,
then 87! = E(ef1") and 87! = E(e™). Thus (3.17) and (3.18) follow from (3.5) and
(3.11), respectively. O
We denote the upper bound in Theorem 3.1 by A(u, 1), i.e.
A(u,i,) = B E(ef)E(e~FalutX)(+0) | [0 — 4y,
and denote the upper bound in Theorem 3.2 by B(u, i), i.e.
B(u,i,) = BE(e” B+ | [ = 4,).
Proposition 3.2 For any u > 0,
Au,is) < e ™ and B(u,is) < e B,
Further, if F' is NWUC, then for any u > 0,
Alu,i,) < B(u,i,) < e B, (3.19)
Proof. First, by I; >0, (3.2), (3.3), and 0 < 8, < 1, we have for u > 0,

Alu,is) = /BIE(eRIYI)E(e"Rlu(1+Il)‘R1X1(1+Il) | Io = i)
IBIE(eRlyl)E(G_Rlu”Rlxl(l‘l‘Il) | Ip = 4,)

Igle—RluE(eRﬂﬁ)E(e~R1X1(1+11) | Ip = i)

—Ru

IA

IA

e
Then, 0 < 8 < 1 implies that for u > 0,
B(u,i;) = Be ®E(e®hv| [y =1i,) < e f

Further, by (3.2) we have that for any ¢ > 0,

i eRlde(y) _ L eRl(yﬁt)dF(y) > e eR(y_t)dF(y)
ethF(t) N F(t) - F(t) ’

which, using (3.6) and (3.12), implies that

Bt>p1 or B <P

13




Thus, if F'is NWUC, by Corollary 3.1, (3.2), and (1.9), we have for u > 0,

A(u, i) E(e”faXi(+h)g=Ru(+h) | 1) — 4.)

IA

E(e~BX1(1+1) o~ Ru(1+1) | Iy = is)

(

E(e-RXl)E(e—R’u(l-!-h) IIO — zs)

(E( RY; ))olE(e~Ru(l+11) | Iy= is)
(

= B(u,is).

IA

I

Hence, (3.19) holds. O

Proposition 3.2 means that the upper bounds in Theorem 3.1 and 3.2 are less than
the Lundberg upper bound while the upper bound in Theorem 3.1 for ¢(u, i) is less than
the upper bound in Theorem 3.2 for ¢(u, ;) if F' is NWUC.

We remark that although our results apply when I,, takes a countable number of values,
in practice we would apply a model under which I, takes a finite number of values. This
practice allows calculation of the constants {7} and hence R;. The same comment applies
to the constants Ry and R3; which are defined in the next section.

Further, if I, = 0 for all s = 0,1,2,---, then Ry = 7, = R and 3; = 3. Thus, the
upper bounds in Theorems 3.1 and 3.2 reduce to Be~f*, which yields an improvement on
the Lundberg upper bound since 0 < # < 1. For further refinements of the Lundberg
inequality in different applied probability models, see Grandell (1991), Willmot et al
(2001), Willmot and Lin (2001), and references therein.

4 Probability inequalities by the martingale approach

Another tool for deriving probability inequalities for ruin probabilities is the martingale
approach. The ruin probability associated with either the risk process given by (1.4)
or by (1.5) is equal to the ruin probability associated with its discounted risk process
{(Va,mn=1,2,---}, ie. '

{L:J (Up < 0) 'IO_zs} = pr{

n

(V;c<0)']0=’is},

k=1

14




where

k

Vi = UkH(l-l-Ij)_l, k=1,2,---.

j=1
In the classical risk model, {¢"#» n = 1,2, .-} is a martingale. However, for the general-
ized risk processes (1.4) and (1.5), there is no constant r > 0 such that
{e7U» n = 1,2,---} is a martingale. However, there exists a constant » > 0 such
that {e™™»,n = 1,2,.--} is a supermartingale, which allows us to derive probability
inequalities by the optional stopping theorem. Such a constant is defined in the following
proposition.

Proposition 4.1 Let E(X;) > E(Y;). Suppose that there exists R > 0 satisfying (1.9)
and there exists ks > 0 satisfying

E(e s+ ™ | [ i) =1, §=0,1,2,--. (4.1)
Then,
Ry = ogl<noo{’£6} > R (4.2)

and for all s =0,1,2,---,
E(emBa-N0+0)™) | [ gy < 1. (4.3)
Proof. Similarly to Proposition 3.1, for any s = 0,1,2,- -, we know that
ho(r) = BE(erMO+HT =X [o— gy (4.4)
is a convex function with hs(0) = 0 and
h(0) = EMi(L+ L) = X | I =4,) < BV~ X1 | Io =14s) = E(Y1 — X1) < 0.

