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Abstract: 
 
 The Blinder Oaxaca decomposition method for defining discrimination from the wage 
equations of two groups has had a wide degree of application.  However, the implication of 
this measure can very dramatically depending on the definition of the non-discriminatory 
wage chosen for comparison.  This paper uses a form of extreme bounds analysis to define the 
limits on the measure of discrimination that can be obtained from these decompositions.  A 
simple application is presented to demonstrate the use of the bootstrap to define the 
distributions of the discrimination measure. 
 

Key words:  Extreme Bounds Analysis, Discrimination, Bootstrap 

 

JEL Codes: J7, C2 



 1

0. Introduction 

A rich literature on the empirical analysis of labor market discrimination has followed 

from the contributions of  Blinder (1973) and Oaxaca (1973).  These researchers were among 

the first to explore this issue econometrically.  It has been understood for some time that the 

dichotomy in the average wages of two groups (usually broken down by sex or race and here 

referred to as the advantaged and the disadvantaged) is due in part to differences in average 

levels of productivity (or skill) (their endowment) and is due in part to disparate treatment of 

the two groups once they enter the labor market (the discrimination).  However, the 

decomposition of the average wage differences into these two different parts has been found 

to vary with the method used.  In this paper we propose a method for defining the bounds on 

these measures.  Although recent contributions to the literature have investigated entry into 

the labor market and selectivity bias as additional reasons for the observation of large wage 

differentials this paper concentrates on the variation within the traditional Blinder-Oaxaca 

decomposition which for gender differences has recently been shown to be the most important 

element in the decomposition of wage differentials (for example see Madden 2000). 

This paper proceeds as follows.  First, we review the decomposition and the methods 

that have been proposed.  Second we define the method for bounding the non-discriminatory 

wage parameters.  Then we show how the measures of discrimination can be bounded.  In the 

fourth section we operationalize the use of the bounds by providing approximations to the 

asymptotic variances of the discrimination measures.  In Section five the bootstrap methods 

are defined for the estimation of the densities of the bounds on the discrimination measures.  

Section six defines a simple application using data that is widely available.   
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1. Decomposition of Wage Differences 

Becker (1971) defined a measure of discrimination as the difference between the 

observed wage ratio and the wage ratio that would prevail in the absence of discrimination.  

This discrimination coefficient can be expressed as 

where aW  is the average advantaged worker's  wage in the market and dW  is the average 

disadvantaged worker's wage in the market.  It is straightforward to see that 

in the absence of discrimination and (2) follows from the usual cost minimization problem.  

Oaxaca (1973) introduced the formulation given in (1).  Following Oaxaca (1973), Cotton 

(1988) noted that (1) can be written in logarithmic form 

where the first term on the right hand side (the difference in the logs of the marginal products) 

is due to differences in productivity of the two groups and the second term on the right hand 

side (ln(δ+1)) is due to discrimination.  Oaxaca (1973) showed that separate linear models of 

the log wage specification can be estimated for disadvantaged or d's ( )�ln( ) dd d
 XW ′= β and 

advantaged or a's ( )�ln( ) aa a
  XW ′= β .  The estimates can then be combined in the following 

way since regression lines must pass through the variables' means: 

(1)      

aa

d d

a

d

W MP  
W MP

MP

MP

  =  
−

   
   
   δ

 
 
 

 

(2)      a a

d d

WMP   =  
WMP
 
 
 

 

(3)    ln ln ln ln ln ( 1)a da d     =      +    MP MPW W− − δ +  

(4)    � �ln ( ) ln ( ) a da d a d     X   XW W ′ ′− = −β β  
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The formulation given in (4) follows Neumark's (1988) notation where  aX  and dX  are 

vectors containing the means of the variables which are presumed to impact productivity (and 

subsequently wages) and a
�β and d

�β  are the estimated coefficients.  Empirical work using (4) 

has been done using two decompositions.  If a dX X X′ ′ ′∆ = −  and � � �
a d∆β = β −β , then (4) 

becomes either, 

or 

where (5) and (6) are found by adding ( )� �
d da a

X   X′ ′−β β  to (5) and adding ( )� �
a ad d

X   X′ ′−β β   to 

(6).  The Oaxaca model decomposes the first term on the right hand side of (5) into the 

portion of the mean log wage differential due to differences in average productivity and the 

