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ABSTRACT

In the classical continuous time surplus process, we allow the process to continue
if the surplus falls below zero. When the surplus is below zero, we assume that
the insurer borrows any sums of money required to pay claims, and pays interest
on this borrowing. We use simulation to study moments and distributions of
three quantities: the time to recovery to surplus level zero, the number of claims
that occur when the surplus is below zero, and the maximum absolute value of
the surplus process when it is below zero. We also show how simulation can be
used to estimate the probability of absolute ruin.
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1. Introduction and Notation

In the classical surplus process the insurer’s surplus at time ¢ is denoted U(¢) and
given by
U(t) =u+ct—S(t)

where u is the insurer’s surplus at time 0, ¢ is the insurer’s premium income per
unit time, assumed to be received continuously, and S(t) is the aggregate claim
amount up to time t. {S(t)}:>0 is a compound Poisson process with Poisson pa-
. rameter A per unit time, and individual claim amounts have distribution function
P(z), with k — th moment p;, and we will assume that P(0) = 0. We will write
¢ = (1 + 0)\p; where 6 > 0 is the insurer’s premium loading factor.

For this process, the time to ruin, denoted T, is defined as

T = inf{t: U(t) < 0}
Tl ooifU(t) > 0forallt >0



The probability of ultimate ruin given initial surplus u is denoted ¥ (u), and
defined by 9¥(u) = Pr(T < co). The probability of survival is denoted é(u) and
defined as 6(u) = 1 — (u). The probability that ruin occurs and that the deficit
at the time of ruin is less than y is denoted G(u, y) and defined as

G(u,y) = Pr(T < oo and U(T) > —y)

We denote by g(u,y) the (defective) density associated with G(u,y) and define
G(u,y) = G(u,y)/¥(u) and §(u,y) = g(u,y)/¥(u). We use the notation Y (u)
to denote the conditional distribution of the deficit at ruin, so that Y(u) has
distribution function G(u,y). -

In the following sections we shall let the surplus process continue if it falls
below zero. We shall be interested in what happens during the time the surplus
process takes to recover to zero.

We shall introduce a modification to the surplus process if the surplus falls
below zero. We shall assume that if the surplus process falls below zero, the
insurer has to borrow any sums of money required to pay claims. The insurer
may borrow any sums required at force of interest § per unit time (equivalent to
an effective rate ¢ per unit time where 6§ = log(1 + ¢)), and may repay amounts
owed continuously over time. These repayments will be made using premium
income. The introduction of interest into the model means that unlike in the
case when § = 0, recovery to surplus level zero is no longer certain. The reason
for this is that if the surplus falls below —¢/é at any time, the insurer would
be unable to repay its borrowings since the rate of repayment would exceed the
rate of premium income. If the surplus falls below —c/é absolute ruin is said
to occur. We will use the notation 14(u) to denote the probability of absolute
ruin, and ¢4(u) = ¥a(u)/¥(u) denotes the probability of absolute ruin given
that ruin occurs. We define the survival probability for this modified process as
5A(u) =1- QI)A(U)

Dassios and Embrechts (1989) consider this model and describe it in the
following way. Let 7; be the time of the : — th claim. Then for 7; < s < 7341,

Uis)=U(n)+c(s—7)
if U(r;) > 0 and

0=

if —¢/6 < U(r) < 0, where s* = 7 + (1/6)log((¢/8)/((c/é) + U(7:)). The
definition of s* is such that if no claims occur between times 7; and s* then the
surplus at time 7; + s* will be zero.

Throughout this paper we will consider conditional random variables. We
will condition on ruin occurring from initial surplus u and recovery to surplus
level zero occurring (i.e. absolute ruin not occurring). We define the following
conditional random variables:

(‘U(‘r,-) +c/8)exp{é(s— 1)} — ¢/ fors<s*

c(s— ) for s > s*




o T'(u) denotes the time to recovery to surplus level zero.

o N(u) denotes the number of claims that occur during the time to recovery
to surplus level zero (not counting the claim that causes ruin).

o L(u) denotes the maximum absolute value of the surplus process during the
time to recovery to surplus level zero.

