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Summary  Whittaker graduation is applied to the spatial smoothing of insurance data. Such
data (e.g. claim frequency) form a surface over the 2-dimensional geographic domain to which
they relate. Observations on this surface are subject to sampling error. They need to be
smoothed spatially if a reliable estimate of the underlying surface is to be obtained.

An earlier paper provided a measure of smoothness of a surface. This has been incorporated in
2-dimensional Whittaker graduation to effect the necessary smoothing. The details of this are
worked out in Section 4. The procedure is illustrated by numerical example in Section 5. The
Bayesian interpretation of this form of spatial smoothing is discussed, and used to assist in the

selection of the Whittaker relativity constant.

Keywords:  Geographic premium rating, spatial smoothing, Whittaker graduation.
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1 Introduction

In certain lines of insurance business the risk varies geographically. This is typical of domestic
lines, where the geographic variation may be related to directly geographic factors (e.g. traffic
depsity, proximity to arterial roads in auto insurance) or socio-demographic factors (perhaps

affecting theft rates in house insurance).

In such cases it will be desirable to estimate the geographic variation in risk premium and to
price accordingly. Usually data will be available by quite fine geographic divisions, e.g. zipcodes
in the US, postcodes (or sub-postcodes in the UK). The subdivisions will typically be fine

enough that sampling error in each is substantial.

As a result, a mapping of sampled geographic risk takes on a rather patchy appearance. Despite
this, general trends in geographic variation will often be visible. It is necessary to find a way of
smoothing sampling error from one subdivision to the next in order to estimate the underlying

geographic signal.

Taylor (1989) applied 2-dimensional spline functions to this problem. Boskow and Verrall
(1994) provided an alternative treatment which made use of the Gibbs sampler to implement
a Bayesian revision of the observed observations on subdivisions. The Bayesian framework
recognised the magnitudes of sampling error and also incorporated the concept of smoothness

over neighbouring subdivisions.
The present paper takes a rather similar approach, applying an accepted actuarial technique for

compromising between smoothness and fit to data. This is Whittaker graduation, which has

also been shown (Taylor, 1992; Verrall, 1993) to have a Bayesian interpretation.
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2 Model and notation

Consider a random variable Xwhose mean p is characterised by # covariates. One covariate

comprises a pair of spatial (Cartesian) coordinates.

For example, X might denote claim frequency, and the coordinates might represent the centroid

of a postcode region.

Although # may be any natural number, it will suffice here, and maintain brevity of notation,
if the concepts are illustrated for the case #=3. The extension to the general case will be

obvious.

Thus, let 4,5,k represent specific values of the 3 covariates, with ¢ representing the spatial
member. These values define a cell of data {qu, Xijk}, where Nijk is a volume measure. In the

above example it might be number of years of policy exposure.

Consistent with the notation given above,

E[X,] = py (2.1)
Suppose that the spatial effect is separable as follows:

M = Vi ij, (2.2)

for suitable parameters v, ij.

It will be supposed that the v, are to be estimated, but the 0, are known, perhaps by means of

an earlier estimation program.

There is one degree of redundancy among the parameters v,, ij. It will often be useful to set
the scale of the 8, so that they are scattered about 1. If this is done, then 8,, can be thought

of as an adjustment multiplier to correct the quantity v, so that it is specific to cell k.
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Define

Y, = ,% N, (X, /9,-;,) ENW' (2.3)

On this definition, Y is the summary of experience in region ¢ but standardized for other
covariates, as discussed by Brockman and Wright (1992). This adjustment to data is found in
Taylor (1989) and Boskow and Verrall (1994).
By (2.1)-(2.3),

HY] = v, (2.4)
showing that Y isolates the spatial effect. It will be assumed that

Wy] = o*/N, (2.5)
with

N, - ;‘f Ny (2.6)

and for some suitable (though perhaps unknown) constant ¢ > 0.