second term is due to different wage structures.  The β's are given this interpretation since 

they reflect the returns that individuals will get from their personal characteristics with respect 

to wages.  Unfortunately, as Neumark (1988) (among others) has pointed out, considerable 

variation may exist in the estimate one gets of the wage differential due to discrimination if 

one uses (5) vis á vis (6).  Neumark (1988) presents a nice exposition on where the 

discrepancy lies in using (5) rather than (6) or vice versa.  If (5) is selected as the model to 

detect discrimination, it is assumed the advantaged worker's wage structure becomes the one 

that would exist in the absence of discrimination.  In (6), the disadvantaged worker's wage 

structure would be the prevailing one.  These cases are both straightforward to see since 

without discrimination (where the second term would disappear in (5)), we would attribute the 

mean wage difference to differences in characteristics weighted by the advantaged workers 

wage structure (βa).  Neumark (1988) made this point even clearer by generalizing Oaxaca's 

result to get a broader decomposition: 

(5)    ��ln ( ) ln ( )a d a da W  W X X′ ′− = ∆ + ∆ββ  

(6)    ��ln( ) ln( )a d adW W  X   X′ ′− = ∆ + ∆ββ  



 4

where β* is assumed to represent the wage structure that would prevail in the absence of 

discrimination.  Neumark (1988) shows that (5) or (6) can be generated as special cases of (7) 

and thus emphasizes the import of what one assumes about β* in attempting to measure 

discrimination.  Cotton (1988) performed a similar analysis and argued that β* should be 

constructed as a weighted average of advantaged and disadvantaged worker's wages weighted 

by the ratio of the disadvantaged to the advantaged labor force representation.  Neumark 

(1988) rightly notes that this is an ad hoc specification and proposes finding β* based on a 

more theoretical foundation. 

Specifically, Neumark (1988) assumes the employer derives utility from profits and 

from the discrimination-based composition of the labor force.  The utility function is assumed 

to be homogenous of degree zero with respect to the labor input.  This means that if the 

numbers of the two groups of workers are changed proportionately, utility is unchanged.  

Neumark interprets this to mean that employers only care about the relative proportions of the 

two types of workers.  Neumark's model ultimately leads to, 

(where Na is the number of advantaged workers and Nd is the number of disadvantaged 

workers) or that the marginal product of the jth worker depends on the relative proportions of 

the various types of labor so that since Wj = MPj in the absence of discrimination, the non-

discrimination wage can be found from (8).  Neumark (1988) finds the estimator of the non-

discrimination wage structure (β*) by first running regressions on the two sub-samples to get 

fitted log wage values and then after combining the fitted values of the log wages, by then 

running a regression on the whole sample.  Those coefficient estimates will then give an 

estimate of β*.  One difficulty with the implementation of Neumark�s method is that the 

(7)  ( ) ( )��ln ( ) ln ( ) * * *
a da d a d

    X   X  X   W W  ′ ′ ′− = ∆ + − +β β −ββ β   

(8)     aj aj dj dj
j

aj dj

 + W N W N = MP  + N N
 



 5

sample used in estimation may not refect the number of employees a particular employer has 

hired in each category.  It is quite common to apply these methods to data based on a 

sampling procedure that is not influenced by the employer�s actions.  Neumark's (1988) 

weighting procedure is similar to one used by Oaxaca and Ransom's (O-R) (1988) which was 

used in the context of estimating union wage effects.  Oaxaca and Ransom (1991) also 

proposed a weighting matrix which was specified by 

where X is the observation matrix for the pooled (both classes of workers) sample and Xa is 

the observation matrix for the advantaged sample.  The interpretation of ΩN as a weighting 

matrix is readily seen by noting that a a d dX X  = X X  X X  ′ ′ ′+ , where Xd is the observation matrix 

for the disadvantaged sample. 

O-R showed that 

where 
*β  is the ordinary least squares estimator from the pooled sample (containing both 

types of workers.)  Thus, this weighting scheme was found by O-R to be the ordinary least 

squares estimator from the combined groups as the wage structure that would exist in the 

absence of discrimination.  They noted that this estimate of the common wage structure is not 

in general a convex, linear combination of the separately estimated advantaged and 

disadvantaged workers' wage structures and they get a result similar to that of Neumark. 

