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Abstract

This paper studies how much information can be revealed when agents with pri-

vate information lack commitment to actions in a given mechanism as well as to the

mechanism itself. In a two-person decision problem, agents are allowed to hold on

to an outcome in one mechanism while they play another mechanism and learn new

information. Formally, decision rule is maximally informative if it is (i) posterior im-

plementable and (ii) robust to a posterior proposal of another posterior implementable

decision rule. Focusing on a two-person problem, we identify environments where max-

imally informative decision rules exist. We also show that a maximally informative

decision rule must be implemented by a mechanism with a small number of actions (at

most 5 for two agents). The result indicates that lack of commitment to a mechanism

significantly reduces the amount of information revelation in equilibrium.

Keywords: Information aggregation, Limited commitment, Posterior effi ciency,

Posterior implementation, Renegotiation-proofness.
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1 Introduction

To make collective decisions using information privately held by individuals, information

must be voluntarily revealed. How much information will be revealed if individuals behave

strategically? A simple answer, known as the Revelation Principle, is “If the decisions are

achieved in a Bayes-Nash equilibrium, all information can be revealed”. Behind this claim,

however, two kinds of commitment are assumed: (i) agents commit to their actions, and (ii)

agents commit to a mechanism. Without these two assumptions, there are few known results

about how much information can be revealed. Green and Laffont (1987) relaxed the first

assumption by proposing the notion of posterior implementation. Posterior implementation

is stronger than Bayesian implementation, because agents’strategies must remain optimal

against one another after any realization of an equilibrium action profile. Green and Laffont

interpret posterior implementable decision rules as representing the outcomes of a cooper-

ative process, where communication takes place without binding commitment to actions.

Alternatively, posterior implementable decision rules can also be viewed as representing the

outcomes of strategic information revelation, where everyone sends a public message. There-

fore, a posterior implementable decision rule results in “an incentive compatible information

structure”, where it is common knowledge that no agent has an incentive to reveal new in-

formation by modifying his message in a given mechanism. In this paper, we take this idea

one step further by relaxing the second assumption of commitment to a mechanism. Intu-

itively, a maximally informative decision rule results in “a renegotiation-proof information

structure”, where it is common knowledge that there is no mechanism which leads to a new

incentive compatible information structure in which everyone is better off. To put it another

way, suppose agents played a posterior equilibrium which implements a particular decision

rule. Taking the outcome as a status quo, can a third party propose a new mechanism such

that agents unanimously prefer a posterior equilibrium outcome of the new mechanism to

the status quo? Which decision rules are robust to such posterior renegotiation? How much

information can be revealed by such decision rules?
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More formally, a decision rule is maximally informative (henceforth MI) if it is posterior

implementable and in every revealed information state in equilibrium, no posterior imple-

mentable decision rule can reveal further information and make everyone better off. In this

concept, an alternative mechanism that can challenge a given mechanism must satisfy: (i)

it is exogenously proposed after information is endogenously revealed in the play of the first

mechanism, (ii) it has a posterior equilibrium, and (iii) it’s outcome is compared with that

of the first mechanism after information is endogenously revealed in the play of the new

mechanism. While agents are assumed to be passive in the selection of mechanisms (hence

do not learn from the proposal of new mechanisms), they are assumed to actively seek new

information by playing a proposed mechanism. Without commitment to any mechanism,

it is natural that acceptance/rejection of the challenging mechanism be based on all the

information revealed in the play of two mechanisms.1

We characterize MI decision rules in a two-person problem of Green and Laffont (1987).

We identify conditions where MI decision rules exist. We also show that posterior renegotiation-

proofness imposes a significant constraint on a set of implementable decision rules and limits

the information aggregation. In particular, any MI decision rule must be implemented with

at most five actions. Given a continuum of private information states, this means that infor-

mation aggregation must be very limited. This result indicates the diffi culty of information

aggregation in a negotiation process where commitment to a mechanism is hard to achieve.

We provide two economic motivations for our solution concept. First, renegotiation typi-

cally changes the incentive compatibility of the original decision rule, once the renegotiation

is rationally anticipated. Therefore, without commitment to a mechanism, a concept of in-

centive compatibility may well be vacuous unless the possibility of renegotiation is properly

taken into account. This problem has been well known in the literature (Holmstrom and

Myerson 1983 and Forges 1994), but has proven to be diffi cult to analyze. We add to this

literature by providing a complete characterization of MI decision rules in a two-person deci-

1For a related idea, see Cramton and Palfrey (1995).
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sion problem. Second, the form of posterior renegotiation-proofness considered in this paper

has some practical relevance in the context of market competition. Consider a financial ser-

vice provider who offers an intermediation service for two investors (offers a mechanism in

which investors can interact). Suppose that the market is regulated such that (i) a service

provider cannot force the payment for its service until two parties reach a voluntary agree-

ment (investor protection) and (ii) a communication process must be made public (disclosure

regulation). In this environment, a competing financial service provider may propose a new

mechanism to the investors based on the information revealed in the first service. Therefore,

without commitment to a mechanism, the possibility of posterior counter-proposals affects

the ability of the intermediaries to aggregate information. Our notion of MI decision rules is

relevant in this situation. Our analysis indicates that service providers may be able to offer

only limited varieties of mechanisms, which do not reveal much information. Therefore, to

the contrary of the intension of the regulation, the market may neither be investor-friendly

nor aggregate information.

The rest of the paper is organized as follows. The next subsection discusses the related

literature. Section 2 describes the model environment. Section 3 defines MI decision rules

and characterizes them. Section 4 concludes. Section 5 contains omitted proofs.

1.1 Related literature

One interpretation of MI decision rules is that it is an endogenous incentive effi ciency con-

cept. Too see this, comparison to the two standard incentive effi ciency concepts is helpful.

First, consider a set of ex post incentive compatible decision rules. If a decision rule is not

dominated by any alternative decision rules in this set for arbitrary coalitions of types, it is ex

post incentive effi cient. This criterion is suffi cient for posterior renegotiation-proofness. How-

ever, the set of ex post incentive compatible decision rules typically contains only constant

decision rules (Jehiel et al, 2006). Therefore, the ex post incentive effi ciency asks too much

for many applications. Second, consider a set of interim incentive compatible decision rules.
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If a decision rule is not dominated by any alternative decision rules in this set for coalitions of

types that are common knowledge events at the interim stage, it is interim incentive effi cient.2

The interim incentive effi ciency may not be suffi cient for posterior renegotiation-proofness,

because renegotiation (and incentive constraints) after the agents learned new information

in the implementation process are ignored. This gap between the interim incentive effi ciency

and the ex post incentive effi ciency arises because both concepts exogenously specify a rele-

vant set of coalitions of types over which domination is considered. In contrast, a relevant

set of coalitions of types for the MI decision rule is determined in equilibrium. Any outcome

chosen by MI decision rule must not be dominated by alternative decision rules defined for

any coalitions of types that are common knowledge events created by the public play of the

two mechanisms. By construction, an endogenous information structure is no coarser (a set

of coalitions of types is no smaller) than the interim information structure, and no finer (a

set of coalitions of types is no larger) than the ex post information structure.3 Therefore,

the notion of MI decision rules lies between the two standard incentive effi ciencies.

To study posterior renegotiation-proofness, we build on Green and Laffont (1987). An

advantage of this approach is that posterior implementation makes it explicit that a dif-

ferent indirect mechanism creates a different information structure, with respect to which

a decision rule must remain incentive compatible. We apply the same idea for posterior

renegotiation-proofness. Our solution concept naturally captures an open-ended negotiation

process between two agents in which new information can be endogenously revealed. Hence,

it provides an insight into what the final agreement should look like in such a negotiation

process. Forges’(1994) posterior effi ciency is based on a similar idea, but she focuses on

interim incentive compatibility and ignores individual rationality. Therefore, commitment

is still assumed. Neeman and Pavlov (2013) study posterior individual rationality, but they

assume that agents learn only from outcome.4 Our solution concept takes into account both

2This is a standard incentive effi ciency studied by Holmstrom and Myerson (1983).
3If no information is revealed, the information structure coincides with that of interim. If information is

perfectly revealed, the information structure becomes that of ex post.
4Also they focus on a case with private values.
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posterior implementability and posterior individual rationality. To our knowledge, our work

is the first attempt to do away with commitment to both actions and a mechanism. A dis-

advantage of our approach is that the characterization of MI decision rules depends on the

characterization of posterior implementation, which is still an open question for a general

environment. In this paper, we remain in the environment of Green and Laffont (1987).5

While we present new results on posterior implementation, our main contribution is in the

development of the new concept of MI decision rules.