Our approach to studying these variables is to use simulation. We will illus-
trate some of their properties through the use of examples. We use two single
claim amount distributions - exponential and Pareto - each scaled to have mean
1. For each of the examples in this paper we simulated 100,000 realisations of
the surplus process given that ruin occurs, so that the starting point for each
realisation was simulation of the insurer’s deficit at the time of ruin given that
the deficit is less than ¢/é. This requires simulation from a distribution with
distribution function G(u,y)/G(u,c/6) for 0 < y < ¢/6. In general this poses no
problem when u = 0 since

G(0,y) = /0 vl M) -':(x)dx

Similarly, there is no problem when the individual claim amount distribution
is exponential since é(u,y) is independent of u in this case - see, for example,
Bowers et al (1986) - and hence all quantities of interest are independent of
u. When the individual claim amount distribution is Pareto and u > 0 we
simulated values of G(u,y) by first calculating this distribution numerically for
y = 0,0.05,0.1,... using the method of averaging lower and upper bounds for
G(u,y) as described by Dickson et al (1995, Section 4). We then assumed that
G(u,y)/G(u,c/6) (which is the same as G(u,y)/G(u, c/8)) was a piecewise linear
function over the intervals [0.05k,0.05(k+1)) for k = 0,1, 2, ... allowing simulation
from this distribution by standard techniques.

2. Preliminary Remarks

In the following sections we will study T'(u), N(u) and L(u) as functions of :.
In Sections 3, 4 and 6 we will set A = 1 and allow ¢ to vary. In Section 5, we
will study a relationship which depends on A. In that section only, we fix ¢ and
let A vary. We will study quantities such as E(T'(u)) as a function of . As a
mathematical problem, it is of interest to see how such quantities behave as ¢
varies. However, some of our observations will be of limited practical value. For
example, if A =1 and 7z = 0.1, then we are saying that we expect one claim per
unit of time and the effective rate of interest for that unit of time is 0.1. If the
insurer expects, say, three claims a day, then the effective annual rate of interest
given by our model is clearly not a realistic one! However, as we shall see in
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the following sections, the features of interest in the functions we study occur
for small values of ¢ which would translate into realistic effective annual rates of
interest for most insurance portfolios.

In the following sections we will make remarks such as “E(T(u)) is a decreas-
ing function of z”. What we really mean when we describe the behaviour of a
function in such a way is that this is how the function behaves according to the
results of our simulations. Since, with the exception of Example 1, our studies
are all based on simulation, we believe that this abuse of language should cause
no problems to the reader.

Finally, we remark that the graphs presented in this paper are, with the
exception of Figure 1, based on simulation. The values of functions obtained
by simulation have all been smoothed. This smoothing has been performed by
the statistical package S-PLUS using the “supsmu” function. We have taken
somewhat of a black box approach to smoothing. Our aim has been to illustrate
the shapes of functions. Optimal smoothing is a side issue and has not been a
consideration.

3. The Probability of Absolute Ruin

In this section we shall consider the probability of absolute ruin occurring before
the surplus process can recover to zero given that absolute ruin does not occur
at the time of ruin. Hence we are interested in the probability of some period of
negative surplus which results in absolute ruin rather than recovery to surplus
level zero. Let us denote this probability by ¢(u). We can find ¢(u) as follows.

We have
c/6
()

wae) = [ olwyal-)dy + [~ g(u,)dy
or, equivalently,
c/
0

. 6 N 0
Pa(u) =/ g(u,y)¢A(—y)dy+/c/6g(u,y)dy (3.1)

Now let v(u,y) = §(u,y)/G(u, c/6) for 0 < y < ¢/8, so that 4(u,y) is the density
of the deficit at ruin given that the deficit is less than ¢/é. Then we have

— 14 G(u,c/6)
G(u,c/é)

/06/6 v(u,y)Ya(—y)dy = Yalu)

and the integral is the probability of absolute ruin given that ruin has occurred
with a deficit at ruin less than ¢/é. Since absolute ruin can occur with or without
an upcrossing through surplus level zero we have