As O-R note, Cotton's (1988) weighting is equivalent to O-R's when ( ) ( )aN
N  X X′  = 

( )a aX X′ , if the first and second sample moments are identical for all workers.  And because 

the sample mean characteristics for the advantaged and disadvantaged workers are the same, 

all of the differences in wages are due to discrimination.   

(9)     1( ( ))N a a  X  X  X X−′ ′=Ω  

(10)     ( )*
N a N d

� �β = Ω β + −Ω βI  
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To summarize the literature on the establishment of a hypothetical ideal (with no 

advantage or disadvantage given) wage structure (β*) we summarize the findings in Table 1 in 

which we have identified the various definitions of Ω as proposed in previous research. 

 We now propose a different method for determining the extent to which the definition 

of β* matters on the resulting definition of discrimination. 

2.  Bounding β* 

Leamer�s 1978 monograph proposes a method for the determination of the fragility of a 

regression result.  This is done by subjecting regression models to an analysis that determines 

the extreme bounds (EB) of parameter estimates based on the assumption of a prior 

distribution for selected parameters.  In the usual application this is interpreted as a means for 

the comparison of all possible regression model specifications in which various subsets of 

regressors are considered for omission from the regression.  The most widely cited example 

of this form of analysis can be found in Leamer�s 1983 paper entitled �Let�s take the con out 

of econometrics�.  Subsequently a number of papers have appeared that have criticized the EB 

approach to model specification analysis most notably McAleer Pagan and Volker (1985) as 

focusing on a very narrow type of specification choices and for the tendency for these 

analysis to reject too many models to be of much use.  However, a resurgence of applications 

and modifications of Leamer�s EB analysis have appeared in Levine and Renelt (1992), 

Gawande (1995), and Temple (2000) among a number of others.  In this paper we do not use 

the EB analysis per say in that we do not investigate the implications of regression 

specification changes.  However, we use one of the fundamental results on which EB analysis 

is based which allows us to define a bound all the possible parameter estimates that may be 

used for the nondiscriminatory wage structure.  Then we solve an optimization problem that 

allows us to define two nondiscriminatory wage structures.  One that will maximize the 

measure of discrimination and the other that will minimize the measure of discrimination. 
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Chamberlain and Leamer (1976) (C-L) consider the case of a vector β* that can be 

defined as a matrix weighted average of two vectors  

(11)   ( ) ( )1 � �*
a d a a b d  =   + −+ β ββ H H H H  

where the weighting matrices  and a dH H  are positive definite symmetric.  In the applications 

they consider these two sets of parameters are identified in terms of a Bayesian estimator 

where one group would be identified as the data and the other as the prior with the resulting 

ideal or non-discriminatory set of parameters as the posterior and the H�s are the 

corresponding precision matrixes (or inverse covariance matrixes).  Algebraically there is no 

distinction between the prior and the data though in practice Bayesian methods are often 

applied where detailed data distributions are defined but priors are non-informative.   

 In the case of the decompositions defined by O R C,   and Ω Ω Ω  as defined in Table 1, we 

can set a = ΩH  and d = −ΩH Ι .  In the case of the Neumark decomposition a a aX X′=H  and 

d d dX X′=H  and the resulting (posterior) mean vector of parameters is equivalent to the 

Bayesian interpretation of the OLS estimator when there is an addition of data.  Thus Xa 

would be added to Xd to form a total sample from which the estimate would be obtained. 

Where the matrix Ω is a positive definite symmetric matrix.  Consequently, wage 

decompositions provide an application of methods developed for the consideration of these 

linear Bayesian models.   

 From Theorem 2 C-L prove that the matrix weighted average (β*) must lie within the 

ellipsoid defined by 
* * � �( ) (  )   ¼   c c′ ′− − < ∆β ∆ββ βH H .  Where ( )� � 2d ac = β +β  the 

arithmetic average of the parameter vectors and H is a sample precision matrix unique up to a 

scalar multiple.  This provides a constraint on the extreme values of β* as: 

(12) ( )� �I -   *
a d  =   +  Ωβ Ω ββ  



 8

Which implies that any possible value of β* defined by the different values of Ω must be 

contained within or on the surface of this ellipsoid.  