2 Model Environment

Two agents i, j with type θ = (θi, θj) ∈ Θi×Θj = Θ have utility over two possible decisions

d ∈ {d0, d1}. A decision d0 yields payoff zero for any types. The payoff from a decision d1

depends on both types θ. Hence, the payoffof agent i is ui(d, θ) = vi(θ)1{d = d1}. Note that

{θ ∈ Θ|vi(θ) = 0} is the set of types of both agents for which agent i is indifferent between

d0 and d1. A decision rule φ : Θ→ [0, 1] associates any type θ with an outcome φ(θ), which

is the probability of d1. The joint distribution function F (θ) and its density function f(θ)

are common knowledge. We assume Θi ×Θj = [θi, θi]× [θj, θj] ⊂ R2.

Assumption 1: (a) vi(θ) and vj(θ) are continuous and strictly increasing in both argu-

ments. (b) The set {θ ∈ Θ|vi(θ) = vj(θ) = 0} has at most finite number of elements.

Assumption 2: (a) f(θ) is continuous and strictly positive on Θ. The conditional density

fi(θj|θi) ( fj(θi|θj) respectively) is strictly positive on Θj (on Θi). (b) For any subinterval

Θ̂j ⊂ Θj, the conditional distribution Fi(θj|θi, θj ∈ Θ̂j) is increasing in θi in the sense of first

order stochastic dominance. The same condition applies for Fj(θi|θj, θi ∈ Θ̂i) with Θ̂i ⊂ Θi.

Assumption 1 is illustrated in Figure 1.
5Jehiel et al (2007) presents another example.
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Figure 1. Indifference curves.

Throughout the paper, we measure θi in the horizontal direction and θj in the vertical

direction so that “a vertical segment”means {θ ∈ Θ|θi = a, θj ∈ [b, c]}, while “a horizontal

segment” means {θ ∈ Θ|θi ∈ [a, b], θj = c}. By Assumption 1, two indifference curves

vi(θ) = 0 and vj(θ) = 0 are strictly decreasing and intersect at most finite number of times.

Note that the effi cient decision rule under complete information chooses d1 in the area above

two curves, d0 in the area below two curves, and any random mixture of two decisions in the

area between two curves. Assumption 2 is an affi liation property of f , which, together with

Assumption 1, makes
∫

Θ̂j
vi(θi, θj)fi(θj|θi)dθj monotonic in θi for any subinterval Θ̂j ⊂ Θj.

This is the expected value of d1 for agent i of type θi, given that agent j’s type lies in Θ̂j.

A symmetric condition holds for
∫

Θ̂i
vj(θi, θj)fj(θi|θj)dθi.

A mechanism (M, g) is a pair of action space M = Mi ×Mj and a measurable function

g : M → [0, 1], where g(m) is a probability of d1 when m = (mi,mj) ∈ M is chosen by

agents. A strategy of agent i is a collection of conditional distributions si(mi|θi), θi ∈ Θi.

A pair of strategies s = (si, sj) in the mechanism (M, g) results in the decision rule φ(θ) =∫
M
g(m)dsi(mi|θi)dsj(mj|θj).
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Definition 1: A pair of strategies s = (si, sj) is a Bayes-Nash equilibrium of (M, g) if

m∗i ∈ arg max
mi∈Mi

∫
Θj

∫
Mj

vi(θi, θj)g(m)dsj(mj|θj)dFi(θj|θi)

for all m∗i in the support of si(mi|θi) for almost every θi, and

m∗j ∈ arg max
mj∈Mj

∫
Θi

∫
Mi

vj(θi, θj)g(m)dsi(mi|θi)dFj(θi|θj)

for all m∗j in the support of sj(mj|θj) for almost every θj.

Let µs(m, θ) be the joint distribution overM ×Θ generated in a Bayes-Nash equilibrium

s. Let µsi (mj|θi) be the marginal distribution of mj given θi. For every θi and µsi (mj|θi)-

almost everymj, define Fi(θj|θi,mj) to be the conditional distribution that i of type θi would

hold about θj given mj. Define µsj(mi|θj) and Fj(θi|θj,mi) in a symmetric manner.

Definition 2: A Bayes-Nash equilibrium s is a posterior equilibrium if

mi ∈ arg max
m′
i∈Mi

g(m′i,mj)

∫
Θj

vi(θi, θj)dFi(θj|θi,mj),

mj ∈ arg max
m′
j∈Mj

g(mi,m
′
j)

∫
Θi

vj(θi, θj)dFj(θi|θj,mi),

for µs(m, θ)-almost every (m, θ).

Definition 3: A decision rule φ is posterior implementable if there is a mechanism

(M, g) with a posterior equilibrium s which results in φ.

Green and Laffont (1987) provide a complete characterization of a set of posterior imple-

mentable decision rules. Let H be a set of decreasing step functions ξ on Θ = Θi ×Θj with

the following properties:

(i) any vertical segment (θi, (a, b)) of ξ satisfies
∫

Θj
vi(θi, θj)dFi(θj|θi, θj ∈ (a, b)) = 0,

(ii) any horizontal segment ((c, d), θj) of ξ satisfies
∫

Θi
vj(θi, θj)dFj(θi|θj, θi ∈ (c, d)) = 0.
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Theorem (Green and Laffont, 1987)

Any posterior implementable decision rule φ is such that, for some ξ ∈ H, φ(θ) =

φ−1{θ is below ξ}+ φ+1{θ is above ξ} with 0 ≤ φ− ≤ φ+ ≤ 1.

Figure 2 shows an example of posterior implementable decision rules.

Figure 2. A posterior implementable decision rule with three actions for each agent.

In this example, each agent has three actions, each of which corresponds to a subinterval

of types who uses that action in equilibrium. Each line segment in the step function has an

associated indifferent type, characterized by the conditions (i) and (ii) that defined the set

H. For example, θi,1 is a solution to
∫

Θj
vi(θi, θj)dFi(θj|θi,mj,2) =

∫
Θj
vi(θi, θj)dFi(θj|θi, θj ∈

(θj,1, θj,2)) = 0 so that agent i of type θi,1 is indifferent between mi,1 and mi,2. Similarly,

agent i of type θi,2 is indifferent between mi,2 and mi,3.

This characterization allows us to focus on a smaller class of mechanisms. If a mechanism

(M, g) has a posterior equilibrium, there is an equivalent mechanism
(
M̂, ĝ

)
in terms of the

resulting decision rule and the equilibrium information structure. An action space M̂ is a

set of subsets of Θ. An action Θ̂i ⊂ Θi by agent i is interpreted as “my type is in Θ̂i”, and

it is truthful if his true type is in Θ̂i.6 Moreover, each action m̂i = Θ̂i is a closed interval

and any two actions share at most one point.

6For example, if Θi ∈ M̂ , “my type is in Θi”is truthful although it reveals no information.
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For the rest of the paper, we use the following convention. Whenever a mechanism has

multiple actions for any agent, we label them in an increasing order such that max Θ̂i,k =

min Θ̂i,k+1 for kth and k+1th actions, and denote their boundary point by θi,k ≡ max Θ̂i,k =

min Θ̂i,k+1. If a mechanism in this class has K actions available for agent i and L actions for

agent j, we call it a (K,L)-mechanism, and the associated posterior implementable decision

rule (if it exists) shall be called a (K,L)-rule. For any (K,L)-rules, K and L differ at most

by one due to Theorem above. While the set of posterior implementable decision rules may

look quite restrictive, we note that K and L can be very large and φ− ≤ φ+ can take any

values in [0, 1]. It turns out that studying renegotiation-proofness in this set is not at all

trivial.

3 Maximally Informative Decision Rules

Before formally defining MI decision rules, we first investigate properties of posterior imple-

mentable decision rules. The results will be used to characterize MI decision rules in the

following subsection.

3.1 Structure of posterior implementable rules

First, the following definitions will be useful for our purpose.

Definition 4: A constant mechanism is Mi = {Θi}, Mj = {Θj}, and g(m) = φ0 ∈ [0, 1].

Definition 5: A dictatorial mechanism for i is Mi = {Θ̂i,1, Θ̂i,2}, Mj = {Θj} and

g(m) = φ−1{mi = Θ̂i,1}+ φ+1{mi = Θ̂i,2} with 0 ≤ φ− < φ+ ≤ 1.

Definition 6: A (2, 2)-mechanism is Mi = {Θ̂i,1, Θ̂i,2}, Mj = {Θ̂j,1, Θ̂j,2} with 0 ≤ φ− <

φ+ ≤ 1, and it is either

Low type: g(m) = φ−1
{
m =

(
Θ̂i,1, Θ̂j,1

)}
+ φ+1{otherwise} or

High type: g(m) = φ+1
{
m =

(
Θ̂i,2, Θ̂j,2

)}
+ φ−1{otherwise}.
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A constant mechanism always has a trivial posterior equilibrium and implements a (1, 1)-

rule, but reveals no information.7 The other two types of mechanisms may or may not have

a posterior equilibrium. If a dictatorial mechanism for i has a posterior equilibrium, it

implements a (2, 1)-rule and partially reveals agent i’s type but reveals nothing about agent

j’s type. If a (2, 2)-mechanism has a posterior equilibrium, it implements a (2, 2)-rule and

it partially reveals information to both agents. If it is a low type, the low outcome φ− needs

low actions from both agents, while at least one high action implements φ+. If it is a high

type, the high outcome φ+ needs high actions from both agents, while at least one low action

implements φ−. We say that a (K,K)-mechanism with K ≥ 2 is a low (high) type if no agent

can choose the low (high) outcome independent of the other agent’s action.8 The following

lemma studies the existence of posterior equilibria.