This last assumption is convenient but will often involve some degree of approximation. For

example, when X denotes claim frequency with Ng‘k Xijk Poisson, one finds that
Y] = ¢v,/N, 2.7)
with

¢, = E(Nyk/ N) 8. (2.8)

At this point, it is useful to write v; in the alternative form:

v, = v(x), (2.9)
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expressing the fact that v:R?-R is a function of the spatial coordinates .

Similarly, write Y, = Y(x;).
3 Whittaker smoothing

Whittaker graduation was devised by Whittaker (1923) and introduced into the actuarial
literature by Henderson (1932). Since then, it has appeared in a number of standard actuarial
texts, e.g. London (1985).

All of these early treatments involved smoothing a 1-dimensional sequence of observations. The
generalisation to 2 or more dimensions was begun by McKay and Wilkin (1977), and a number
of subsequent papers have published developments (e.g. Lowrie, 1992). The most recent,

relevant to the present paper, is Taylor (1996).

Consider points x € R?, Euclidean 2-space. The objective is to find values W{x;) which

provide a smoothed version of the Y(x;) and estimate v(x;). Define

D=XN, [Yx) - W(xi)]z (3.1)
which is a measure of the deviation, or error, in the observations relative to their smoothed
version.

The use of {NJ as the set of weights in (3.1) is justified by assumption (2.5).

Define

F =D +#S, (3.2)

where § is a suitably chosen measure of smoothness of W(+), and £(0 <k <) is the tuning
constant, or relativity constant. This constant is often chosen empirically, although Taylor
(1992) and Verrall (1993) have given an analytical basis.
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Whittaker smoothing consists of choosing {W(x’.)} $o as to minimise (3.2), thus achieving a

compromise between error and smoothness.

The choice of § was considered by Taylor (1996) in the case where {x’} is a lattice with unit
step size. It was shown there (example at the end of Section 4) that, if 2-dimensional quadratics

may be considered smooth, then

§ = X 8x), (3.3)
with
S(x) = B[AL W) + AW ()]
+ (AW + 208, W] + [A, WP, (3.4)
and
A W(n) = AJA W), g = 12, (3.5)
A W) = Ware) - Wix), (3.6)

with ¢,, ¢, denoting (1, 0) and (0, 1) respectively. Thus, Aq is the difference operator in the
direction of the g-th coordinate axis.

4 Application

4.1 Smoothing

The basic procedure of Whittaker smoothing needs to be adapted to the situation in which the
arrangement of points x at which Y(.) is sampled is irregular, rather than forming a lattice as
in Section 3. In the case of general {x,.}, it is not clear how the differences qu Wix,) should be
calculated.
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Note that, in the lattice case, W(y) is required at 6 distinct values of y to determine the 3 terms A;q Wix)
ata fixed x. This reflects the fact that a general quadratic defined on 2-space, is defined by 6

parameters.

One possibility therefore would be to select 5 points “close to” a given x and fit a quadratic
Q.(") to the 6 points. The values of qu W(x) for that x could then be read off from the
coefficients of Q (-).

To the extent that Q (*) is merely an approximation for W{*) in the neighbourhood of x, there
will be disagreement between the functions Q,(-) defined by different x. Fitting a quadratic
through precisely 6 points will cause that function to be highly sensitive to the values assumed
at those points. In the same way, working with a function f:R~R, fitting a 5th degree
polynomial to each set of 6 consecutive values {f(x), fx+l), ..., x+5)} would be liable to

produce eccentric fitted functions and a high degree of conflict between them.

For this reason, it is doubtful that the most meaningful smoothness measure is obtained by the
precise quadratic fitting described above. One alternative, and preferable, procedure is to fit
each Q () by reference to a larger number of points than 6. Let # be the number of such

points.

This is done in Appendix B and the smoothness measure S, in (3.4) calculated by reference to
the fitted Q (). The calculation procedure is as follows.