From the relationship in (7) we have: 

ln ( ) ln ( )a d     E + D W W− =  

where: 

(14)   ( ) ( )�� * *
a da d

D          X X = − +β −ββ β′ ′   

D is the difference in the log wages that is attributable to the differential payment schedule 

that is often referred to as �discrimination�.  Where the term ( )� *
a a
 X −ββ′  measures the over 

compensation paid to the advantaged group and ( )�*
d d

  X −ββ′  measures the under 

compensation paid to the disadvantaged group. 

(15)   *E X   ′= ∆ β  

E is the difference that is due to the differences in the worker�s characteristics/human capital 

which is referred to as �endowment�.  We can solve for the value of *β  as the value that either 

maximizes or minimizes D.  By implication, since ln( )W∆  remains constant, minimizing D  

maximizes E and maximizing D is equivalent to minimizing E.  Thus we solve the following 

optimization problem: 

Where we use the full sample cross products matrix X X′ as the sample precision matrix H or 

the appropriate inverse of the heteroscedastic consistent covariance matrix.  The constrained 

optimization can then be defined by a Lagrangian of the form: 

(13)    * * � �( ) ( ) ¼ c c   ′ ′− − = ∆β ∆ββ βH H  

(16) ( ) * * � �Max/Min  ,  st  (  ) (  )  =  ¼*E X  c c′ ′ ′= ∆ − − ∆β ∆ββ β βH H  

(17) ( )* * � �( ) ( ) ¼*L = X   c c′ ′ ′∆ −λ − − − ∆β ∆ββ β βH H  
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The first order derivatives of L with respect to β* and λ are given as: 

We can solve (18) for the optimal value of β* ( *�β ) by setting this expression equal to zero and 

we get: 

then substituting 1�c  X−+ ρ ∆H  for *�β  into (19) which is also set to equal to zero we can solve 

for �ρ  where we get two solution vectors  

(21)     !
1

� �� �,  where ½ = 
X X−

′∆β ∆β
ρ ± φ φ =

′∆ ∆
H

H
 

 Then two solutions for the optimal β* are found to be: 

(22) * 1�β ii
= c X−+ γ φ ∆H  

where 1 1γ =  and 2 1γ = − . 

The second order conditions can be established by evaluating the matrix of second 

derivatives evaluated at each solution as: 

Because the precision matrix ( )H  is a positive definite matrix and � 0φ > , β*
1 will be the 

maximum of E  and the minimum of D and β*
2 will be the minimum value of E and the 

maximum of D and we can determine the bounds on the possible values of the measure of 

discrimination.  Note that when βd = βa then β* = βd = βa.   

(18) ( )*
*

 L = X 2  c
 
∂

∆ − λ −β
∂ β

H  

(19) * * � �( ) ( ) ¼ L = c c∂ ′ ′− − − ∆β ∆ββ β
∂ λ

H H  

(20) !
!

* 1 1� � where   =
2 

 = c  X  +  , −β +ρ ∆ ρ
λ

H  

(23) 
( )

( )

*2 1

2*

� � �2
�2

i
i

L X
   

X

− β λ φ φ∆∂
 = − γ
 ′φ∆∂ λβ  

H
0  
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3.   Bounds on the measure of discrimination (D). 

 The extreme values of *
iβ  can now be used to define the extreme values of the 

discrimination measure (D) which we will denote as *
iD .  From the definitions above we have 

that * *�� ln( )i iD W X ′= ∆ −∆ β  or by substitution this can be shown to be: 

(24)   * *�� ln( )i iD W X ′= ∆ −∆ β  

Thus  

(25)   * 1� �� ln( ) ½i iD W X c X X−′ ′ ′= ∆ −∆ − γ ∆β ∆β ∆ ∆H H  

recall that 1 1γ =  and 2 1γ = − .  Thus the difference between the limiting values of the 

discrimination measure is given by  

(26)   * * 1
2 1

� �� �D D X X−′ ′− = ∆β ∆β ∆ ∆H H  

which is a weighted function of differences in the vector of parameters ( �∆β ) and ( X∆ ).  Thus 

the greater the difference in the parameters or the greater the difference in the discrimination 

measures the larger the span of values one might obtain from any discrimination measure 

employed.   

