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A Note on the Maximum Severity of Ruin
and Related Problems

David C M Dickson

Abstract

Picard (1994) defines the maximum severity of ruin, M}, to be the
largest deficit of a classical surplus process, starting from initial sur-
plus u, between the time of ruin and the time iof recovery to surplus
level 0. He gives a simple expression for the d,:istribution'function of
M, in terms of the probability of ultimate ruin. This paﬁ;er first ad-
dresses the question of calculating the moments of M,,. It i§| not easy to
achieve explicit expressions for these despite kxfowing the distribution
function of M,,. We consider situations where e§cplicit expressions can
be obtained, as well as approximations. We also consider the closely
related question of the maximum surplus prior to ruin.

1 Introduction

We consider the classical surplus process {U(t)}:>o defined as

N(t)
Ut)=u+ct— > X;

i=1

where u is the insurer’s initial surplus, ¢ is the rate of premium income
per unit time, N(t) is the number of claims up to time £, and X; is the
amount of the ith claim. {N(t)},o is a Poisson process, whose parameter
we will always set to 1. {X;}{2, is a sequence of i.i.d. random variables,
independent of {N(t)}:>0. We denote by p; the kth mornent of X;, and
without loss of generality we set y; = 1. Let F and f denote| the distribution
function and density function respectively of X;, with F(0) ~0. Finally, we
write ¢ = 1 + 6, where § > 0 is the premium loading facto}. We define the
distribution function Fj by

Fe) = ["(1-F(y)dy




for z > 0, with density function f;.

When the moment generating function of X; exists, the adjustment coef-

ficient, denoted R, is the unique positive number such that

14+ (14+60)R = FElexp{RX:}].

We say that ruin occurs if the surplus falls below 0, and we define the
time of ruin, T, as

T— inf(t: U(t) < 0)
"] ccifU(t) >0 forallt > 0.

The probability of ultimate ruin from initial surplus « is denoted () and

defined as ¥(u) = Pr(T < oo), with 6(u) = 1 — (u).

Given that ruin occurs, we define T” to be the time of the first upcrossing

of the surplus process through 0 after time 7. For finite j", Picard (1994)
defines

M, = sup{|U(H], T <t <T'}

where the subscript © denotes initial surplus. Let
Ju(z) =Pr(M, < 2lU(0) =u and T < co).
Picard shows that for z > 0

_ ) —plu+2)
P(u)(1 - 9(2))
Thus, if we know the function v, we know J,. Picard a.lso' shows that the

probability that the maximum deficit occurs at ruin, given that ruin occurs,
is given by

Ju(z)

(1.1)

/Oooé(u,y)g%dy (1.2)

where § is the density of the deficit at ruin, given that ruin occurs. We note
that §(0,y) = fi(y) (see, for example, Bowers et al (1998)).

In this paper we consider the moments of M, Througl}out we consider
only the first two moments, but the ideas generalise to higher moments. In
Section 2 we look at two cases when explicit expréssions for the moments of
M, can be found, and we illustrate approximations based on tilese expressions
in Section 3. The related problem of the maximum surplus prior to ruin is
discussed in Section 4, and the question of whether the maximum surplus
prior to ruin occurs immediately prior to ruin is the topic of Section 5




2 Explicit solutions

i

To find explicit formulae for the moments of M, We need an expllclt solution
for 1. We will illustrate two situations in which We can find expressions for
the moments of M,,. These expressions are based Qn two types of formula for

0.

2.1 Case (i) ‘
Let us suppose that F(z) = 1 — exp{—z}, > 0, 50 that
$(u) = Rexp{~Ru}, (2.1)

where R =6/(1+8) and R = 1 — R. See, for example BoWers et al (1998).
Then !