Lemma 1 (existence of (K,L)-rules)

(i) If no dictatorial mechanism for i (for j respectively) has a posterior equilibrium, then

for all K ≥ 2, no (K + 1, K)-mechanism ( (K,K + 1)) has a posterior equilibrium.

(ii) If no (2, 2)-mechanism has a posterior equilibrium, then for all K ≥ 3, then

no (K,K)-mechanism has a posterior equilibrium.

(iii) A dictatorial mechanism for i can implement a (2, 1)-rule if and only if

∃θ′i ∈
(
θi, θi

)
s.t.

∫
Θj
vi(θ

′
i, θj)dFi(θj|θ′i) = 0.

(iv) A (2, 2)-mechanism of a low type can implement a (2, 2)-rule if and only if

∃θ′ =
(
θ′i, θ

′
j

)
∈
(
θi, θi

)
×
(
θj, θj

)
s.t.

∫
Θj

vi(θ
′
i, θj)dFi

(
θj|θ′i, θj ∈

(
θj, θ

′
j

))
=

∫
Θi

vj(θi, θ
′
j)dFj

(
θi|θ′j, θi ∈ (θi, θ

′
i)
)

= 0.

7A constant mechanism is the only case in which, if a direct mechanism Mi = Θi is used instead of
Mi = {Θi}, every agent is indifferent among any actions after actions are made public. Hence, there is a
posterior equilibrium in a pure strategy where type is perfectly revealed. We rule out this perfect information
revelation because it trivializes any incentive issues.

8Figure 2 shows a low type. By Theorem, any (K,K)-mechanism is either a low type or a high type.
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(v) A (2, 2)-mechanism of a high type can implement a (2, 2)-rule if and only if

∃
(
θ′i, θ

′
j

)
∈
(
θi, θi

)
×
(
θj, θj

)
s.t.

∫
Θj

vi(θ
′
i, θj)dFi

(
θj|θ′i, θj ∈

(
θ′j, θj

))
=

∫
Θi

vj(θi, θ
′
j)dFj

(
θi|θ′j, θi ∈

(
θ′i, θi

))
= 0.

Lemma 1 (i) and (ii) show that dictatorial and (2, 2)-mechanisms are the key mecha-

nisms in terms of the existence of posterior equilibria. For any information to be revealed

in a posterior equilibrium, either dictatorial or (2, 2)-mechanisms must have a posterior

equilibrium. Lemma 1 (iii) through (v) present conditions for the existence of posterior

equilibria in these mechanisms. The conditions state that there must be indifferent types

that are consistent with an equilibrium information structure. Note that a (2, 1)-rule repre-

sents a situation where a dictator i can choose any outcome (φ− or φ+) based only on his

prior belief about the other agent’s type.9 Agent j learns about the dictator’s type through

his choice, although she is forced to accept the dictator’s choice. All (K + 1, K)-rules share

the same property that only agent i can choose either one of two outcomes φ− and φ+ inde-

pendent of the agent j’s action, while a symmetric argument applies to (K,K+1)-rules. On

the other hand, a (2, 2)-rule is characterized by “equal rights”given to both agents because

both agents can choose one particular outcome independent of what the other agent’s action,

while they need to cooperate in order to implement the other outcome.10 Also, both agents

learn new information in equilibrium. All (K,K)-rules share the same property that both

agents can choose the same outcome independent of the other agent’s action, while they

need to coordinate their actions to choose the other outcome.

A natural question is whether a (2, 2)-rule exists when both (2, 1)- and (1, 2)-rules exist.

This is a situation where both agents may insist on his/her dictatorial mechanism, but some-

one (a third party) can suggest a (2, 2)-rule as a compromising alternative. Such a suggestion

9Agent i can choose an outcome φ− by choosing Θ̂i,1 and φ
+ by choosing Θ̂i,2.

10For a low type (2, 2)-rule, agent i (j) can choose an outcome φ+ by choosing Θ̂i,2 (Θ̂j,2) regardless of
agent j’s (i’s) action. To implement φ−, coordinated actions (Θ̂i,1, Θ̂j,1) are required.
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not only put both parties on more equal footing but also facilitates more communication be-

tween them. When is such a suggestion possible? What is a nature of compromise? The

next lemma uncovers some connections between dictatorial and (2, 2)-rules.

Lemma 2 (dictatorial and (2, 2)-rules)

Suppose both (2, 1)- and (1, 2)-rules exist. Let θdi be the indifference type in the (2, 1)-rule

and θdj be that in the (1, 2)-rule.

(i) If there are multiple ( k ≥ 1) (2, 2)-rules of a low-type (respectively high), then k

indifference points
{

(θ1
i,1, θ

1
j,1), .., (θki,1, θ

k
j,1)
}
lie in

(
θdi , θi

)
×
(
θdj , θj

)
(
(
θi, θ

d
i

)
×
(
θj, θ

d
j

)
). If they are ordered by θ1

i,1 < ... < θki,1, then θ
1
j,1 > ... > θkj,1.

Next, consider agent i with θi (respectively θi) facing agent j with a type set
[
θj, θ

d
j

]
(
[
θdj , θj

]
) and agent j with θj ( θj) facing agent i with a type set

[
θi, θ

d
i

]
(
[
θdi , θi

]
).

(ii) If both agents strictly prefer a higher outcome or both strictly prefer a lower outcome,

then k is an odd number.

(iii) If one agent weakly prefers a higher outcome while the other agent weakly prefers

a lower outcome, and preference is strict for at least one agent, then k is zero

(non-existence) or an even number.

(iv) If both agents are indifferent for any outcomes, then k can be any number.

Lemma 2 (i) shows a trade-offbetween a (2, 2)-rule of a low type and a (2, 1)-rule. From

agent i’s point of view, in the (2, 2)-rule he cannot choose the low outcome φ− unilaterally,

which he could do in the (2, 1)-rule. Also, while he can still choose φ+ unilaterally in the

(2, 2)-rule, he does so with a smaller probability than he would in the (2, 1)-rule. The same

applies to agent j if we compare the (2, 2)-rule with a (1, 2)-rule. Therefore, both agents

make a compromise relative to his/her dictatorial rule. In return, both agents learn new

information and are given a chance to coordinate their actions. Lemma 2 also provides

necessary conditions for the non-existence and uniqueness of (2, 2)-rules given that either

agent can be a dictator. If we rule out a non-generic case (iv), conditions in (ii) and (iii)
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become necessary and suffi cient. Hence, if no (2, 2)-rule of a low-type exists, then it must be

the case that the highest type agents facing the low-type dictator disagree on whether they

prefer d1 to d0 or not. If there is a unique (2, 2)-rule of a low-type, then they must agree on

the matter. Figure 3 illustrates a case where multiple (2, 2)-rules of a low type exist, while

Figure 4 illustrates a case where they do not exist.

Figure 3. Co-existence of dictatorial and (2,2)-rules of a low type.

Figure 4. Non-existence of (2,2)-rules of a low type.
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In Figures 3 and 4, a dashed line with the end point X is a function hj : Θi → Θj

defined by

hj (xi) ≡
{
θj ∈ Θj|

∫
Θi

vj (θi, θj) dFj (θi|θj, θi ∈ [θi, xi]) = 0

}
and a solid line with the end point Y is a function hi : Θj → Θi defined by

hi (xj) ≡
{
θi ∈ Θi|

∫
Θj

vi (θi, θj) dFi
(
θj|θi, θj ∈

[
θj, xj

])
= 0

}
.

The intersections of hi and hj represent (2, 2)-rules of a low type. PointsX and Y inFigure 3

show that θi facing Θ̂j,1 and θj facing Θ̂i,1 both prefer a higher outcome (“agreement”), while

X and Y in Figure 4 show that only θi prefers a higher outcome (“disagreement”). For the

latter case to happen, the ex ante characteristics of two agents must be suffi ciently different.