The measure D can also be shown to be directly related to the measure of discrimination 

defined in (1) as δ.  From the relationship in (7)  and (14) and (15) we have: 

(27)   ln a

d

W    E + D
W
  = 
 

 

If we are interested in removing the influence of the differences in endowments, or 

equivalently making the assumption that a dMP MP=  we can concentrate on the value of D. 

(28)   ln a

d

W   D
W
  = 
 

 

or equivalently: 
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(29)   ( )expa

d

W   D
W
  = 
 

 

as the ratio of the average wage for the advantaged group to the disadvantaged group.  And 

we define: 

(30)   
( )

( )
exp

1
a d

a d

W  D W

W W

=

= + δ
 

by equation (1).    Thus we have that: 

(31)   exp( ) 1Dδ = −  

Or that δ  is a monotonic function of D and the maximization of D will coincide with the 

maximum of δ  and the minimization of D is also the minimum value ofδ .  Note that when 

.3D <  the approximation that Dδ ≈  can be used.   

 We can define the estimate of δ  using any particular definition of *�β as: 

(32)   *� �exp 1i i D δ = −   

 In order to use the estimated values of D and *β to make inferences we need to be able 

to make probability statements concerning their estimates.  A first step in making these 

inferences is the derivation of an estimate for their variances.  

4. The asymptotic variance of �D  and � *β  

 In a companion paper to their 1994 paper Oaxaca and Ransom (1998) present the 

methodology for the computation of the variances used in their earlier paper.  The technique 

they employ is an application of the widely used �delta method� in which a first order Taylor 

series expansion is used to linearize D.  In this section we also apply the delta method but we 

consider not only the estimated parameters but in a difference from Oaxaca and Ransom we 

also assume that the means of the characteristics of each group are stochastic as well.  Thus D 

is defined in terms of four random vectors ( , 
� �, , and  a d a dX Xβ β ) for which we can define 
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estimates of their covariances.  By stacking these four vectors we define a vector of length 4k 

given as θwhich is defined as: 

(33)   
1 4

� � �
a d a d k

X X
×

 ′ ′ ′ ′ ′= β β θ  

Where the covariance of �θ is defined as Ψ  and we can define this covariance as: 

(34)   

4 4

a

d

a

d k k×

Φ 
 Φ =  Σ
 Σ  

0 0 0
0 0 0

Ψ 0 0 0
0 0 0

 

The estimates of iΣ are the covariances of the means of the attributes for each group and the 

( )�covi iΦ = β  is the appropriate estimator of the parameter covariance matrix which may need 

to be corrected to account for heteroskedasticity, a commonly encountered problem in the 

estimation of wage equations, or may be the product of a maximum likelihood estimation in 

the case that the earnings data are not provided in continuous records. 

 In order to estimate the variance of the measure of discrimination we use the delta 

method which results in: 

(35)   " ( )
� �( ) ( )��var D DD

′   ∂ θ ∂ θ
=    ∂θ ∂θ   

Ψ  

Consequently this estimate requires the definition of the gradient of D with respect to the 

parameters in θ .  For the previously defined set of discrimination measures defined in 

Section 1 of this paper, as determined by the weighting matrix Ω (as summarized in Table 1), 

we find the following estimate of the variance: 
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(36)   

" ( ) ( ) ( )
( ) ( )
( ) ( )

( )( ) ( )( )

* *

* *

� �� �var

� ��

�

�

a a a

d d d

a a a

d d d

D

X X X X

X X X X

′= β −β Σ β −β

′+ β −β Σ β −β

′′ ′+ −Ω ∆ Φ −Ω ∆

′′ ′+ − −Ω ∆ Φ − −Ω ∆I I

 

In the case of the extreme values of D that we have derived in Section 2 we do not define a 

unique value for the weighting matrix Ω.  Thus *β  is not a linear function of the parameter 

estimates for each case ( �
aβ  and �

dβ ) consequently we need to derive a different expression for 

the approximate variance based on the equation (25) given as: 

(37) 

" *

1 1

1 1

� ��� �var( )

� ��� �

� ��� �½ ¼ ½ ¼

� ��� �½ ¼ ½ ¼

i a i a a i

d i a a i

a i a a i

d i a d i

D c X c X

c X c X

X X X X

X X X X

− −

− −

− −

− −

′   = β + − γ ρ ∆ Σ β + − γ ρ ∆   
′   + −β − + γ ρ ∆ Σ −β + + γ ρ ∆   

′   + − ∆ − γ ρ ∆β Ω − ∆ − γ ρ ∆β   
′   + − − ∆ + γ ρ ∆β Ω − − ∆ + γ ρ ∆β   

1 1

1 1

H H

H H

H H

H H

 

again where 1 1γ =  and 2 1γ = − .   