Therefore, ks is the unique positive root of the equation hs(r) = 0 on (0, 00). Further, if
0 < k < Ks, then hy(k) < 0. However, '

1 = BE(emMUHT=X) | — i) < B(emMX) | [j=4,) = B(e~MX),

or g(ks) > 0, where g(r) is defined in (3.4). Hence, ks > R and Ry = minp<s<co ks > R,
i.e. (4.2) holds. In addition, for all s =0,1,2, -, Ry = ming<scco Kt < Ks, Which implies
that hs(R2) <0, i.e. (4.3) holds. 0
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Theorem 4.1 Under the conditions of Proposition 4.1, for all s =0,1,2,---,
b(u,is) < e u>0. (4.5)

Proof. For the process {Ux} given by (1.4), we denote

Vk-—UkH(1+I)’ - +Z((X(1+1 f]1+1t ) (4.6)

and S, = e~ F2V» Then

Spi1 =S, e~ R2(Xnt1=Yay1(1+Ine) ) [T, A+T)

Thus, for any n > 1,

E(Sn+l IX17° ot 7-Xn7Y'17' o 7Yn7-[1,' o 7In)
Sn EJ(G—RQ(X'HJ_Yn+1(H-I"-H)_l)I—[?:l(l-lklt)-1 | Xl’ Tt aXna Y;l: Tt 7Yn7 Il> Tty In)
S, E’(e—RZ(Xn+1"Yn+1(1+In+1)—1)n:=1(1+1t)_1 | I, I,)

I

Sy (E(e™FeXnt1=Ynpa(1+Ins1) ™) | I,- - ’]n))HLl(Hh)“l
Shs

IA

where the inequality follows from 0 < [T, (1 + L)™' < 1 and Jensen’s inequality while

the last equality follows from

E(e—Rz(Xn+1-—Yn+1(1+In+1)“1) | L, ,I,) = E(e—Rz(Xn+1—Yn+1(1+1n+1)") | I,)

_ E(e—Rg(Xl—Y1(1+Il)_1)|IO) < 1.

Hence, {S,, n = 1,2,---} is a supermartingale with respect to the filtration
Fn=o0{Xy, -, X, Yy, Yo I, - I}

Let Ty, = min{n : V,, < 0| Iy = is}, where V, is given by (4.6). Then T is a stopping
time and n A T = min(n,T;) is a finite stopping time. Thus, by the optional stopping

theorem for supermartingales, we get

E(Surr,) < E(So) = e e,
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Hence,

e—-Rzu

v

E(Snuat,) 2 E(Snar,I(Ts < n))
E(S7,I(T,; < n))

E(e~Vr [(T, < n))

> E(I(T; <n))

Pr{T; <n} = ¢n(u,is),

Il

f

where (4.7) follows from Vr, < 0 and (4.8) follows from

n

(4.7)
(4.8)

bn(u,is) = Pr{U(U,c <0)| Iy = z} = }‘)r{kL:)l(v,c <0)| I = z} = Pr{T, < n}.

k=1

Thus, (4.5) follows by letting n — oo in (4.8).

O

Proposition 4.2 Let E(X;) > E(Y1). Suppose that there exists R > 0 satisfying (1.9)

and there exists p; > 0 satisfying
E(e -0+ [ = 4) =1, 5=0,1,2,---.

Then,

and for all s =0,1,2,---,
B(emBa-MA+h)™) 1 1o = 4) < 1.
Proof. For any s =0,1,2,---, we know that
Is(r) = E(er®=X0H™  1p =) 1
is a convex function with /;(0) = 0 and

L) = E(Y,—X)A+ L) =1,)
= E(Y1—X;|Ih=i)E(Q+ L) Iy =1,)
= EV - X)E((1+ L) Ih=1s) <0.
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Therefore, p; is the unique positive root of the equation I;(r) = 0 on (0, 00). Further, if
0 < p < ps, then I5(p) < 0. However,

1 = E(er0M= 0T [ =4) > E(erMOHT =X | [ = 4,),

or hs(ps) < 0, which implies that ps < ks, where hs(r) and «, are given by (4.4) and

(4.1), respectively. Therefore,

Rz = min < mln ks = Ry,
3 0<s<oop8 - 0L 8 2

Further, by Jensen’s inequality and (1.9), we have

oo
B(efmX0HT [ = 4) = 37 pu (et X007
t 0

M

< S pa(E (RN X))+ Zpst = 1,

t=0

which implies that [;(R) < 0. Hence R < p, and R3 = minp<s<co ps > R. Thus, (4.10)
holds. In addition, for all s = 0,1,2,---, R3 = ming<tcco pt < ps, Which implies that
ls(R3) <0, ie. (4.11) holds. O

t

I
)

Theorem 4.2 Under the conditions of Proposition 4.2, for all s =0,1,2,- -,
o(u,is) < e u>0. (4.12)