1—e Rz ‘
(@) = T pem |
R

=0

= Y w;(1-e®7)
R

where w; = RRI™!, so that ¥32, w; = 1. Thus, the dlstrlbutlon of M, is an
infinite mixture of exponentlal distributions. This representatlon allows us
to write down expressions for all the moments of M In partlcular the first
two moments of M, are |

E(M,) = (1 + 6)log(1 + 9“)

and 21+ 0)2 (1405

2 ;
(as given in Dickson and Egidio dos Reis (1997) ) Thus, the moments of
M, depend only on the loading factor §. They a.re independent of u since
the distribution of the deficit at ruin is 1ndependeht of u - see, for example,
Bowers et al (1998). Even in this case - the most straightforward one - we
need to calculate the second moment via an 1nﬁn1‘te series. Table 2.1 shows
values of the mean and standard deviation of M, for dlﬂ'eren{: values of 6. As
we would expect, these quantities decrease as 0 i mcreases




0 [E(M,)]sd(M,)]
0.05| 3.197 7.324
0.1 | 2638 | 5.007 :
0.15| 2.342 4.015
0.2 | 2.150 3.443
0.25 | 2.012 3.064
0.3 1.906 2.792

Table 2.1: Values of E(M,) and s.d.(M,) - exponent,

2.2 Case (ii)
Now suppose that the ruin probability is of the form

Y(u) = ae™® 4 be T,

ial claims

where R,T > 0 and a and b are constants such that a +
a form arises if the individual claim amount distribution
distribution or a mixture of two exponential distributions.
can find expressions for the first two moments of M, from

b = 1(0). Such
'is an Erlang(2)
In this case we

i
!

E(M,) = /0 “(1 = Ju(2))dz (2.2)
and oo
' E(M?) =2 /0 21— Ju(2))dz. (2.3)
We can write
_ 1 (p+2)
1 - —Tz
= 7o e (aue Rz 4 be T% — w(z))

where a, = ae " /1(u), and similarly for b,. Hence

1-Ju(2) = ((au —a)e & 4 (b, — b)e‘“T") iw

r=0

and so

(2)",

E0L) = (=03 [Temuerds + b-0)3 [Ty

r=0




= -a Z/ “RZZ( )a’ "sz’_’e_("‘j)Tzdz

r=0
+(b, — b) Z/ DY (J)a’e ~iRzprie (Té_j)Tzdz
r=0
= —a) Z Z ( )a,jb"_j /oo e—((j+1)R+(r—j)T;)de
r=0 _7—0 0
b . b) Z Z ( )ajbr_J /°° e_(jR+(r—j+1)T>de
r=0j5=0 0 '

_ —a)gg()“"(ﬁnRi(r-ﬁ%

- Y ( )ajbr—ij e i P 1)T (2.4)

r=0 j=0
Similarly, we find that
E(M;) = 2(a.—a Z/ ze"Fp(2)"dz + 2(by —b)Z/ ze" T2)(2)"dz

r=0 r=0

- —azz()“—a. 1

L4 G+ DR+ (- j)Tf)?

1

2(b, — b) ZZ() brI — . (2.5)
r=0j=0 (JR+ (T -7+ I)T)

These expressions are also in terms of infinite series, but we can nevertheless

evaluate them, as terms in the summations in (2.4) and (2. 5) go to zero as r

increases, and so we can truncate the summations. |

Example 2.1 Suppose that the individual claim amount dzistmbutzon is Er-
lang(2). Table 2.2 shows values of the mean and standard dematzon of M,
for some values of u and 8. We see that for each value of 6 the mean and
standard deviation of M, decrease rapidly to the limiting vdlues as u — oo.
This is explained by the behaviour of the conditional dzstmbuizon of the sever-
ity of ruin as a function of u. (See Egidio dos Reis ( 199?) ) As in Table
2.1 we see that as 0 increases, both E(M,) and s.d.(M,,) decrease for a given
value of u. |

We note that a sufficient condition for the moments of Mu to exist is that
the adjustment coefficient exists. To see this we note that

Y) - Ylutz) | Yu+z)
PWO-9E) ~ )

5

Ju(2) =




9=01 §=02 §=03
E(M,) [ sd.(M,) | E(M,) [ s.d.(M,) | E(M,) | s.d.(M,)
2.025 | 3726 | 1.652 | 2544 | 1464 | 2.050
1.825 | 3.553 | 1484 | 2428 | 1.311 | 1.957
1.813 | 3542 | 1473 | 2420 | 1.300 | 1.950
1.813 | 3542 | 1473 | 2420 | 1.299 | 1949
1.813 | 3542 | 1473 | 2420 | 1.299 | 1.949
1.813 | 3542 | 1473 | 2420 | 1299 | 1.949

Ul lwlini—=lol e

Table 2.2: Values of E(M,) and s.d.(M,) - Erlang(2) claims

so that
¢(u + Z) < e—R(u+z)

pu) T Y(u)

1-Ju(2) <
and hence

EM]) = r/ooo 277N (1 = Ju(2)) dz
re Rv poo

E(u_)/o e Ry

e B I(r+1)

P(u) R

IA

3 Approximations

In this section we consider two approximation methods based on the results
of the previous section.