 In addition, we can define the approximate covariance of both of the extreme value 

parameters ( * *
1 2

� � and β β ), as defined in equation (22) as: 

(38)  
"

[ ] [ ] [ ] [ ]{ }
* 2 1 1� � ��cov( )

� �¼ +

i a d

i a i i d i

− −′  β = ρ Σ + Σ 

′ ′   + γ Φ γ + − γ Φ − γ   

Q H H Q

I + G I G I G I G
 

where 1X X −′= − ∆ ∆Q I H , 1�� X −′= π ∆β∆G H H , ( )( ) 12 1� �� ¼= X X
−−′ ′ρ ∆β ∆β ∆ ∆H H , and 

( ) ( )½ ½1� �� = X X−′ ′π ∆β ∆β ∆ ∆H H . 
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5.   Bootstrapping standard errors and confidence intervals for D 

 An alternative to constructing the Wald tests using the approximate variances defined in 

(37) and (38) is to employ Efron�s (1982) bootstrap to construct alternative standard error 

estimates and confidence intervals that are not based on any particular distribution.  The 

bootstrap has been applied in the computation of discrimination measures most notably by 

Silber and Weber (1999) where they compare the values for the discrimination measures 

defined in Table 1 for the differences between �Easterners� and �Westerners� in the Israeli 

labor market.   

 The bootstrap involves the recomputation of multiple values of the coefficients of 

interest * *��(  and )i iD β  by drawing with replacement from the data used.  Since Efron�s original 

contribution a number of enhancements have been proposed to the bootstrap methodology.  In 

difference to Silber and Weber who employ the naive percentile approach on the measure of 

discrimination, we follow Horowitz�s (2001) advice to base the bootstrap only on a pivot 

statistic.  We use a conditional bootstrap for the regression coefficients as proposed in 

Freedman and Peters (1984) in which the model is assumed but the regression errors are 

sampled with replacement.  The confidence intervals are constructed using a bootstrap-t 

technique as described in Efron and Tibshirani (1993) which is equivalent to using the 

asymptotic t-statistic as our pivot.  The sampling with replacement is conducted using a 

second-order balanced resample method proposed by Davison, Hinkley and Schechtman 

(1986).  This means that the average characteristics of each group ( and a dX X ) are both 

resampled using the same sample as the residuals used to recompute the parameter estimates 

( � � and a dβ β ).  In addition, these samples are drawn in such a way to insure that the frequency 

of choosing each observation is equal. 
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 In the case of the measures of discrimination D we use the t-ratio of the estimate to the 

estimated standard error as defined in (36) and (37) to form the appropriate pivot statistic.  A 

statistic defined as a t-statistic is computed for each bootstrap simulation which is defined as: 

(39)  ( ) "� � �var( )b b bt D D D= −  

where the �
bD  denotes the estimated discrimination measure for bootstrap simulation (b) and 

�D  is the point estimate based on the data.  These statistics are then rescaled to generate a 

bootstrap-t value of the discrimination measure designated as bD#  which is defined as: 

(40)  "( )� �var( )b bD t D D= +#  

6. A Simple Example 

The differences in average wages for men and women in the US has been well 

documented.  A number of papers have shown how this differential has changed over time in 

the US indicating that the differential has been decreasing over time (see Polachek and Robust 

2001).  The example we use here computes the various measures of discrimination as we have 

defined in the context of males as the advantaged group and women as the disadvantaged 

group.  We use a small random subset of the 1985 Current Population Survey (245 women 

and 289 men) from Berndt(1991) ( CPS85 from the data for chapter 5).  Two regressions are 

estimated by gender, with the log of income as the dependent variable and the years of 

education and potential experience (as approximated by the number of years since left school) 

as the independent variables.  The mean and standard deviation of the data are listed in Table 

2.  The regression parameter estimates are listed in Table 3.  From these regressions we find 

that men are compensated at almost double the rate for their potential experience than women 

(.0163 versus .0089) although education seems to be better accounted for in women.  