Note that the multiple (2, 2)-rules exist when the two functions hi and hj have multiple

intersections. The slope of hi and hj represents the expected marginal rate of substitution

of types evaluated at the points of indifference, where expectation is taken over the other

agent’s type set with a different cutoff level. Therefore, if two agents are suffi ciently alike and

the expected marginal rate of substitution does not fluctuate much as the cutoff level changes

(say hi and hj are close to linear), then there exists a unique (2, 2)-rule. This is formally

stated below. Say agents are symmetric if Θi = Θj =
[
θ, θ
]
, Fi (·|a) = Fj(·|a) ∀a ∈

[
θ, θ
]
,

and vi (a, b) = vj (b, a) ∀ (a, b) ∈
[
θ, θ
]2
. With symmetry, a (2, 1)-rule exists if and only if

(1, 2)-rule also exists. Let the indifference type denoted by θdi = θdj = θd ∈
(
θ, θ
)
. Also, since

hi and hj defined above are identical with symmetry, denote both by h :
[
θ, θ
]
→
[
θ, θ
]
.

Lemma 3 ((2, 2)-rules with symmetry)

Suppose that agents are symmetric and a (2, 1)-rule with the indifferent type θd exists.

(i) A (2, 2)-rule of a low type with θi,1 = θj,1 = θ∗ > θd exists.

Next, consider agent with θ facing the other agent with a type set
[
θ, θd

]
.

(ii) If this agent prefers a lower outcome, then:

(a) θ∗ is the only (2, 2)-rule of a low type if and only if ∀θi > θ∗ h (θi) < h−1 (θi).
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(b) θ∗ ∈
(
θd+θ

2
, θ
)
if h is concave.

(iii) If this agent prefers a higher outcome, then:

(a) θ∗ is the only (2, 2)-rule of a low type if and only if ∀θi < θ∗ h (θi) < h−1 (θi).

(b) θ∗ ∈
(
θd, θ

d+θ
2

)
if h is convex.

(iv) If this agent is indifferent for any outcomes, then:

(a) θ∗ is the only (2, 2)-rule of a low type if and only if ∀θi ∈
(
θ∗, θ

)
h (θi) 6= h−1 (θi).

(b) θ∗ ∈
(
θd, θ

d+θ
2

]
(∈
[
θd+θ

2
, θ
)
) if h is concave (convex).

An analogous result for a (2, 2)-rule of a high type also holds but is not presented. From

the converse of Lemma 3, given symmetric agents, if there is no symmetric (2, 2)-rule,

then there is neither (2, 1)- nor (2, 1)-rule. By Lemma 1, this implies that posterior im-

plementable decision rules must be constant. Hence, with symmetry, information revelation

without commitment to actions is possible if and only if (2, 2)-rules exist.

3.2 Posterior individual rationality

When agents cannot commit to a mechanism, after playing a given mechanism, they may

want to play another mechanism as long as they can hold onto the outcome from the initial

mechanism as a status quo. An alternative mechanism could be proposed by the mechanism

designer (who fails to commit to a mechanism for various reasons), or by competing mech-

anism designers who try to steal “business”. To develop the idea, suppose that there is an

outcome φ0 ∈ [0, 1] as a status quo and a posterior implementable decision rule φ is proposed

to challenge φ0. If at least one agent strictly prefers φ0 to a new outcome after actions are

made public in the implementation of φ, then φ should not be considered as improvement

over φ0 and hence is rejected. For φ to be improvement over φ0, such a rejection of φ in favor

of φ0 should never happen. This posterior individual rationality is formally stated below.

Definition 7: A posterior implementable decision rule φ is posterior individually rational

(PIR) relative to a status quo outcome φ0 if every agent of any type weakly prefers an
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outcome of φ to φ0 and at least one agent of some type strictly prefers φ to φ0 in a posterior

equilibrium that implements φ.

The definition above implicitly imposes restrictions on the underlying renegotiation game.

First, a challenging rule must be posterior implementable. This seems natural because our

objective is to study information revelation without commitment to actions. Second, pro-

posal of the new rule is exogenous. This shuts down learning from the endogenous selection

of a mechanism, and allows us to focus on learning in a mechanism. Third, improvement is

determined after agents played two mechanisms. Thus, beliefs are allowed to be updated in

the course of renegotiation. Again, this seems natural given our objective of relaxing com-

mitment to a mechanism. Because agents do not commit to a mechanism, they can compare

two outcomes after playing two mechanisms.

PIR puts a further restriction on the set of posterior implementable decision rules H.

The following lemma characterizes the nature of PIR.

Lemma 4 (posterior individual rationality)

(i) For any K ≥ 1, a (K + 1, K)-rule is PIR relative to φ0 ∈ [0, 1] if and only if

either one of the following conditions (a)-(c) holds:

(a) φ− = φ0 < φ+. Agent j strictly prefers a higher outcome, for all θj after

observing Θ̂i,K+1, and for some θj after observing Θ̂i,1.

(b) φ− < φ0 = φ+. Agent j strictly prefers a lower outcome, for some θj after

observing Θ̂i,K+1, and for all θj after observing Θ̂i,1.

(c) φ− ≤ φ0 ≤ φ+ and φ− < φ+. For all θj, agent j strictly prefers, a higher

outcome after observing Θ̂i,K+1, and a lower outcome after observing Θ̂i,1.

(ii) For any K ≥ 2, a (K,K)-rule of a low (high respectively) type is PIR relative to φ0

if φ− < φ0 = φ+ (φ− = φ0 < φ+).

(iii) Suppose that a (2, 1)-rule and a (K + 1, K)-rule with K ≥ 2 exist. If a (2, 1)-rule

is PIR relative to φ0, then there is a (K + 1, K)-rule PIR relative to φ0.
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Lemma 4 (i) provides conditions under which (K+1, K)-rules are PIR. ConsiderK = 1

and agent j facing a dictator i. After observing a high action Θ̂i,2 (hence a high outcome

φ+), agent j’s indifference type becomes lower. However, if agent j’s type is below the new

indifferent type, she would still prefer a lower outcome. This imposes φ+ = φ0, because if

φ0 < φ+, types below the new indifferent type veto φ+ and revert back to φ0. Hence, unless

agent j’s type set below the new indifferent type is empty, the PIR rule φ must have φ− <

φ0 = φ+. This is covered in (b). Note that this would be impossible if φ0 = 0. Similarly,

after observing a low action Θ̂i,1, agent j’s indifferent type becomes higher. Unless agent j’s

type set above the new indifferent type is empty, the PIR rule φ must have φ− = φ0 < φ+.

This is covered in (a), and would be impossible if φ0 = 1. Finally, if agent j’s two indifferent

types after observing the dictator’s actions both lie in the interior of Θj, then both φ
+ = φ0

and φ− = φ0 must be satisfied. This means that there is no dictatorial rule that is PIR

relative to any status quo outcome φ0 ∈ [0, 1]. Taken together, a (K + 1, K)-rule is not PIR

relative to φ0 if and only if (a)’φ0 = 1 and agent j’s indifference type after observing Θ̂i,1

lies in the interior of Θj or (b)’φ
0 = 0 and agent j’s indifference type after observing Θ̂i,K+1

lies in the interior of Θj or (c)’both indifferent types lie in the interior of Θj.

On the other hand, Lemma 4 (ii) shows that a (K,K)-rule of a low (high) type, when-

ever it exists, can be made PIR relative to φ0 by setting φ− and φ+ appropriately as long

as 0 < φ0 (φ0 < 1). Lemma 4 (iii) shows that given the existence of (K + 1, K)-rules,

if information revelation by a (2, 1)-rule is unanimously appreciated (i.e., does not result in

the rejection of the associated outcome), information revelation by a (K + 1, K)-rule is also

unanimously appreciated. This result is not particularly helpful in terms of checking the

absence of (K + 1, K)-rules that are PIR. However, the proof of this result shows that it is

suffi cient to check that, among all (K + 1, K)-rules, the one with the largest value of the

highest indifference type and the one with the smallest value of the lowest indifference type

are not PIR. If such is a case, then all other (K + 1, K)-rules would have agent j of some

type rejecting the outcome after observing the lowest or the highest action of agent i.
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3.3 MI decision rules

As we discussed above, a new mechanism is proposed state by state revealed in a posterior

equilibrium. In practice, once some information is revealed, an alternative mechanism defined

only in the revealed information state can be proposed. As more information is revealed in

the original mechanism, it becomes easier to construct an improvement, because the new

mechanism is subject to less incentive constraints. For the renegotiation-proofness, this is

a bad news. Hence, for the original mechanism to be robust to posterior renegotiation,

it should not reveal too much information. On the other hand, an outcome in the new

mechanism must be ratified relative to the status quo outcome also state by state revealed

in a new posterior equilibrium. This restricts the set of mechanisms considered which can

improve on the status quo. These two opposing forces make our solution concept non-trivial.