3.1 De Vylder’s Approximation

De Vylder (1978) considers the situation when the first three moments of
the individual claim amount distribution exist. His procedure involves ap-
proximating our surplus process by a classical surplus procéss with Poisson
parameter \ = 9u3 /242, individual claim amount dxstrlbutlon

F(z) = 1 — exp{—axz}

where a = 3,/ 4, and rate of premium income per unit tlme ¢ = 0+3u/2u,,
leading to the approximation: »

Pu) ~ 2 exp {~(a = Mou}

6




Then by applying the techniques of Section 2.1 it follows that we can ap-
proximate E(M,) by

¢ lo ( ac )

X 8 \az—

2~2
Aaé —

and E(M2) b

Z ()\/ac)J

3.2 Cramer’s Asymptotic Formula
Cramer’s asymptotic formula gives rise to the approximation
P(u) = Ce™ ™

where C = 0/(E[X; exp{RX;}] —1—6). See, for example, Gerber (1979). It
follows that if we use this expression for ¢, we can approximate E(M,) by

1-C

M-l
OR log(1-C)~
and E(M?2) by
21-C) & ¢t
R2 = j2 .

We note that an obvious disadvantage of these approximation procedures is
that the approximations are independent of u. However, as ‘we see from Ex-
ample 2.1, the moments can be sensitive to the value of u only over a small
range. Note that the use of Cramer’s formula as an approximation to
requires the existence of the adjustment coefficient, whereas De Vylder’s ap-
proximation does not. However, numerical illustrations in De Vylder’s paper
suggest that his approximation works best when the adJustment coeflicient
exists.

Example 3.1 Consider the same set-up as in Ezample 2.1. Table 3.1 shows
approzimations and ezact values of the mean and standard deviation of M;
for different values of 6. We observe that the approzimations are reasonable
in each case. There is little difference between the standard deviations, but
the values of the mean are understated using the Cramer approxzmatzon and
overstated using De Vylder’s. :




Exact values Approx. - De Vylder | Approx. - Cramer
E(Ms) | 5.d.(Ms) | E(Ms) I s.d.(Ms) | E(Ms) | s.d.(Ms)
0=0.1]| 1.813 3.542 1.819 3.561 1.8Q5 3.545
0=02]| 1473 2.420 1.485 2.443 1.465 2.423
=03 1.299 1.949 1.316 1.976 1.2q1 1.952

Table 3.1: Approximations to E(M;) and s.d.(Ms) - Erlang(2) claims

(6] ¢ [ R | T
0.1 |0.7734 | 0.0036 | 0.0917
0.2 | 0.6209 | 0.0059 0.1028
0.3 | 0.5147 | 0.0074 0.1126

Table 3.2: Parameters for Tijms’ approximatic}ns

3.3 Tijms’ Approximation

Tijms (1986) proposes the following approximation to :

1
o
P(u) e~™ + T30 e
where C and R are as previously defined, and T is such that the mean of
the compound geometric distribution, for which 9 gives the tail probability,
is preserved under the approximation. This approximation is exact if the
individual claim amount distribution is Erlang(2) or a mixture of two expo-

nential distributions. Using this approximation to 1, we can apply formulae
(2.4) and (2.5). ‘

Example 3.2 Let

3
F(z) =Y. ol —exp{~fiz)), >0,

i=1
with oy = 0.0039793, a; = 0.1078392, a3 = 0.8881815, B, = 0.014631,
B, = 0.190206 and B; = 5.51451. Wikstad (1971) cites this distribution as a
model for individual claims based on Swedish fire insurance data. Table 3.2
shows parameters for Tijms’ approzimations to ¢ for three different values
of 0, Table 3.3 shows some approrimations to, and exact values of, E(M,),
and Table 3.4 shows approximations to, and exact values of, the standard
deviation of M, for some values of u. |
The ezxact values were obtained by numerical integration using (2.2) and (2.3)
and explicit solutions for 1. In principle, this approach could be used in any