In Table 4 we list the various measures of discrimination (in terms of the log of the 

income).  The differences of the means of the log of wages which includes both the 
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endowment differences and the difference attributable to discrimination is found to be .2313.  

From the rest of the rows in Table 4 we find that all of the point estimates of the measures of 

discrimination are larger than this value which would indicate that the endowment has a 

negative effect on the wage difference.  This table includes the point estimate in the 3 column 

and the approximate standard error in column 4.  In addition, we have included the 

bootstrapped values of the mean, standard error, and the 95% confidence bounds.  Note that 

for the traditional measures of discrimination the Dd to Dn measures the point estimate and the 

mean of the bootstrap estimates are very close indicating little bias.  Also the asymptotic 

standard error estimates are almost exactly equal to the bootstrap values.  In the bootstraps 

performed here we used 10,000 replications once we determined that more replications did 

not effect the results obtained to any significant degree. 

Table 5 lists the extreme bounds for the parameter estimates *( )iβ  along with the 

asymptotic standard error estimates.  We see that the non-discriminatory wage parameters that 

maximize the discrimination are those that result in parameters for potential experience that 

are small and for which we could not reject the hypothesis that they are equal to zero.  And 

for the minimum set of non-discriminatory parameters are those that have the greatest 

parameter for the influence of potential experience and for education as well.  In the last two 

rows of Table 4 we list the discrimination measures based on the bounds of the non-

discriminatory wage parameters *( )iβ .  Note that * *
1 2[ ]d aD D D D< → < , the upper and lower 

bound estimates act as the limits on the estimates of the all the alternative discrimination 

measures.  In this example, the extreme measures the asymptotic and bootstrap values differ 

more than for the other measures.  The average of the bootstrapped values indicates that the 

point estimate of *
1D  (based on the minimum for the discrimination measure) may be 

positively biased and *
2D  (based on the maximum for the discrimination measure) may be 

negatively biased, though in neither case is the estimated bias more than 5%.  From the 
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bootstrapped confidence intervals we find that the 2.5% lower bound for the minimum value 

of the discrimination measure is .1545 and the 97.5% upper bound for the maximum of the 

discrimination measure is .3700.  Thus we can bound the estimate of the discrimination 

measure although these probability statements ignore the probability of choice between the 

two extremes and any variation that may be due to alternative model specifications. 

An equivalent method for demonstrating the probability bounds for the discrimination 

measure is by examining the density of the two extreme measures.  Figure 1 displays two 

kernel density estimates as determined by the 10,000 studentized bootstrap values for each 

measure.  Note that the density estimate for the lower bound appears to be estimated with 

greater precision than the upper bound as was the case for the bootstrapped variance estimate 

as borne out by the bootstrap estimate of the standard deviation for *
1D  as opposed to the 

standard deviation estimate for *
2D .  However it is apparent from this figure that the 

examination of the minimum discrimination measure results in an unambiguous conclusion 

that discrimination is non-zero in this case.  In other words we could reject the hypothesis that 

discrimination was zero with a very low probability of making an error.  Thus by using the 

minimum measure of discrimination and the lowest bound we still find that discrimination is 

positive. 

A caveat for this application is in order.  The model specification may create a larger 

degree of measured discrimination due to the lack of more detail as to education type, 

occupation, characteristics of the employer, family circumstances, and the proxy for 

experience.  In particular, the use of potential experience alone for both men and women is 

probably responsible for increasing the measured discrimination due to the inadequacy of this 

variable to account for the differential in accumulated human capital that has been shown to 

explain such a large proportion of the gender wage gap (see Polachek 1995).  Filer (1993) 

demonstrates empirically that this is an inappropriate proxy for a comparable experience 
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measure for both men and women by demonstrating how other proxies change the gender 

differentials in coefficients.  Specifically potential experience does not account for potential 

gaps in experience which are more prevalent for married women and women with children 

than for men.  By measuring less actual experience for women than for men it is expected that 

the parameter in a wage equation would be less as well. 