/oc/év(u, Y)$a(-y)dy = d(u) + (1 — ¢(u))a(0)
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and so

Buy =1~ ——valt) (3.2)
(1 = %4(0))G(u, c/é)
In Examples 1 and 2 we will study the probability ¢(u). In Example 1 we calculate
it from a formula while in Example 2 we estimate it by simulation. An important
consequence of estimating ¢(u) by simulation is that it allows us to estimate
¥ a(u) by simulation as follows. From (3.2) we have

84(0)G(u, c/8)(1 — $(u)) = 1 — ha(u)

and multiplying throughout by ¥(u) we have

64(0)G(u,c/6)(1 — ¢(u)) = p(u) — Pa(u) = b4(u) — 6(u)

and so
a(u) = 8(u) + 64(0)G(u,c/6)(1 — (u))
Setting u = 0 we find
6(0)
1 - G(0,¢/8)(1 - (0))

64(0) =

giving

_ 6(0)G(u, c/6)(1 — ¢(u))
24 =80+ T26(6,e/0)(1 — 9(0))

Since algorithms exist to calculate the functions é(u) and G(u,y) (see, for exam-
ple, Dickson et al (1995)), we can use a mixture of calculation and simulation
to estimate d4(u), or equivalently, 1 4(u). This is a very useful result as we can
estimate the probability of absolute ruin in infinite time by calculating ¢(u) by
simulation. Since the purpose of this paper is to study what happens during a
period of negative surplus we shall not illustrate the use of this result.

Example 1: When P(z) = 1 — exp{—az}, an explicit solution exists for ¥ 4(u)
and hence for 4(u). Dassios and Embrechts (1989) show that for u > 0

_‘/’( u) ca—X [0 _ 52\ A/O-1 -1
Ya(u) = 5(0) (1+ - /_c/se (1+_C_) i

Figure 1 shows values of ¢(u) as a function of the interest rate, i, per unit time for
three values of 8, namely 10%, 20% and 30%, when o = A = 1. This figure has
all the features we would expect: as the interest rate increases, ¢(u) increases,
and as the premium loading factor increases, ¢(u) decreases. ]

In passing, we note the comment by Dassios and Embrechts (1989) that when
P(z) = 1—exp{—az}, Ya(u) = k¥(u) where 0 < k < 1. In fact k = 9 4(0)/¢(0).
It is easy to establish this relationship by writing (3.1) as

ba(u) = p(u) </0c/s 3y y ) a(— dy+/ (u,y dy)

)



Since g(u,y) is independent of u it follows that 14 (u)/¥(u) = ¥4(0)/%(0). Al-
though this approach gives us ¥4(u) in terms of 14(0), it does not appear to
yield a solution for 14(0).

Example 2: Figure 2 shows simulated values of ¢(u) as a function of the interest
rate when the individual claim amount distribution is Pareto(2,1) for u = 0,5
and 10 and 8 = 0.1 when A = 1. This figure has the same features as Figure 1.
In this case ¢(u) does depend on u, and increases with u. O

4. The Duration of the First Period of Negative Surplus

In the special case when § = 0, the moments and distribution of T'(u) are dis-
cussed by Egidio dos Reis (1993) and Dickson and Egidio dos Reis (1995). In
this section we will consider the density function, mean and variance of T'(u).
Before considering examples, there is one important point to mention about the
moments.

Egidio dos Reis (1993) shows that when § = 0,

E(Y(u))

B(I() = =50

and

_ Y@, V(Y()
Y= "G * oy

Thus the mean and variance of T'(u) exist when é = 0 if the mean and variance of
Y (u) exist. (We show in the Appendix that the first two moments of Y'(u) exist
if p3 < 00.). However, when § > 0, given that ruin occurs but absolute ruin does
not occur at the time of ruin, the moments of the distribution of the deficit at
ruin must be finite. Thus it will be possible to study the moments of T'(u) when
6 > 0 in cases when it was not possible to study these moments when é = 0.