We denote by Θφ =
{

Θ̂i,k × Θ̂j,l

}
k=1,..,K,l=1,..,L

a partition of Θ created by a (K,L)-

rule. Because φ can realize only one of these K × L rectangle type sets, for each possible

Θ̂ = Θ̂i,k × Θ̂j,l ∈ Θφ, potential improvement is a posterior implementable decision rule

defined on Θ̂. Importantly. Assumptions 1 and 2 still hold if we replace Θ with any Θ̂ ∈ Θφ.

Because each Θ̂ is a rectangle, all the properties of posterior implementable rules defined on

Θ apply to the posterior implementable rules defined on Θ̂ by relabelling Θ with Θ̂.

Definition 8: Let φ be a posterior implementable decision rule with a partition Θφ. Say

φ is NOT maximally informative (MI) if ∃Θ̂ ∈ Θφ s.t. there is a decision rule φ̂ defined on

Θ̂ such that:

(a) φ̂ is posterior implementable and PIR relative to φ
(

Θ̂
)
and

(b) φ̂ is not constant.

Maximal informativeness is defined by the absence of “posterior improvement”with in-

formation revelation. The definition requires that there is no equilibrium in which the

improvement occurs.11 It also requires that challenging φ̂ must be non-constant rules. This

11This is similar to strong renegotiation-proofness in Maskin and Tirole (1992). This form of domination
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reflects our motivation of studying maximal amount of information revelation, and can be

relaxed.12 There are two more subtle points: (i) we do not impose a “credibility”restriction

on challenging φ̂ and (ii) comparison is made between outcomes, not mechanisms. If we

impose a restriction that a challenging φ̂ must also be robust to a new challenge, the concept

of MI becomes a recursive one. We leave this investigation for future work. Also, if we con-

sider competing firms proposing a mechanism as mentioned in the introduction, requiring

robustness to a one-shot renegotiation seems reasonable in many situations. For example,

suppose that a firm finds a profitable opportunity (a mechanism that will be accepted by

agents) but is aware that with some probability another firm might steal its business later.

We argue that this firm might take a chance and offer the mechanism anyway. So it is not

entirely vacuous to ask the existence/absence of such mechanism as a threat. For the second

point, some might argue that posterior comparison should be made between mechanisms,

not outcomes. In our renegotiation game, agents learn by playing two mechanisms. In stead

of comparing two outcomes, they may be allowed to replay a mechanism given new infor-

mation. This does not affect the incentive compatibility in the new mechanism (because of

posterior implementability), while it might affect the incentive compatibility in the original

mechanism. In this paper, we side-step this potentially interesting issue by assuming that

agents are allowed to hold on to the outcome of the original mechanism, but not allowed to

replay the mechanism. Given our view that a posterior implementable decision rule repre-

sents an outcome of an open-ended negotiation process, it seems natural to rule out “starting

it all over”after two rounds of such negotiation.

The following lemma provides a reason why requiring no posterior improvement in the

above definition may be reasonable. A problem is that if the posterior improvement is

rationally anticipated, the original decision rule will not be incentive compatible.

was not studied in Forges (1994). In her environment, E0 redefined with a general improving mechanism
would be similar to our notion.
12If we drop (b) in Definition 8, MI rules must have φ− = 0 and φ+ = 1 in states where preferences of two

agents are aligned.
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Lemma 5 (posterior renegotiation and posterior implementability)

Suppose that a (K,L)-rule φ with K + L ≥ 3 is not MI. If an improvement φ̂ on some

Θ̂ ∈ Θφ as described in Definition 8 is rationally anticipated, then at least one agent will not

choose a posterior equilibrium action of φ with positive probability.

Proof : First, if neither vi (θ) = 0 nor vj (θ) = 0 lies in the interior of Θ̂, there cannot be

an improvement as in Definition 8. Hence, there is at least one agent who has an indifferent

type as a boundary of Θ̂. Suppose it is agent i and denote by θ∗i his indifferent type after

observing Θ̂j. Because no (2, 1)-rule exists on Θ̂, the improvement φ̂ on Θ̂ must refine Θ̂j.

If a higher (lower) type set than Θ̂j is revealed, agent i of type θ
∗
i strictly prefers a higher

(lower) outcome. Since at least one of the two outcomes must be changed but no agent of

any type is made worse off, agent i of type θ∗i strictly prefers the new outcome with some

probability and weakly prefers it with the remaining probability. Therefore, if agent i of

type θ∗i anticipates φ̂, he is no longer indifferent between two actions Θ̂i and Θ̂′i that shares

θ∗i with Θ̂i, but would strictly prefer Θ̂i to Θ̂′i. Hence, there is a positive measure of types

in Θ̂′i in the neighborhood of θ
∗
i , who would also prefer Θ̂i to Θ̂′i. �

Lemma 5 shows that the possibility of posterior improvement, when rationally antici-

pated by agents, creates incentive to lie in the (otherwise) posterior implementable decision

rule. As Forges (1994) points out, it is a general observation that posterior improvement

disturbs incentive compatibility.13 The next proposition is the main result of the paper.

Proposition:

(i) If a (K,L)-rule is MI, then K + L ≤ 5.

(ii) (a) A (1, 1)-rule is MI if (2, 1)-, (1, 2)-, (2, 2)-rules do not exist.

(b) A (1, 1)-rule with φ0 ∈ (0, 1) is MI if and only if (2, 2)-rules do not exist and

for all K ≥ 1, (K + 1, K)- and (K,K + 1)-rules are not PIR relative to φ0.

(iii) (a) A (2, 1)-rule is MI if (1, 2)-rules on Θ̂i,1 and Θ̂i,2, (2, 2)-rules of a high type

13See the discussion in section 5.2 in Forges (1994).
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on Θ̂i,1, and (2, 2)-rules of a low type on Θ̂i,2 do not exist.

(b) A (2, 1)-rule is MI if and only if the following conditions are satisfied:

(I) For all K ≥ 1, (K,K + 1)-rules are not PIR, relative to φ−on Θ̂i,1 and

relative to φ+ on Θ̂i,2.

(II) (2, 2)-rules of a high type on Θ̂i,1 and (2, 2)-rules of a low type on Θ̂i,2

do not exist.

(iv) (a) A (2, 2)-rule of a low type is MI if (1, 2)-rules on Θ̂i,2 × Θ̂j,1, (2, 2)-rules of

a high type on Θ̂i,1× Θ̂j,1, and (2, 2)-rules of a low type on Θ̂i,2× Θ̂j,1 do not exist.

(b) A (2, 2)-rule of a low type is MI if only if the following conditions are satisfied:

(I) For all K ≥ 1, (K,K + 1)-rules on Θ̂i,2 × Θ̂j,1 are not PIR relative to φ
+.

(II) (2, 2)-rules of a high type on Θ̂i,1 × Θ̂j,1 and (2, 2)-rules of a low type

on Θ̂i,2 × Θ̂j,1 do not exist.

(v) (a) A (3, 2)-rule is MI if and only if (2, 2)-rules of a low type on Θ̂i,2 × Θ̂j,2 and

(2, 2)-rules of a high type on Θ̂i,2 × Θ̂j,1 do not exist.

(b) A (3, 2)-rule is MI only if {θ ∈ Θ|vj (θ) = 0} ⊂ Θ̂i,2 ×Θj.

Proposition characterizes MI decision rules. (iii) and (v) have symmetric counterparts

for (1, 2)- and (2, 3)-rules but they are omitted. A key feature of MI decision rules is that

they cannot have more than five actions. This is because whenever two agents have revealed

that they are “middle”types, it is possible to make both agents happier by revealing more

information. Considering that there is a continuum of types, and also that there can be a

posterior implementable decision rules with infinite number of partitions14, the result shows

that information revelation is significantly reduced without commitment to a mechanism.

The set of MI decision rules is small, because they must be robust to decision rules defined

on the revealed information state. An alternative decision rule is applied to a smaller set of

types, hence it is subject to less incentive constraints. This dynamic consideration restricts

a set of renegotiation-proof decision rules.

14See page 84 (a discussion about an accumulation point in Figure 7) in Green and Laffont (1987).
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Suffi cient conditions stated in part (a) of Proposition (ii) to (iv) are not necessary,

because it is possible that a (2, 1)- or (1, 2)-rule exists but not PIR. Note that these are the

cases where the rejection of the second outcome can reveal information, if agents actually play

in the second mechanism. However, if suffi cient conditions hold, such learning from rejection

never occurs. Necessary and suffi cient conditions stated in part (b) of Proposition (ii) to

(iv) may look hard to check. However, as we discussed after Lemma 4, it is enough to

check that the one with the largest indifferent type and the one with the smallest indifferent

type for agent i (j) are not PIR. Finally, Lemma 1, 4 and Proposition taken together

identify environments where (non-trivial) MI rules exist. For example, with the appropriate

choice of vi, vj and F , it is not diffi cult to construct an example of a MI (3, 2)-rule.