Suppose that Y(x) is observed at m points x,, ..,% . Let z denote the vector

1
[W(xl), v W(xm)]T of smoothed observations. Let yjl), vy yx(h) be the subset of {x’}

consisting of the 4 points closest to x, including yx(l) =x andlet 2, = [W(yx(l)), wny W(yx(h))]T.

Forany yeR?, write y = (y,, y,) and

¥® = 00, ¥ 99 Y30 ¥ ¥ DT (4.1)
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and define X, as the 4 X 6 matrix with [y9]® in its  -th row.

Define

A =X x) X7,

Sxn (4.2)

and B, as the 6 Xm matrix containing the 4 columns of A, placed within B, in the same

positions as the components of z, occupy in z.

Define Ex as the 3 x4 submatrix of B consisting of the latter’s first 3 rows. Then

S) = z"BI C'B, 2, ‘ (4.3)
S, =s"[EBCB]s (4.4)

with
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1 0 Yy,

c=(0 % o0

|5 0 1 (4.5)

The Whittaker criterion (3.2) may be written in the matrix notation established above.

F=(Y-2)TA (Y-2) +k 2T M z, (4.6)

where Y is the m-vector of observations Y(x;),

A = diag(Ny, .., N.), (4.7)

M=XB C 73%, (4.8)
13

Minimisation of F is carried out by differentiating (4.6) with respect to z and setting the result

equal to zero. This yields the smoothed vector

z=1+kA'MTY. (4.9)

The smoothed vector is equal to the unsmoothed plus a “smoothing correction” EAMY. The
greater the value chosen for the relativity constant &, the greater the correction. The correction
made at any point is inversely proportional to the volume of experience at that point; the

greater that volume, the less it requires smoothing.

Note that, because F is quadraticin Y and z, a scale change in Y induces the same scale change
in z, provided that % is changed appropriately. This allows the useful device of replacing Y;,

defined in (2.3), by Y,/¥, where ¥ is in some sense an overall average of the v,.

This converts the observed values of Y, to a scatter about 1, and (2.4) and (2.7) are replaced
by E[Y]] = v,/9 and VY]] = (v,/%) &,/N;v.
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Taylor (1996) gives the Bayesian interpretation of . It is shown that, if all second differences
of z in coordinate axis directions are viewed as subject to independent priors each with variance

72, then

k= o®[4 (4.10)
with o? defined by (2.5).
4.2 Zoning
Consider the framework established in Section 2, in which some pricing function, such as claim
frequency is being estimated by postcode. The smoothing formula (4.9) produces such

estimates. In principle, it is feasible to price accordingly, i.e. postcode by postcode.

Often, however, an insurer will wish to group postcodes into convenient rating zones, or

regions. For pricing purposes, the geographic effect will be taken as constant over such a zone.

A procedure for achieving this would be as follows:

1. Map the smoothed vector z to postcodes on a proper geographic map of the whole
region being priced.
2. Colour code the postcodes according to the values of z,. For example, values of z,

might range (mainly, ignoring a scatter of extreme values) from 40% for rural areas to
150% for inner city areas. In this case, different colours might be applied to the ranges
<70%, 70-80%, 80-90%, etc. The colours should be spectrally ordered, e.g. red, pink,
orange, yellow, etc. While the constant bandwidth illustrated above is simple to apply,
it may be neater to use a multiplicative (logarithmic) scale, e.g. 91-100%, 100-110%,
110-121%, etc.
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3. Scan the map to select zones consisting largely of the one colour, or of a small number
of colours adjacent in the chromatic scheme. This requirement of chromatic
homogeneity will need to be balanced against the desirability of spatially continuous

connected zones.

4. Re-fit the whole model with the collection of selected zones introduced as a rating

variable.

In Step 4, the model structure (2.2) is still assumed, but the spatial index ¢ now applies to the

coarser zoning determined in Step 3 instead of individual postcode.
In addition, Bjk can no longer be assumed known, since these values will have been estimated
with geographic effects ignored. Now that the effects are “known”, the 8, need to be re-

estimated, taking them into account.