8




§=01 §=02 §=023

u_| Approx. | Exact | Approx. | Exact | Approx. | Exact
0 44.79 44.51 36.75 36.50 33.05 32.82
10| 85.71 86.59 71.69 72.18 65.65 65.89
20| 105.06 | 104.00 | 88.63 87.46 81.70 80.40
30| 113.55 | 112.39| 95.76 94.65 88.13 87.03
40| 117.15 | 116.33 | 98.57 97.85 90.49 89.83
50| 118.66 | 118.15( 99.66 99.24 91.33 90.98

Table 3.3: Approximate and exact values of E(M,,)

9 =01 6=02 =03

u | Approx. | Exact | Approx. | Exact | Approx. | Exact
0 117.38 { 117.50 86.87 86.99 74.80 74.93
10] 158.02 | 158.26 | 117.03 | 116.95 | 101.18 | 100.94
20| 170.57 | 169.80 | 125.70 | 125.05 | 108.35 | 107.74
30| 175.13 | 17448 | 128.50 | 128.05 [ 110.44 | 110.08
40| 176.90 | 176.50 | 129.49 | 129.24 | 111.11 | 110.93
50 | 177.62 | 177.39 | 129.85 |129.73 | 111.33 | 111.26

Table 3.4: Approximate and exact values of s.d.(Mu)

sttuation in which we have a formula or numerical values for 1. We note that
the approximations are reasonably good in both Table 3.8 and Table 3.4. We
also note that in this example, both E(M,) and s.d.(M,) vary considerably
with u, unlike in Table 2.2. This suggests that the appro:vimations of Sec-
tions 3.1 and 3.2 would not be appropriate for this mdzmdual claim amount
distribution.

4 The maximum surplus prior to ruin

Let us define N, to be the maximum value of the surplus process prior to
ruin, given that ruin occurs. For finite T we define

N, =sup{U(t), 0<t<T},

where the subscript u again denotes initial surplus.
The probability that ruin occurs from initial surplus u w1thout reaching
surplus level z > u prior to ruin is

P(u) — ¥(2)
1-9(z)

9




and the probability that the surplus process attains z without ruin occurring

x(u,2) = %EZ—;

(See Dickson and Gray (1984).) Hence, for z > u,
o and <o) =900
K.(2)=Pr(N, <z|lU(0)=u and T < o0) = P = 0(2)

Notice that when u = 0, we have Ky(z) = Jo(z), a result which can be
explained by dual events (see, for example, Dickson(1992))."

Example 4.1 Let F(z) = 1 — exp{—z}. Then using resu;lts from Section
2.1 we have

— e—R(z—w)
Ko = T
= (1 - e“R(’_")) i (Re"Rz)j .

=0

In the special case when u = 0, we have
Ko(z) = Y _w;(1 - e™%)

where w; = RRI7Y. Thus, Ko(z) = Ju(2) for all u > 0 since J,(z) is
independent of u for this claim amount distribution. -
We can find the mean of N, as

E(N,) = u+/°°(1—K 2
“R _ 00 e—Rz .
= ’u+(6u—R)/L; C‘éﬁdz

Writing
(1 — Re_RZ)*l = Z Rie iz
=0
we find that =
e™ —R 5 —Ru\"1
E(N.) = u+ —5=—log (1- Re )
Similarly,

— ReBu —Ru
E(N?) =4+ 20 ]f:; R)Z(R 1) [1+R(J+1)u]

10




8=0.1 0=02 0 =03
u | E(Ny) | s.d.(Nu) | E(N,) | s.d.(N,) | E(N,) | s.d.(N,,)
0 2.638 5.007 2.150 3.443 | 1.906 | 2.792
1 4.991 6.356 4.062 4.201 3.606 3.320
10 18.68 9.744 15.50 5.743 14.16 | 4.247
100 111.0 11.00 106.0 6.000 104.3 | 4.333
1,000 | 1,011 11.00 1,006 6.000 1,004 4.333

Table 4.1: Values of E(N,) and s.d.(N,) - exponential claims

Table 4.1 shows some values of the mean and standard deviation of N,. As
expected, the moments of N, depend on u, in contrast to the moments of M,,.
We note that for each value of 8, the mean and standard deviation of N,, — u
both tend to 1/R as u — oo. A feature of Table 4.1 is that both the mean
and standard deviation of N, decrease as 0 increases. This is intuitively
reasonable, as if ruin occurs with a large value of 6, it is likely to occur
quickly. It is also consistent with the result that E(T|T < oo) is a decreasing
function of 6 - see Gerber (1979).