4 Conclusion

How much information we can collect and reveal subject to incentive constraints is an im-

portant issue, but surprisingly little is known once we leave the Revelation Principle and the

implicit commitment assumptions that lie behind it. This paper relaxes these assumptions

and presents the concept of maximally informative decision rules. The results indicate that

renegotiation-proofness puts significant restrictions on the amount of information revelation.

To further investigate the property of information revelation without commitment, it is

important to obtain a characterization of posterior implementation in general environments.

Also, the assumption that all actions are simultaneously chosen and made public constrains

the equilibrium information structure. If any arbitrary observation pattern (including private

observation) can be specified as a part of a mechanism, more information structures become

possible in equilibrium. Allowing general patterns of information revelation will expand the

set of implementable rules and will affect the set of maximally informative decision rules.

Also, a continuum of types and costless renegotiation makes the set of MI decision rules small

in our environment. Studying how finite types and costly renegotiation can expand this set
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seems important for many applications. Finally, by allowing agents to adjust the value

of (φ−, φ+), the model could be extended to study dynamic learning and coordination.15

Relative to an exogenous proposal by a third party, this would make improvement more

“rigid”, hence likely to enlarge the set of MI rules.

5 Proofs

Proof of Lemma 1.

(i) If a (K + 1, K)-mechanism has a posterior equilibrium,

θi,1 =
{
θi ∈ Θi|

∫
Θj
vi(θi, θj)dFi(θj|θi, θj ∈ Θ̂j,K) = 0

}
and

θi,K =
{
θi ∈ Θi|

∫
Θj
vi(θi, θj)dFi(θj|θi, θj ∈ Θ̂j,1) = 0

}
lie in the interior of Θi. Because

Θ̂j,1 is the lowest action, Θ̂j,K is the highest action, and vi(θ) is strictly increasing in θ,

θ∗i ≡
{
θi ∈ Θi|

∫
Θj
vi(θi, θj)dFi(θj|θi) = 0

}
∈ (θi,1, θi,K). This is an indifferent type of i

given his prior belief. Hence, Θ̂i,1 = [θi, θ
∗
i ] and Θ̂i,2 =

[
θ∗i , θi

]
has a posterior equilibrium.

The proof is symmetric for a (K,K + 1)-mechanism.

(ii) Consider a (K,K)-mechanism of a low type (as in Figure 2). If it has a posterior

equilibrium, both θi,1 =
{
θi ∈ Θi|

∫
Θj
vi(θi, θj)dFi(θj|θi, θj ∈ Θ̂j,K−1) = 0

}
and

θi,K−1 =
{
θi ∈ Θi|

∫
Θj
vi(θi, θj)dFi(θj|θi, θj ∈ Θ̂j,1) = 0

}
lie in the interior of Θi. Simi-

larly, both θj,1 =
{
θj ∈ Θj|

∫
Θi
vj(θi, θj)dFj(θi|θj, θi ∈ Θ̂i,K−1) = 0

}
and

θj,K−1 =
{
θj ∈ Θj|

∫
Θi
vj(θi, θj)dFj(θi|θj, θi ∈ Θ̂i,1) = 0

}
lie in the interior of Θj. Let

Xi ≡
K−1
∪
k=1

Θ̂i,k andXj ≡
K−1
∪
k=1

Θ̂j,k. Because Θ̂j,1 is the lowest action inXj, Θ̂j,K−1 is the highest

action inXj, and vi(θ) is strictly increasing in θ, x∗i ≡
{
θi ∈ Θi|

∫
Θj
vi(θi, θj)dFi(θj|θi, θj ∈ Xj) = 0

}
lies in the interior ofXi. Similarly, x∗j ≡

{
θj ∈ Θj|

∫
Θi
vj(θi, θj)dFj(θi|θj, θi ∈ Xi) = 0

}
lies in

the interior ofXj. Define hi : Xj → Xi by hi(x) =
{
θi ∈ Xi|

∫
Θj
vi(θi, θj)dFi(θj|θi, θj ∈ [θj, x]) = 0

}
∀x ∈ Xj. Similarly define hj : Xi → Xj by hj(x) =

{
θj ∈ Xj|

∫
Θi
vj(θi, θj)dFj(θi|θj, θi ∈ [θi, x]) = 0

}
∀x ∈ Xi. Note that hi(·) and hj(·) are continuous, strictly decreasing, hi(θj,1) = θi,K−1,

hj(θi,1) = θj,K−1, hi(θj,K−1) = x∗i , and hj(θi,K−1) = x∗j . Hence, a mapping t : Xi × Xj →
15Watson (1999) is a related work in a dynamic environment.
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Xi ×Xj defined by t(xi, xj) = (hi(xj), hj(xi)) has at least one fixed point. This fixed point

constitutes a (2, 2)-rule of low type. The proof is symmetric for a high type.

(iii) (if) By Assumptions 1 and 2, θi ≶ θ′i ⇔
∫

Θj
vi(θi, θj)dFi(θj|θi) ≶ 0. Agent i with

θi < θ′i prefers a higher outcome while agents with θi > θ′i prefers a lower outcome. Therefore,

a mechanism with Θ̂i,1 = [θi, θ
′
i] leading to φ

− and Θ̂i,2 =
[
θ′i, θi

]
leading to φ+ > φ− has a

posterior equilibrium.

(only if) If the condition is not satisfied, it must be either ∀θi ∈ Θi,
∫

Θj
vi(θi, θj)dFi(θj|θi) ≥

0 or ∀θi ∈ Θi,
∫

Θj
vi(θi, θj)dFi(θj|θi) ≤ 0. For the former case, agent i always prefers a higher

outcome and Θ̂i,1 would not be chosen. For the latter case,agent i always prefers a lower

outcome and Θ̂i,2 would not be chosen.

(iv) (if) For agent i observing θj ∈
(
θj, θ

′
j

)
, θi ≶ θ′i ⇔

∫
Θj
vi(θi, θj)dFi

(
θj|θi, θj ∈

(
θj, θ

′
j

))
≶

0. Hence, agent i with θi < θ′i prefers a lower outcome and optimally chooses Θ̂i,1 while agent

i with θi > θ′i prefers a higher outcome and optimally chooses Θ̂i,2. For agent i observing

θj ∈
(
θ′j, θj

)
, the outcome φ+ is independent of his action and choosing Θ̂i,1 or Θ̂i,2 truthfully

is optimal.

(only if) If the condition is not satisfied, it must be one of the six cases:

(a) ∀θi ∈ Θi,
∫

Θj
vi(θi, θj)dFi

(
θj|θi, θj ∈

(
θj, θ

′
j

))
≥ 0 for all θ′j ∈

(
θj, θj

)
,

(b) ∀θi ∈ Θi,
∫

Θj
vi(θi, θj)dFi

(
θj|θi, θj ∈

(
θj, θ

′
j

))
≤ 0 for all θ′j ∈

(
θj, θj

)
,

(c) ∀θ′j ∈
(
θj, θj

)
s.t.

{
θi ∈ Θi|

∫
Θj
vi(θi, θj)dFi

(
θj|θi, θj ∈

(
θj, θ

′
j

))
= 0
}
≡ k

(
θ′j
)
∈(

θi, θi
)
, it holds

∫
Θi
vj(θi, θ

′
j)dFj

(
θi|θ′j, θi ∈

(
θi, k

(
θ′j
)))

= c 6= 0.

Cases (d), (e), (f) are symmetric cases for agent j. For (a) and (b), agent i always prefers

one outcome to the other (φ+ for (a) and φ− for (b)), so there cannot be a (2, 2)-posterior

equilibrium. For (c), first note that k
(
θ′j
)
is a candidate for θi,1, and that if θ

′
j which satisfies

k
(
θ′j
)
∈
(
θi, θi

)
exists, it is unique and k (·) is decreasing. Consider agent j with θj slightly

smaller than θ′j if c > 0 and slightly larger than θ′j if c < 0. In the former case, there exists

a positive measure of types θj < θ′j such that
∫

Θi
vj(θi, θj)dFj

(
θi|θj, θi ∈

(
θi, k

(
θ′j
)))

> 0.

They would prefer a higher outcome and hence choose Θ̂j,2 =
[
θ′j, θj

]
rather than Θ̂j,1 =
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[
θj, θ

′
j

]
as they are supposed to. In the latter case, there exists a positive measure of types

θj > θ′j such that
∫

Θi
vj(θi, θj)dFj

(
θi|θj, θi ∈

(
θi, k

(
θ′j
)))

< 0. They would prefer a lower

outcome and hence choose Θ̂j,1 rather than Θ̂j,2. The remaining cases are symmetric.

(v) Symmetric with (iv). �

Proof of Lemma 2.