For example, suppose that (2.2) may be expanded in the form:

B = V; ej ¢,; (4.11)
equivalently,
log Wy = log v, + log Gj + log ¢,. (4.12)

Then the usual regression modelling (e.g. generalised linear) may be applied to estimate the
parameters. Note that, at this stage, the numerical results obtained from the smoothing (the
vector z) are discarded, and the only role played by the smoothing is the determination of

zones.

An example is provided in Section 5.
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4.3 Further research

The smoothing procedure described in the foregoing sections appears to work effectively most
of the time. It seems well adapted to metropolitan areas, usually characterised by densely

packed postcodes.

An example of cases in which it tends to break down is illustrated in schematic form in Figure
4.1. The polygons in the figure are a stylised representation of postcodes in a rural area. The
circled numbers label the 10 postcodes. The uncircled numbers represent unsmoothed values

of geographic risk, i.c. Y(x,).

Figure 4.1
Example of geographic variation

®© © @

0.73 0.66 0.62

@ | O
S |G

0.79 1.11

®

0.59 0.66 0.71

The small postcodes 1-4 represent a regional town, and postcodes 5-10, geographically much

larger, represent surrounding rural districts.

The spatial smoothing of Section 4.1 seems poorly adapted to these circumstances. The

difficulty relates to the highly localised variation of postcodes 1-4 from the surrounding trend.

30/09/96 05:37PM S\GAMSONM\GENERAIL\GI17.76



12

According to Section 4.1, the smoothness measure for postcode 1 is calculated by reference to 4
postcodes. Suppose # = 10, and the 10 relevant postcodes are those appearing in Figure 4.1.
In the detail of Appendix B, the smoothness measure is calculated from the curvature of the

surface fitted over these 10 postcodes.

The surface needs to be mostly flat, but with a peak concentrated over a small area formed by
postcodes 1-4. It is impossible to obtain this by fitting a quadratic surface, which will be much

flatter than the experience of the diagram suggests.

This means that the smoothing algorithm sees postcodes 1-10 as relatively smooth before
smoothing, and so applies little smoothing to them. The “smoothed” results are likely to exhibit

the same “patchiness™ over postcodes 1-4 as found in the unsmoothed.

Such failures are less likely to occur in metropolitan areas, since the localised extremes which

cause the difficulty are less likely in these cases.
The solution to this difficulty may lie in some form of variation of 4 with the local topography

of the Y (x) surface. Such techniques might be akin to adaptive kernal smoothing of the type
discussed by Bailey and Gatrell (1995, p.87).

5 Example

The smoothing procedure derived in Section 4.1 is applied to a particular claim frequency data
set in Figures 5.1 to 5.5. These maps show smoothing produced by different choices of the
relativity constant &, which increases steadily from Figure 5.1 to Figure 5.5.
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Figure 5.1 Figure 5.2
No smoothing (& = 0) Smoothing with 2 = 100

— = <70
=3 ez 70 - 80
[ ] mr=) BO - 90
] amam 90 - 100
— e 100 - 110
—-— - 110 — 120
—— mum 120 - 130
— - > 130
Figure 5.3 Figure 5.4
Smoothing with £ = 500 Smoothing with £ = 1000
—— <70 ——
70 - 80 2o
&~ 80 - 90 mE
ma=3 90 - 100 [ ]
100 - 110 —
110 - 120 -_—
w120 - 130 —
omm  >130 —
Figure 5.5

Smoothing with £ = 5000

L,

c— <70

=3 70 - 80
e 80 - 90
mamm 90 - 100
w—— 100 - 110
mmma 110 - 120
- 120 - 130
mmm >130
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Figure 5.1 uses £ = 0, which reproduces the unsmoothed statistics (see (4.9)). These statistics
are “residual ratios” from a regression which models all effects other than geographic. The

residual ratios are defined as follows:

number of claims observed in postcode

Residual ratio for postcode ¢ =
model fit of this number

This is the case in which X, represents claim frequency, but Y; has been rescaled by the device
mentioned at the end of Section 4.1. The rescaled values of Y, are scattered about 1, and the
legend in Figures 5.1 to 5.5 expresses the ratio as a percentage. For example, the band 70-80
includes residual ratios 70-80%.