Example 3: Consider again the case when the individual claim amount distribu-
tion is exponential and A = 1. Figure 3 shows E(7(u)) as a function of the interest
rate for the same three values of 6 as in Figure 1. For a given value of 8, this
figure shows E(T'(u)) increasing with ¢ then decreasing to a limiting value which
will be 0. To see why this happens, let us consider the effect of a small increase in
i when i is close to zero. First, there is little change in G(u,y)/G(u, ¢/6). Conse-
quently the distribution of the deficit barely changes. Second, the probability of
absolute ruin without recovery to surplus level 0 is also unlikely to change much
due to the magnitude of ¢/é and the magnitude of claims. The main effect will be
an increase in recovery time to zero caused by a higher interest rate. Hence the
value of E(T'(u)) should increase. Intuitively this increase cannot be sustained as
the value of 7 increases. The reason is that as 7 increases, the distribution of the
deficit will change, with the expected deficit decreasing. Although an increase in



¢ causes an increase in the recovery times, it also causes a decrease in ¢/é and
hence an increase in the probability of absolute ruin without recovery to surplus
level zero. This latter effect seems to outweigh the former and so E(7T'(u)) must
at some stage have a turning point and eventually decrease to zero as : becomes
very large. Figure 4 shows the standard deviation of T'(u), and this figure has
the same features as Figure 3. a

Example 4: Let the individual claim amount distribution be Pareto(2,1) and let
A =1 and v = 0. In this case we know that Y(0) has a Pareto(1,1) distribution,
and hence none of the moments of Y(0) exists. Figure 5 shows E(T(0)) as a
function of the interest rate for the same three values of 8 as in previous figures.
We can see a different pattern from Figure 3, with E(T'(0)) being a decreasing
function of 7. In this case the explanation would appear to be that the deficit
at ruin is responsible for the shape of E(T'(0)). As i increases, the expected
deficit decreases and hence the expected recovery time should decrease. (Note
that this is different to the situation in Example 3. There, the expected deficit
reaches a finite limiting value as ¢ decreases to zero, but this does not occur in
this example.) In this example the standard deviation of T'(0) is a decreasing
function of ¢, as shown in Figure 6 which has the same features as Figure 5. O

The features of these two examples are reproduced for other forms of P(z).
For example, when the individual claim amount distribution is Pareto(4,3) the
features of Example 3, rather than Example 4, were reproduced. In general, we
found that the graph of F(T(u)) as a function of ¢ had the same shape as in
Figure 3 whenever E(Y (u)) was finite. Otherwise it had the same shape as in
Figure 5. Similarly, we found that whenever F(Y (u)?) was finite, the graph of
the standard deviation of T'(u) had the same shape as in Figure 4. Otherwise the
standard deviation of T'(u) was a decreasing function of :.

We can also use simulation to construct the densities of T'(u). Figure 7 shows
the densities of T'(0) for the individual claim amount distributions from Examples
3 and 4 when A =1, 7 = 0.001 and § = 0.1. Further experiments indicated that
the basic shape of each density is the same for different values of 1.

5. The Number of Claims in the First Duration of Nega-
tive Surplus

When 6§ = 0 Gerber (1990) considers the number of claims, denoted K, that
occur during the interval (0, 7), where 7 is the first passage time of the surplus
process, starting from initial surplus 0, through level z, where z > 0. Subject to
a change of scale in the individual claim amount distribution Gerber proves that

E(K) = Az/c6(0)



and
- Az 2 2 2
V(K) = SO (¢ + X2(p2 — 2))

By conditioning on the severity of ruin, we can use these results to show that
E(N(u)) = \E(T(u)) (5.1)

and

VIN@)) = A (%E(T(u)) + -/\V(T(u))) (5.2)

Our main purpose in this section is to investigate whether we can apply these
identities to approximate E(N(u)) and V(N(u)) when é > 0.