The ideas from Section 2.2 can also be applied to find the moments of N,
when

We find that
1-K,(2) = (¢(u) - )X_,:W)
= @@ -y (T)a’b' e~ (RI+T(r=1)z
r=1 j=0
giving

e—(Ri+T(r—j))u
E(N.) = u+ ()™ — );JE_%( ) Y BTy

We can again calculate moments noting that terms in the above summation
become very small for large values of 7. Similarly we can calculate E(N?).
In Section 2, we showed that a sufficient condition for the moments of
M, to exist is that the adjustment coefficient exists. The same is true for
the moments of N,, when u < co. To see this, we first note that for z > u,

(1 - e'Rz) - < (1 - e‘R")_1

11




and that - () ¥()
—Y(u z
PR = ) To e

We then have
E(NT) = o 47 / Y1 = Ku(2)) dz
1 —¢(u) *° r—1 Il}(Z)

u 4+ r—= 2Tt ——dz

P(u) Ju 1- ﬁ}(:z)
r 1- ’(ﬁ(’U;) e z'r—l ~
TN

IA

1— e B az

1—(u) 1 I(r+1)

< u 4+ < 00.

Y(u) 1—eBv Rr

(4.1)

We noted in Example 4.1 that the mean and standard deviation of N, —u
both tend to 1/R as u — oo. This feature is not just restricted to the case of
exponential claims. If the adjustment coefficient exists, Cramer’s asymptotic

formula is ¥(u) ~ Ce~ R, Writing
E(N,) = u+ /°° (1= Ku(2)) dz

and using (4.1) we have

L1 o )
B =50 | Ty

Then
| 1o gh(2)
lim E(N, —u) ulinﬁ.loz/,(u)/u o)
R W 1O
U—00 ¢'(u) 1 - d)(u)
_ —p(u)
u=oo 9 (u)
= 1/R.

A similar argument shows that lim,_,., V(N, — u) = 1/R2.

5 Does the maximum surplus before ruin

occur immediately prior to ruin?

In this section we consider whether the surplus immediately prior to ruin is
the maximum surplus prior to ruin. We can approach this problem using

12




dual events. Consider the following two events. |
Event 1: ruin occurs from initial surplus 0, with a deficit of y > u > 0 at
ruin, with y being the maximum deficit before recovery to surplus level 0.
Event 2: ruin occurs from initial surplus 0 with a crossing through the surplus
level u prior to ruin, and with the maximum surplus before ruin occurring
immediately prior to ruin.

If we consider a realisation of the surplus process satisfying the conditions
of Event 1, we can construct a dual process {U*(t)} defined by

U*(t) = —U(T' —t) for0<t<T,
U*(t) = U@®) fort>T.

Then for any realisation of the surplus process satisfying the conditions of
Event 1, there is a unique realisation of the dual process whjch satisfies the
conditions of Event 2, and which has the same probability density.

Figure 1 shows a realisation of the surplus process which satisfies the
conditions of Event 1 with « = 1 and y = 1.5, and Figure 2 shows the
corresponding dual realisation.

Define ¢(u) to be the probability that ruin occurs from Imtlal surplus u,
with the maximum surplus before ruin occurring immediately prior to ruin.
Equating the probabilities of Events 1 and 2 we have

0) [ A®X(0,9)dy = x(0,w)d(w)

giving .y
o) = $(0)600) [ B8y,

We note that in the special case when u = 0, equation (5.1) yields

(5.1)

¢(0) ® 6(0)
»(0) =/ Q(O,y)@dy

consistent with expression (1.2) for the probability that the maximum deficit
occurs at ruin, given that ruin occurs.