The example illustrated here uses # = 10. The increased smoothing power resulting from

increasing % is evident through the sequence of diagrams.

Equation (4.10) gives the theoretical value of £. The parameter ¢? is defined by (2.5). For Y,
representing claim frequency, N; Y; might be assumed Poisson, with N, denoting exposure.
This case, together with the rescaling of v, effected by the residual ratios, is dealt with at the end

of Section 4.1, where

VY] = (/%) &,/N, 3, (5.1)
giving

o = (v;/9) ¢, /5. (5.2)
Now the values of v,/7 are scattered about 1, and ¢, will also be of the order 1 if the Bjk are

“centralised” in the manner suggested just prior to (2.3). Thus, a rough approximation is
o = 1/9, so that (4.10) givesk = 1/ 4 v 2.

Alternatively, one might take 6> to be somewhat greater than this, to allow for some over-

dispersion relative to Poisson.
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The nature of 12 is described at the end of Section 4.1. It is clearly more difficult to estimate,

but some indication can be obtained.

For reasons of data confidentiality, an estimate of ¥ ©* is given here, rather than separate
estimates of ¥ and 7°. Based on Figure 5.4, a reasonable estimation of v t2 appears to lie in
the range 1/10000 to 1/6000, giving & in the range 1500 to 2000. This just fails to match
k = 1000 in Figure 5.4.

Alternatively, consider Figure 5.5 which suggests a value of t* smaller by a factor of perhaps
2, giving £ in the range 3,000 to 4,000. This fails to match £ = 5,000 in Figure 5.5, but the

discrepancy lies in the opposite direction from that of Figure 5.4.

In view of the roughness of the estimated 2, it is inappropriate to regard the above calculations
too literally. To the extent that they are meaningful, however they indicate a value of £ between
1,000 and 5,000. This suggests that Figure 5.5 may be over-smoothed, while Figures 5.2 and
5.3 are perhaps under-smoothed.
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Appendix A

Fitting a quadratic defined on 2-space to n observations

Consider a quadratic Q : R~ R. Let @, .. . y® € R? and let 20, .. 2® pe

“observations”.
z9 = O(y®) + error. (A1)
If the quadratic is written out explicitly, it is

QO) =ty 47 + 090 + 4oy Y2 + 4y *+ 4, * 4o (A2)

where y = (y,, yZ)T. Write this as:

Q) = 9795, (A3)
with

9 = W0 N> Dop D> 12 1) (A4)

Y® = 02 305 92 1 9 L (A5)
By (A.1) and (A.3),

20 = 4T [y91® + error, i=1,....4. (A.6)

OLS regtession of the z9 on the [y @1® yields the following estimate 4 of ¢:

4 = Az, (A7)
with

A= X" xT (A.8)
where

z = (20, ., 20T (A9)
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and X is the » X 6 matrix with [y,-®]T as ¢ -th row.
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Appendix B

Calculation of the smoothness measure

Section 4.1 requires that a local approximation Q.() be fitted to W(-) by reference to the
values of W{y) at b points y .

The fitting can be carried out by OLS regression. Write
T
Q0 =14,9% (B.1)
where y = (y,, yZ)T, and

¥ = 00, Yy 1 V1> ¥ 1T, (B.2)

and g, is the corresponding vector of coefficients.

Lety,", .., 5. bethe b points closest to #, including ) = , for which Y(-) is sampled, and

x

let
1 b
z, = [Wo,), ., W (B.3)
Appendix A shows that
9. = A, 2, (B.4)
6X1 6Xh X1
where

A, = XIx)* x7, (B.5)

and X, is the # X6 matrix with [y.”P°T as i -th row.