7.  Conclusions 

 It is well known that the various wage differential decompositions traditionally done in 

analyzing discrimination rely heavily on the assumption regarding the non discrimination 

wage structure β* (see equation (7)).  Several authors have attempted to motivate the 

specification of this "no discrimination" wage structure based on the objective function of the 

employer in practicing discriminatory behaviour.  The purpose of this paper has been to show 

that the wage structure that would prevail in the absence of discrimination can in fact be 

bounded when we assume that the information to establish this wage structure is a weighted 

average of the wage structure for the advantaged and the disadvantaged groups.  Based on a 

theorem from  Chamberlain and Leamer (1976) we showed in this paper that the non-

discrimination wage parameters (β*) must lie within an ellipsoid defined by the data and the 

regression results for each group.  By using this method we are able to select the β* which will 

maximize (minimize) the level of the discrimination in the labor market.   

 In addition to deriving the formulas for the estimated parameters for the non-

discrimination wage structure that minimizes the level of discrimination we also specify the 

approximate standard errors.  The point estimate and the approximate standard errors can be 

used to define a pivot statistic which can be used to bootstrap the discrimination measures.  

Thus it is possible to construct an estimate of the density of the discrimination measures 

which can then be used to make probability statements concerning the presence of 

discrimination.  In the example used here we found that the measure of discrimination that 
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was constructed was unambiguously positive as defined by the distribution of both the 

minimum discrimination measure. 
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Table 1   The proposed values of the weighting matrix Ω. 

 
Weighting Matrix Author 
 
ΩO = I, or 0 

 
Oaxaca (1973) 

 
ΩR = ½I  

 
Reimers (1983) 

 
ΩC = (Na/N) I 

 
Cotton (1988) 

 
ΩN = (Xa′Xa + Xd′Xd)-1 (Xa′Xa) 

 
Neumark (1988) 

 
 

Table 2  The characteristics of the simple example. 
 

Gender Variable Mean SD
natural logarithm of average 
hourly earnings 

2.165 0.534

potential years of experience 
(AGE-ED-6) 

16.965 12.135

Men  (289 obs) 

years of education 13.014 2.768
natural logarithm of average 
hourly earnings 

1.934 0.492

potential years of experience 
(AGE-ED-6)  

18.833 12.613

Women  (245 obs) 

years of education 13.024 2.429
 
 

Table 3  Result of simple model regression 
 

Gender Variable �β  SE t-statistic 
(Constant) 0.7128 0.1614 4.4168
potential years of 
experience (AGE-ED-6) 

0.0163 0.0024 6.6904
Men  
(R2=.232, �σ = .469) 

years of education 0.0903 0.0107 8.4298
(Constant) 0.3110 0.1771 1.7564
potential years of 
experience (AGE-ED-6)  

0.0089 0.0023 3.8796
Women  
(R2=.262, �σ = .423) 

years of education 0.1117 0.0119 9.3859
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Table 4.  Measures of discrimination with bootstrapped statistics based on simple model. 
 
 

Bootstrapped values Variable Reference 
Parameters 

Est Asymptotic 
Std Dev, Mean Std Dev 2.5% 97.5% 

ln( )Y∆   .2313 .0446 .2313 .0452 .1456 .3182
Dd �

dβ  .2491 .0396 .2491 .0399 .1737 .3257

Dr ( )� �½ a dβ +β  .2559 .0391 .2559 .0394 .1812 .3321

Da �
dβ  .2627 .0397 .2627 .0401 .1866 .3402

Dc ( ) ( )� �
a a d d a dn n n nβ + β +  .2565 .0392 .2565 .0394 .1816 .3327

Dn �β  .2543 .0391 .2543 .0392 .1800 .3302
*
1D  *

1β  .2327 .0549 .2287 .0437 .1545 .3025
*
2D  *

2β  .2790 .0473 .2831 .0462 .2005 .3700
 

Table 5  Extreme Bounds comparison parameter estimates ( � *
iβ ) 

 
 

Bound Variable �β  SE (asy) t-statistic 
(Constant) 0.0867 0.3950 0.2195
potential years of 
experience (AGE-ED-6) 0.0229 0.0044 5.2631

Min of D ( *
1

�β ) 

years of education 0.1196 0.0284 4.2095
(Constant) 0.9367 0.3970 2.3596
potential years of 
experience (AGE-ED-6) 0.0023 0.0042 0.5472

Max of D ( *
2

�β ) 

years of education 0.0825 0.0286 2.8805
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Figure 1.  A comparison of the estimated densities of the t-bootstrapped values of *

1D  and *
2D  