(i) Define hi : Θj → Θi by hi (xj) ≡
{
θi ∈ Θi|

∫
Θj
vi (θi, θj) dFi

(
θj|θi, θj ∈

[
θj, xj

])
= 0
}

and hj : Θi → Θj by hj (xi) ≡
{
θj ∈ Θj|

∫
Θi
vj (θi, θj) dFj (θi|θj, θi ∈ [θi, xi]) = 0

}
. Then

hi
(
θj
)

= θdi and hi is strictly decreasing. Similarly, hj
(
θi
)

= θdj and hj is strictly decreasing.

By Lemma 1, (2, 2)-rules of a low type exist is and only if hi and hj have intersections. By

construction of hi and hj, all the intersections must lie in
(
θdi , θi

)
×
(
θdj , θj

)
and satisfy the

last property.

(ii) The stated condition implies either (a) hi
(
θdj
)
< θi and hj

(
θdi
)
< θj (this is Figure

3) or (b) ∃θi > θdi s.t. hj (θi) = θj and ∃θj > θdj s.t. hi (θj) = θi. Either way, because

hi and hj are strictly decreasing, they must cross each other for odd number of times in[
θdi , θi

]
×
[
θdj , θj

]
.

(iii) The stated condition implies either (a) hi
(
θdj
)
≤ θi and ∃θi ≥ θdi s.t. hj (θi) = θj

and at least one inequality is strict, or (b) hj
(
θdi
)
≤ θj and ∃θj ≥ θdj s.t. hi (θj) = θi and at

least one inequality is strict. Either way, hi and hj must cross each other for even number

of times in
[
θdi , θi

]
×
[
θdj , θj

]
.

(iv) The stated condition implies that hi and hj intersect at two points
(
θdi , θj

)
and(

θi, θ
d
j

)
, which do not constitute a (2, 2)-rules. Two strictly decreasing curves sharing the

same end points can intersect in the middle any number of times. �

Proof of Lemma 3.

(i) When agents are symmetric, case (iii) in Lemma 2 cannot happen because hi and

hj are located symmetrically with respect to a straight line connecting two points (θ, θ) and(
θ, θ
)
on
[
θ, θ
]2
. Call this line the 45 degree line. Because hi and hj are strictly decreasing
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and cross the 45 degree line, they must cross each other on the 45 degree line only once.

This is θ∗, and by Lemma 2 (i), θ∗ > θd.

(ii) hi (θj) starts from the interior of a segment
{
θ,
[
θd, θ

]}
and monotonically decreases

in θj to a point
(
θd, θ

)
, while hj (θi) starts from the interior of a segment

{[
θd, θ

]
, θ
}
and

monotonically decreases in θi to a point
(
θ, θd

)
. If the condition ∀θi > θ∗ h (θi) < h−1 (θi)

holds, hi and hj do not cross below the 45 degree line. By symmetry, θ
∗ is the only inter-

section. If the condition does not hold, hi and hj have an intersection below and above the

45 degree line and θ∗ is not a unique (2, 2)-rule. If h is concave, both hi and hj must lie

above the straight line connecting two points
(
θd, θ

)
and

(
θ, θd

)
. Call this line the negative

45 degree line. Because the point
(
θd+θ

2
, θ

d+θ
2

)
is on the negative 45 line, θ∗ ∈

(
θd+θ

2
, θ
)
.

(iii) hi (θj) starts from the interior of a segment
{
θ,
[
θ, θd

]}
and decreases in θj to a

point
(
θd, θ

)
, while hj (θi) starts from the interior of a segment

{[
θ, θd

]
, θ
}
and decreases in

θi to a point
(
θ, θd

)
. The rest of the proof is analogous to (ii) and hence omitted.

(iv) hi (θj) starts from a point
(
θ, θd

)
and decreases in θj to a point

(
θd, θ

)
, while hj (θi)

starts from a point
(
θd, θ

)
and decreases in θi to a point

(
θ, θd

)
. The rest of the proof is

analogous to (ii) and hence omitted. �

Proof of Lemma 4.

(i) (if) For each case, agent i is strictly better off for at least one action and weakly

better off for the other action relative to φ0. For (a), agent j is made strictly better offwhen

φ+ > φ0 occurs after observing Θ̂i,2, .., Θ̂i,K+1 and is made indifferent between φ
− and φ0 for

all other cases because φ− = φ0. For (b), agent j is made strictly better off when φ− < φ0

occurs after observing Θ̂i,1, .., Θ̂i,K and is made indifferent between φ
+ and φ0 for all other

cases because φ+ = φ0. For (c), agent j is made strictly better off for at least one of the

outcomes and not worse off for the other outcome.

(only if) If φ0 < φ− or φ+ < φ0, agent i of some type (types in Θ̂i,1 for φ
0 < φ− and types

in Θ̂i,K+1 for φ
+ < φ0) would veto the new outcome and revert back to φ0. If φ− = φ0 < φ+

but (a) does not hold, either case (c) holds or agent j of some type strictly prefers a lower
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outcome after observing Θ̂i,K+1 and would veto φ
+ to revert back to φ0. If φ− < φ0 = φ+

but (b) does not hold, either case (c) holds or agent j of some type strictly prefers a higher

outcome after observing Θ̂i,1 and would veto φ
− to revert back to φ0. If φ− ≤ φ0 ≤ φ+ and

φ− < φ+ but (c) does not hold, then either that agent j of some type strictly prefers a lower

outcome after observing Θ̂i,K+1 and would veto φ
+ to revert back to φ0 or that agent j of

some type strictly prefers a higher outcome after observing Θ̂i,1 and would veto φ
− to revert

back to φ0. Hence, if none of (a)(b)(c) holds, φ is not PIR relative to φ0.

(ii) In a (K,K)-rule of a low type, agents choosing actions that lead to φ− strictly prefer

a lower outcome after observing actions. So they strictly prefer φ− to φ0 > φ−. Agents

choosing the highest actions together strictly prefer a higher outcome but they are indifferent

between φ+ and φ0 = φ+. If only one agent chooses the highest action, the outcome is φ+.

He/she strictly prefers a higher outcome and is indifferent between φ+ and φ0 = φ+. The

other agent who did not choose the highest action may prefer a higher or a lower outcome,

but he/she is indifferent between φ+ and φ0 = φ+. The proof for a high type is symmetric.

(iii) A high action
[
θdi , θi

]
in a (2, 1)-rule and the highest action Θ̂i,K+1 =

[
θi,K , θi

]
in

a (K + 1, K)-rule satisfy θdi < θi,K , because otherwise θi,K cannot be an indifferent type

after observing a type set of agent j, Θ̂j,1, which is worse than Θj. Therefore, if agent i

after observing
[
θdi , θi

]
prefers a higher outcome, he also prefers it after observing Θ̂i,K+1.

Similarly, a low action
[
θi, θ

d
i

]
in a (2, 1)-rule and the lowest action Θ̂i,1 = [θi, θi,1] in a

(K + 1, K)-rule satisfy θi,1 < θdi . Hence, if agent i after observing
[
θ, θdi

]
prefers a lower

outcome, he also prefers it after observing Θ̂i,1. Therefore, if one of (a)(b)(c) in (i) holds for

a (2, 1)-rule, it also holds for a (K + 1, K)-rule. �

Proof of Proposition.

(i) Consider a (K,L)-rule with K + L ≥ 6. At least one rectangle Θ̂i,k × Θ̂j,l on which

the high outcome φ+ is chosen is characterized by

θ′i ≡ min Θ̂i,k =
{
θi ∈ Θi|

∫
Θj
vi(θi, θj)dFi(θj|θi, θj ∈ Θ̂j,l) = 0

}
,

θ
′
i ≡ max Θ̂i,k =

{
θi ∈ Θi|

∫
Θj
vi(θi, θj)dFi(θj|θi, θj ∈ Θ̂j,l−1) = 0

}
,
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θ′j ≡ min Θ̂j,l =
{
θj ∈ Θj|

∫
Θi
vj(θi, θj)dFj(θi|θj, θi ∈ Θ̂i,k) = 0

}
,

θ
′
j ≡ max Θ̂j,l =

{
θj ∈ Θj|

∫
Θi
vj(θi, θj)dFj(θi|θj, θi ∈ Θ̂i,k−1) = 0

}
.