The result (B.4), which is expressed in terms of the “local” set of smoothed values %, , needs to
be expressed in terms of the global set z = [W(xl), vy W(xm)]T corresponding to the whole

set of observations Y(x,), =1, ..., m.
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19
This is done by rewriting (B.4) as:

qx=Bx Z,

6x1 6Xm  mXx1

(B.6)

where B, is the 6 X matrix containing the # columns of A placed so as to reference 4

components of 2z, as components of z, and zeros elsewhere.

The required differences A;q Wi(x) can now be approximated by the corresponding differences
of Q (%), which are given by the first 3 components of q,- The relevant part of (B.6) is

therefore

1.= B, z, (B.7)

3x1 3xm  mXx1

where the tilde indicates the operation “take the first 3 rows of”.

It is now possible to express S(x) from (3.4) as a quadratic form in }x:

() =4, C 1, (B.8)
with
1 0 Y,
C={0 %, 0
Y5 0 1 (B.9)

By (B.7) and (B.8),

S@) =z"B] C B,z (B.10)

bl

and finally, by (3.3),
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S =zT[§1§;Cl§;‘_]z.
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DEC 95

FEB 96

FEB 96

FEB 96

MAR 96

MAR 96

PRESENT PROBLEMS AND PROSPECTIVE
PRESSURES IN AUSTRALIA’S
SUPERANNUATION SYSTEM

PLANNING RETIREMENT INCOME IN
AUSTRALIA: ROUTES THROUGH THE MAZE

ON THE DISTRIBUTION OF THE DURATION
OF NEGATIVE SURPLUS

OUTSTANDING CLAIM LIABILITIES:
ARE THEY PREDICTABLE?

SOME STABLE ALGORITHMS IN RUIN THEORY
AND THEIR APPLICATIONS

SOME FINANCIAL CONSEQUENCES OF THE SIZE
OF AUSTRALIA’S SUPERANNUATION INDUSTRY
IN THE NEXT THREE DECADES

MODELLING OPTIMAL RETIREMENT IN
DECISIONS IN AUSTRALIA

AN EQUITY ANALYSIS OF SOME RADICAL
SUGGESTIONS FOR AUSTRALIA’S RETIREMENT
INCOME SYSTEM

EARLY RETIREMENT AND THE OPTIMAL
RETIREMENT AGE

APPROXIMATE CALCULATION OF MOMENTS OF
RUIN RELATED DISTRIBUTIONS

CONTEMPORARY ISSUES IN THE ONGOING
REFORM OF THE AUSTRALIAN RETIREMENT
INCOME SYSTEM

THE CHOICE OF EARLY RETIREMENT AGE AND
THE AUSTRALIAN SUPERANNUATION SYSTEM

PREDICTIVE AGGREGATE CLAIMS
DISTRIBUTIONS

THE AUSTRALIAN GOVERNMENT
SUPERANNUATION CO-CONTRIBUTIONS:
ANALYSIS AND COMPARISON

A SURVEY OF VALUATION ASSUMPTIONS AND
FUNDING METHODS USED BY AUSTRALIAN
ACTUARIES IN DEFINED BENEFIT
SUPERANNUATION FUND VALUATIONS