Example 5: Let the individual claim amount distribution be exponential. Figure
8 shows E(N(u)) as a function of A when ¢ = 0.1. The solid lines shows values
of E(N(u)) while the dotted lines shows A times the values of E(T(u)). Figure 9
shows the corresponding quantities for the standard deviation of N(u). We can
see from Figure 8 that for all values of A, and particularly for the larger values,
(5.1) gives a reasonable approximation. However, it is quite a different story
when we consider the standard deviation of N(u). It is clear from Figure 9 that
(5.2) does not give a good approximation to the standard deviation of N(u) for
small values of A, but gives a reasonable approximation for large values. (Note
that the scale in Figure 9 is very different to that in Figure 8.) Of course, another
way of interpreting these figures is to say that increasing A has the same effect
as decreasing i. Hence, as A becomes large, ¢ becomes small, and so we would
expect the quality of the approximations given by (5.1) and (5.2) to improve. O

Further experiments lead us to the conclusion that formulae (5.1) and (5.2)
are inappropriate for calculating the mean and variance of N(u) when § > 0
unless the value of A is very large, or, equivalently, if for a given value of A,
the interest rate is small. Otherwise, the most reliable means of obtaining the
moments (and distribution) of N(u) is through simulation.

6. The Minimum Value of the Surplus Process

In this section we consider the absolute value of the minimum of the surplus
process during the first period of negative surplus, which we denote L(u). Picard
(1994) considers the distribution of L(u) and shows that when § =0

P(u) — P(u+ 2)
P(u)(1 —P(2))

If P(z) is such that an analytical expression for ¥(u) exists then it is possible to
derive expressions for the moments of L(u) when § = 0. Of particular interest to

Pr(L(u) £2) =

8




our study are the results when P(z) = 1 — exp{—z}. In this case we can show
that

E(L(u)) = (1+6)log(1 +671)

and

(1+o

E(L(w)’) = Z(l +6)7757

For the remainder of this section we cons1der the moments of L(u) when 6 > 0.

Example 6: Let the individual claim amount distribution be exponential with
mean 1 and let A = 1. Figure 10 shows E(L(u)) as a function of z for § = 0.1,0.2
and 0.3. We can see that for each value of 8, F(L(u)) increases from its value
when ¢ = 0 to a maximum value then decreases to a limiting value which will be
zero. The features which explain the shape of E(T(u)) also explain the features
of E(L(u)). Consider a realisation of the surplus process when ¢ = 0 for which the
surplus falls below the deficit at ruin before recovering to zero. If we increase :
by a very small amount, then the corresponding realisation of the surplus process
must have a larger absolute minimum value since the rate of increase of the surplus
process is reduced. Since absolute ruin is very unlikely for very small ¢, E(L(u))
must increase since, for all other realisations of the surplus process for which
absolute ruin does not occur, the minimum level of the surplus process cannot
be reduced by increasing the interest rate. However, as i increases, it is clear
that the absolute ruin barrier dictates that F(L(u)) must eventually decrease as
7 increases. It is interesting to note that for each value of 8, the value of ¢ that
maximises E(T'(u)) in Figure 3 is not the value that maximises E(L(u)) in Figure
10. Figure 11 shows the standard deviation of L(u) as a function of ¢ and this
figure exhibits the same features as Figure 10. 0

Example 7: Let the individual claim amount distribution be Pareto(2,1). Figure
12 shows E(L(u)) as a function of ¢ when 8 = 0.2 for u = 0,5 and 10. This figure
has the same features as Figure 5 for exactly the same reasons. O

In our calculations for Section 4, we found that the shape of the mean and
standard deviation of T'(u) as a function of 7 respectively depended on the exis-
tence of the first two moments of Y (u). Our calculations in this section lead us
to believe that the same is true of the mean and standard deviation of L(u).

7. Conclusions

Simulation provides a means of estimating the probability of absolute ruin and
studying the random variables T'(v), N(u) and L(u) when é§ > 0. Although
it does not enable us to draw precise conclusions about these variables, it does
allow us see how the moments and distributions of these variables change as
increases. Our experiments lead us to conclude that moments of the individual



claim amount distribution are determining factors for the behaviour of moments
of these three variables as functions of 6.
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