Example 5.1 Let F(z) = 1 — exp{—z}, with ¢ given by (2.1). Then
= R(1—Re®) [T _
$w) = R(1—Re )/u — dy

Re Ay
= R (1 - Re"R“) /oo eV i (Re‘Ry)j dy
u =0

13




=01 | =02 | §=03
¢()/P(w) | o(u)/p(w) | $(w)/(u)
0.6243 | 0.6490 | 0.6709
0.3020 | 0.3374 | 0.3693
0.1326 | 0.1590 | 0.1851
0.0561 | 0.0724 | 0.0807
0.0233 | 0.0324 | 0.0427
0.0096 | 0.0144 | 0.0202

cnu;c.owp—lc:_:_‘

Table 5.1: Values of ¢(u)/1(u) - exponential claims

§=0.1 9 =02 6 =03
Lu [ %1 (w)/¥(w) | %1 (w)/9(w) [ ¥ (u)/9(u)

0] 0.5238 0.5455 0.5652
1| 02110 0.2371 0.2619
2| 0.0850 0.1030 0.1214
3| 0.0343 0.0448 0.0562
4] 0.0138 0.0195 0.0261
5| 0.0056 0.0085 0.0121

Table 5.2: Values of v, (u)/9(u) - exponential claims

Table 5.1 shows values of ¢(u)/¢(u) for some values of u and 8. We observe
from Table 5.1 that if ruin occurs, the higher the initial suml’t;l,s, the less likely
it is that the mazimum of the surplus process occurs immediately before ruin.
We can also see that as @ increases, the more likely it is that the mazimum
surplus occurs immediately before ruin for o fized value of u.

For this model, the probability of ruin at the first claim is

e—u
2+6°

o0
Yy (u) = /0 e e v 0T —

Table 5.2 shows values of ¥, (u)/¥(u) for the same values of u and 6 as in
Table 5.1. From this table we see that if the initial surplus is small and if ruin
occurs with the mazimum surplus before ruin occurring immediately prior to
ruin, then there is a high probability that ruin occurred at the first claim.

14




8=0.1 0 =0.25
U Lower | Upper | Lower | Upper
100 0.0456 | 0.0546 | 0.1437 | 0.1517
1,000 | 0.0791 | 0.0801 | 0.1897 | 0.1905
10,000 | 0.0893 | 0.0894 | 0.1986 | 0.1987
100,000 | 0.0907 | 0.0907 | 0.1998 | 0.1998

Table 5.3: Bounds for ¢(u)/¢(u)

More generally, we can find bounds for ¢. Since §(u) 5 6(y) <1 for
u < y, it follows from (5.1) that

YOB)(1 ~ Fi(w) < 6(u) < B(O)(L - Fu(w)

Thus, if we can calculate 1, we can easily calculate bounds fbr @, or for ¢ /4.
We observe that this bound should be tight for values of u whlch are large
relative to the mean individual claim amount.

Example 5.2 Suppose now that F(z) = 1—(1+z)2. Table 5.8 shows some
bounds for ¢(u)/¢(u) for a range of values of u. In calculating these values,
we have used values of ¢ given by Usdbel (2001). This tqble suggests the
following:

(i) for a given value of 8, ¢(u)/vY(u) increases with u, and
(i) for a given value of u, ¢p(u)/9(u) increases with 6. ‘

The second of these observations is in line with the ﬁndiﬁgs in Table 5.1,
but the first is not, suggesting that the behaviour of ¢(u)/1)(u) depends on
the tail behaviour of the individual claim amount distribution. The values
of u in Table 5.3 are very large, and, if ruin occurs, we would expect it to
occur when a very large claim occurs. For the values of u in Table 5.3, the
probability of ruin at the first claim is negligible. For ea:ample when u = 100
and 0 = 0.1, we have

Q+u+(1+0)r)2

so that v, (u) /¢ (u) = 5.8 x 1073, compared with ¢(u) /w(u) lying in the in-
terval from 0.0456 to 0.0546. ?

h(w) = | dr = 9.6 x 1075,

Acknowledgement I am grateful to Lianzeng Zhang for ass1stance in the
preparation of this paper.
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Figure 1: a realisation of the surplus process satisfying the conditions of Event 1

1.5 5




Figure 2: the dual realisation corresponding to Figure 1
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