THE EFFECT OF INTEREST ON NEGATIVE
SURPLUS

David M Knox

Margaret E Atkinson
John Creedy

David M Knox
David C M Dickson
Alfredo D Egidio dos
Reis

Ben Zehnwirth
David C M Dickson
Alfredo D Egidio dos
Reis

Howard R Waters

David M Knox

Margaret E Atkinson
John Creedy

Margaret E Atkinson
John Creedy
David M Knox

Angela Ryan

David C M Dickson

David M Knox

Margaret E Atkinson
John Creedy

David C M Dickson
Ben Zehnwirth

Margaret E Atkinson

Des Welch
Shauna Ferris

David C M Dickson

Alfred D Egidio dos Reis



MAR 1996 RESERVING CONSECUTIVE LAYERS OF INWARDS Greg Taylor
EXCESS-OFF-LOSS REINSURANCE

AUG 1996 EFFECTIVE AND ETHICAL INSTITUTIONAL Anthony Asher
INVESTMENT

AUG 1996 STOCHASTIC INVESTMENT MODELS: UNIT Michael Sherris
ROOTS, COINTEGRATION, STATE SPACE AND Leanna Tedesco
GARCH MODELS FOR AUSTRALIA Ben Zehnwirth

AUG 1996 THREE POWERFUL DIAGNOSTIC MODELS FOR Ben Zehnwirth
LOSS RESERVING

SEPT 1996 KALMAN FILTERS WITH APPLICATIONS TO LOSS Ben Zehnwirth
RESERVING

OCT 1996 RELATIVE REINSURANCE RETENTION LEVELS David C M Dickson

Howard R Waters

OCT 1996 SMOOTHNESS CRITERIA FOR MULTI- Greg Taylor
DIMENSIONAL WHITTAKER GRADUATION

OCT 1996 GEOGRAPHIC PREMIUM RATING BY WHITTAKER  Greg Taylor
SPATIAL SMOOTHING

OCT 1996 RISK, CAPITAL AND PROFIT IN INSURANCE Greg Taylor

OCT 1996 SETTING A BONUS-MALUS SCALE IN THE Greg Taylor
PRESENCE OF OTHER RATING FACTORS

NOV 1996 CALCULATIONS AND DIAGNOSTICS FOR LINK Ben Zehnwirth
RATION TECHNIQUES Glen Barnett

DEC 1996 VIDEO-CONFERENCING IN ACTUARIAL STUDIES - David M Knox
A THREE YEAR CASE STUDY

DEC 1996 ALTERNATIVE RETIREMENT INCOME Margaret E Atkinson
ARRANGEMENTS AND LIFETIME INCOME John Creedy
INEQUALITY: LESSONS FROM AUSTRALIA David M Knox

JAN 1997 AN ANALYSIS OF PENSIONER MORTALITY BY David M Knox
PRE-RETIREMENT INCOME Andrew Tomlin

JUL 1997 TECHNICAL ASPECTS OF DOMESTIC LINES Greg Taylor
PRICING

AUG 1997 RUIN PROBABILITIES WITH COMPOUNDING David C M Dickson
ASSETS Howard R Waters

NOV 1997 ON NUMERICAL EVALUATION OF FINITE TIME David C M Dickson
RUIN PROBABILITIES

NOV 1997 ON THE MOMENTS OF RUIN AND RECOVERY Alfredo G Egidio dos
TIMES Reis

JAN 1998 A DECOMPOSITION OF ACTUARIAL SURPLUS AND Daniel Dufresne
APPLICATIONS

JAN 1998 PARTICIPATION PROFILES OF AUSTRALIAN M. E. Atkinson

WOMEN Roslyn Cornish



MAR 1998 PRICING THE STOCHASTIC VOLATILITY PUT J.P. Chateau
OPTION OF BANKS’ CREDIT LINE COMMITMENTS  Daniel Dufresne

MAR 1998 ON ROBUST ESTIMATION IN BUHLMANN José Garrido
STRAUB’S CREDIBILITY MODEL Georgios Pitselis

MAR 1998 AN ANALYSIS OF THE EQUITY IMPLICATIONS OF  David M Knox
RECENT TAXATION CHANGES TO AUSTRALIAN M. E. Atkinson
SUPERANNUATION Susan Donath

APR 1998 TAX REFORM AND SUPERANNUATION — AN David M Knox

OPPORTUNITY TO BE GRASPED.