Define hi : Θ̂j,l → Θ̂i,k by hi(x) ≡
{
θi ∈ Θi|

∫
Θj
vi(θi, θj)dFi(θj|θi, θj ∈

[
θ′j, x

]
) = 0

}
for

x ∈ Θ̂j,l. Similarly define hj : Θ̂i,k → Θ̂j,l by hj(x) ≡
{
θj ∈ Θj|

∫
Θi
vj(θi, θj)dFj(θi|θj, θi ∈ [θ′i, x]) = 0

}
for x ∈ Θ̂i,k. Note that hi(·) and hj(·) are continuous, strictly decreasing, hi

(
θ
′
j

)
= θ′i and

hj

(
θ
′
i

)
= θ′j. Also, hi

(
θ′j
)

=
{
θi ∈ Θi|vi

(
θi, θ

′
j

)
= 0
}
∈
(
θ′i, θ

′
i

)
, i.e., vi(θ) = 0 goes through

a horizontal segment
{
θ|θi ∈ Θ̂i,k, θj = θ′j

}
, because vi(θ) = 0 goes through two vertical seg-

ments
{
θ|θi = θ′i, θj ∈ Θ̂j,l

}
and

{
θ|θi = θ

′
i, θj ∈ Θ̂j,l−1

}
(otherwise θ′i and θ

′
i would not be

indifferent types). Similarly, hj (θ′i) = {θj ∈ Θj|vj (θ′i, θj) = 0} ∈
(
θ′j, θ

′
j

)
, i.e., vj(θ) = 0 goes

through a vertical segment
{
θ|θi = θ′i, θj ∈ Θ̂j,l

}
for the similar reason. Hence, a mapping

t : Θ̂i,k× Θ̂j,l → Θ̂i,k× Θ̂j,l defined by t(xi, xj) = (hi(xj), hj(xi)) has at least one fixed point.

Let x∗ = (x∗i , x
∗
j) ∈ Θ̂i,k × Θ̂j,l be such a fixed point. Consider a decision rule defined on

Θ̂i,k × Θ̂j,l that takes φ
−(< φ+) on the area below and the left to x∗ and takes φ+ on the

remaining area. This is a (2, 2)-rule defined on Θ̂i,k × Θ̂j,k and it is PIR relative to φ
+ on

Θ̂i,k × Θ̂j,k. Therefore, a (K,L)-rule with K + L ≥ 6 is not MI.

(ii) (a) By Lemma 1, constant rules are the only posterior implementable decision rules

they are MI by Definition 8.16

(b) Suffi ciency is immediate by Lemma 1. If a (2, 2)-rule exists, by Lemma 4 (ii),

it can always be made PIR relative to any φ0 ∈ (0, 1) (set φ− < φ0 = φ+ for a low type

and φ− = φ0 < φ+ for a high type). Hence, the condition that no (2, 2)-rule exists is also

necessary. If ∃K ≥ 1 s.t. either a (K + 1, K)- or a (K,K + 1)-rule is PIR relative to φ0,

then by Definition 8 a constant rule with φ0 is not MI. Hence the second condition is also

necessary.

(iii) (a) There is no (2, 1)-rules on Θ̂i,1 and Θ̂i,2, because θi,1 = max Θ̂i,1 = min Θ̂i,2 is the

unique indifferent type of i after observing Θj. There is no (2, 2)-rules of low type on Θ̂i,1

16Suppose thatDefinition 8 is modified such that maximal informativeness does not allow an improvement
by a constant rule too. In this case, constant rules with φ0 ∈ (0, 1) are MI only if agents’ex ante preferences
are not aligned, while constant rules with φ0 ∈ {0, 1} are MI if ex ante preferences are aligned (φ0 = 0 (= 1)
is MI if both prefer a lower (higher) outcome).
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because an indifferent type of i after observing any type sets lower than Θj must be greater

than θi,1. Similarly, there is no (2, 2)-rule of a high type on Θ̂i,2. Hence, by Lemma 1, the

condition is suffi cient.

(b) This proof is similar to (ii) (b).

(iv) (a) First, because Θ̂i,2 × Θ̂j,2 lies above both vi(θ) = 0 and vj(θ) = 0, there cannot

be any improvement on Θ̂i,2× Θ̂j,2. Second, there is no (2, 1)-rule on Θ̂i,2× Θ̂j,1 (because θi,1

is an indifferent type after observing Θ̂j,1) and no (1, 2)-rule on Θ̂i,1× Θ̂j,2 (because θj,1 is an

indifferent type after observing Θ̂i,1). Third, there is no (2, 1)-, (1, 2)-, (2, 2)-rules of a low

type on Θ̂i,1× Θ̂j,1 (for (2, 2)-rules, notice that an indifferent type of i after observing a type

set lower than Θ̂j,1 is greater than θi,1). Hence, it suffi ces to show that if there is no (2, 2)-rule

of a high type on Θ̂i,1 × Θ̂j,1, then there is neither (2, 1)-rule nor (2, 2)-rule on Θ̂i,1 × Θ̂j,2.

Because vj(θ) = 0 crosses a horizontal segment {(θi, θi,1) , θj,1} and vi(θ) = 0 crosses a ver-

tical segment
{
θi,1, Θ̂j,1

}
and both are decreasing, if vi(θ) = 0 crosses a horizontal segment

{(θi, θi,1) , θj,1}, then there is a (2, 2)-rule of a high type on Θ̂i,1 × Θ̂j,1. Too see this, con-

struct hi(x) ≡
{
θi ∈ Θi|

∫
Θj
vi(θ)dFi(θj|θi, θj ∈ [x, θj,1]) = 0

}
connecting hi

(
θj
)

= θi,1 and

hi (θj,1) ∈ (θi, θi,1) and hj(x) ≡
{
θj ∈ Θj|

∫
Θi
vj(θ)dFi(θi|θj, θi ∈ [x, θi,1]) = 0

}
connecting

hj (θi) = θj,1 and hj (θi,1) ∈
(
θj, θj,1

)
. They must cross at least once. Therefore, if there is

no (2, 2)-rule of a high type on Θ̂i,1× Θ̂j,1, then vi(θ) = 0 does not cross a horizontal segment

{(θi, θi,1) , θj,1}. This implies that Θ̂i,1× Θ̂j,2 is above vi(θ) = 0 and that there cannot be an

indifferent type of i after observing any subset of Θ̂j,2. Hence, there is neither (2, 1)-rule nor

(2, 2)-rule on Θ̂i,1 × Θ̂j,2.

(b) This proof is similar to (ii) (b).

(v) (a) First, note that in a (3, 2)-rule vi(θ) = 0 crosses two vertical segments while

vj(θ) = 0 crosses a horizontal segment. Because neither line goes through Θ̂i,1 × Θ̂j,1

and Θ̂i,3 × Θ̂j,2, there cannot be any improvement on these sets. Second, on Θ̂i,2 × Θ̂j,2,

there cannot be (2, 1)-, (1, 2)-, and (2, 2)-rules of a high type (consider θi,1 and θj,1). Sim-

ilarly, there cannot be (2, 1)-, (1, 2)-, and (2, 2)-rules of a low type on Θ̂i,2 × Θ̂j,1 (con-
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sider θi,2 and θj,1). Third, on Θ̂i,3 × Θ̂j,1, there cannot be (2, 1)- and (2, 2)-rules of a high

type (consider θi,2). Similarly, there cannot be (2, 1)- and (2, 2)-rules of a low type on

Θ̂i,1 × Θ̂j,2 (consider θi,1). Hence, it suffi ces to show: if neither (2, 2)-rule of a low type

on Θ̂i,2 × Θ̂j,2 nor (2, 2)-rule of a high type on Θ̂i,2 × Θ̂j,1 exists, then there is neither

(1, 2)- nor (2, 2)-rules of a low type on Θ̂i,3 × Θ̂j,1 and there is neither (1, 2)- nor (2, 2)-rules

of a high type on Θ̂i,1 × Θ̂j,2. Notice that if vj(θ) = 0 crosses the left vertical segment{
θi,1,

(
θj,1, θj

)}
, then there exists a (2, 2)-rule of a low type on Θ̂i,2× Θ̂j,2. Too see this, con-

struct hi(x) ≡
{
θi ∈ Θi|

∫
Θj
vi(θ)dFi(θj|θi, θj ∈ [θj,1, x]) = 0

}
connecting hi

(
θj
)

= θi,1 and

hi (θj,1) ∈ (θi,1, θi,2) and hj(x) ≡
{
θj ∈ Θj|

∫
Θi
vj(θ)dFi(θi|θj, θi ∈ [θi,1, x]) = 0

}
connecting

hj (θi,2) = θj,1 and hj (θi,1) ∈
(
θj,1, θj

)
. They must cross at least once. Similarly, if vj(θ) = 0

crosses the right vertical segment
{
θi,2,

(
θj, θj,1

)}
, then there exists a (2, 2)-rule of a high

type on Θ̂i,2× Θ̂j,1. Therefore, if neither (2, 2)-rule of a low type on Θ̂i,2× Θ̂j,2 nor (2, 2)-rule

of a high type on Θ̂i,2× Θ̂j,1 exists, then vj(θ) = 0 crosses none of the two vertical segments.

This implies that vj(θ) = 0 crosses neither Θ̂i,3 × Θ̂j,1 nor Θ̂i,1 × Θ̂j,2. Hence, there can be

neither (1, 2)- nor (2, 2)-rules on these type sets.

(b) The condition says vj(θ) = 0 crosses none of the two vertical segments, which

was proved in (a). �
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