Proof. For the process {Ux} given by (1.5), we denote

Ve U [0+ 1) = ut 5 ((Xj “vpIIa+ m*) (4.13)

and S, = e~ f3Y»_ Then

Spi1 = Sy e‘“Rs(Xn+1~Yn+1)H"+1(1+I:)'

Thus, for any n > 1,

E(Sn+1|X17'"7Xn7Y11"'aYnaI17"'>I’n)
S, Ee ~Ra(Xnt1~Yai1) [ 11 (1410)~1 | X1, X, Ya, -, Yo, Ihy oo, 1)

It

= SpE(e ~R3(Xn41=Yn41)(A4+Tny1) 7 [T (4 1) 2 | Iy,---, I,)
< Sy (B(emXmnYar)Ot )™ ,jn))l_[tzl(wh)‘1
< Sy,
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which implies that {S,, n = 1,2, -} is a supermartingale. Let 75y = min{n : V, < 0|y =
is} where V,, is given by (4.13). Then T is a stopping time and n A Ts = min(n,T}) is a
finite stopping time. Thus, (4.12) follows from the same arguments as those for (4.5). O

It is clear that the upper bounds derived by the martingale approach satisfy (1.10),

ie.

e«Rzu < e—Rau < e-—Ru

-— -— )

u>0

since (4.10) holds. In addition, if for all s =0,1,2,---,I, = 0, then Ry = R3 = R and the
upper bounds in Theorems 4.1 and 4.2 reduce to Lundberg’s upper bound.

It seems that the inequalities in Section 3 cannot be derived by the martingale ap-
proach. In addition, like the case of i.i.d. rates of interest discussed by Cai (2002a),
the numerical results of Section 5 suggest that upper bounds derived by the inductive
approach of Section 3 are tighter than those obtained by the martingale approach of this

section.

5 Numerical illustration

In this section we give a numerical example to illustrate the bounds derived in Sections
3 and 4. Without loss of generality we can work in monetary units equal to E(Y}). Let
Y; have a gamma distribution with each parameter equal to 1/2, so that F(Y;) = 1 and
V(Y1) = 2. Let Pr(X; = 1.1) = 1 so that there is deterministic premium income with a
loading of 10%. Consider an interest model with three possible interest rates: iy = 6%,
i1 = 8% and iz = 10%. Let P = {ps} be given by

02 08 O
P=1 015 07 0.15
0 08 02

Thus, our interest rate model incorporates mean reversion to a level of 8%.

We can easily find that the constant R which satisfies (1.9) is R = 0.08807. Similarly,
we find that R; = 0.14665 by solving equation (3.1) for 79, 7 and 79, where, for example,
the equation satisfied by 7 is

0.15e7 1197 4 0.7¢™ 11887 4 0.15¢™ 121 = (1 - 27) /2.
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As our gamma distribution is DFR and hence NWUC, we can apply the results of Corol-

lary 3.1 with, for example,
¢(’U,,’l:1) < 0.156—1.O6R1(u+1.1) + 0.76—1.08R1(u+1.1) + 0'156—1.1R1(u+1.1)'

Table 1 shows values of ¢(u,4;), ¢(u,i;) and e~ for a range of values of u. We note
that the upper bounds are ordered in accordance with Proposition 3.2.
Similarly, we can find from equations (4.1) and (4.9) that R, = 0.15773 and R3 =

0.09475, where, for example, we find «, as the solution of
e 1151 (0.15My (k1/1.06) + 0.7My (k1/1.08) + 0.15My (k1 /1.1)) = 1

where My (t) = (1 — 2t)~1/2. Table 2 shows values of e~ 2% e~Hs* and e~F* for a range of

values of u. The ordering of these bounds is as expected, and we note that ¢(u,i;) < e Rz

—R3u

and p(u,i1) <e in line with our comments in Section 4.
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Table 1: Upper bounds by the inductive approach

¢(U,7;1) QO(U,il) e~ R

0.8401 | 0.9077 | 1.0000
5 | 0.3806 | 0.5642 | 0.6438
10| 0.1724 | 0.3507 | 0.4145
15| 0.0781 | 0.2180 | 0.2669
20| 0.0354 | 0.1355 | 0.1718
25| 0.0160 | 0.0842 | 0.1106
30| 0.0073 | 0.0523 | 0.0712

Table 2: Upper bounds by the martingale approach

e—Rzu e—Rgu e-—Ru

0 | 1.0000 | 1.0000 | 1.0000
5 | 0.4545 | 0.6227 | 0.6438
10 | 0.2065 | 0.3877 | 0.4145
15| 0.0939 | 0.2414 | 0.2669
20 | 0.0427 | 0.1503 | 0.1718
251 0.0194 | 0.0936 | 0.1106
30 | 0.0088 | 0.0583 | 0.0712
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