APR 1998 SUPER BENEFITS? ESTIMATES OF THE * Susan Donath
RETIREMENT INCOMES THAT AUSTRALIAN
WOMEN WILL RECEIVE FROM SUPERANNUATION

APR 1998 A UNIFIED APPROACH TO THE STUDY OF TAIL Jun Cai
PROBABILITIES OF COMPOUND DISTRIBUTIONS José Garrido
MAY 1998 THE DE PRIL TRANSFORM OF A COMPOUND R, Bjgrn Sundt
DISTRIBUTION . Okechukwu Ekuma
MAY 1998 ON MULTIVARIATE PANJER RECURSIONS Bjgrn Sundt
MAY 1998 THE MULTIVARIATE DE PRIL TRANSFORM Bjgrn Sundt
JUNE 1998 ON ERROR BOUNDS FOR MULTIVARIATE Bjgrn Sundt
DISTRIBUTIONS
JUNE 1998 THE EQUITY IMPLICATIONS OF CHANGING THE M E Atkinson
TAX BASIS FOR PENSION FUNDS ' John Creedy
: David Knox
JUNE 1998 ACCELERATED SIMULATION FOR PRICING ASIAN  FelisaJ Vizquez-Abad
OPTIONS Daniel Dufresne
JUNE 1998 AN AFFINE PROPERTY OF THE RECIPROCAL Daniel Dufresne
ASIAN OPTION PROCESS
AUG 1998 RUIN PROBLEMS FOR PHASE-TYPE(2) RISK David C M Dickson
PROCESSES Christian Hipp
AUG 1998 COMPARISON OF METHODS FOR EVALUATIONOF B jorn Sundt
THE n-FOLD CONVOLUTION OF AN ARITHMETIC David C M Dickson
DISTRIBUTION
NOV 1998 COMPARISON OF METHODS FOR EVALUATION OF David C M Dickson
THE CONVOLUTION OF TWO COMPOUND R Bjgrn Sundt
DISTRIBUTIONS
NOV 1998 PENSION FUNDING WITH MOVING AVERAGE Diane Bédard
RATES OF RETURN Daniel Dufresne
DEC 1998 MULTI-PERIOD AGGREGATE LOSS David C M Dickson
DISTRIBUTIONS FOR A LIFE PORTFOLIO Howard R Waters
FEB 1999 LAGUERRE SERIES FOR ASIAN AND OTHER Daniel Dufresne

OPTIONS
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79

MAR 1999

APR 1999

NOV 1999

NOV 1999

DEC 1999

DEC 1999

MAR 2000

MAR 2000

JULY 2000

JULY 2000

THE DEVELOPMENT OF SOME CHARACTERISTICS
FOR EQUITABLE NATIONAL RETIREMENT
INCOME SYSTEMS

A PROPOSAL FOR INTEGRATING AUSTRALIA’S
RETIREMENT INCOME POLICY

THE STATISTICAL DISTRIBUTION OF INCURRED
LOSSES AND ITS EVOLUTION OVER TIME I: NON-
PARAMETRIC MODELS

THE STATISTICAL DISTRIBUTION OF INCURRED
LOSSES AND ITS EVOLUTION OVER TIME II:
PARAMETRIC MODELS

ON THE VANDERMONDE MATRIX AND ITS ROLE
IN MATHEMATICAL FINANCE

. AMARKOV CHAIN FINANCIAL MARKET

STOCHASTIC PROCESSES: LEARNING THE
LANGUAGE

ON THE TIME TO RUIN FOR ERLANG(2) RISK
PROCESSES

RISK AND DISCOUNTED LOSS RESERVES

STOCHASTIC CONTROL OF FUNDING SYSTEMS

David Knox
Roslyn Cornish

David Knox

Greg Taylor

Greg Taylor

Ragnar Norberg

Ragnar Norberg
A J G Cairns

D C M Dickson
A S Macdonald
H R Waters

M Willder

David C M Dickson

Greg Taylor

Greg Taylor



