D. Dufresne -100 ISBN O 7340 2195 X

Asian and Basket Asymptotics
by

Daniel Dufresne
University of Montreal

RESEARCH PAPER NUMBER 100

July 2002

Centre for Actuarial Studies
Department of Economics
The University of Melbourne
Victoria 3010

Australia



ASIAN AND BASKET ASYMPTOTICS

Daniel Dufresne, University of Montreal

Abstract

The pricing of Asian or basket options is directly related to finding the distributions
of sums of lognormal random variables. There is no general explicit formula for those
distributions. This paper looks at the limit distributions of sums of lognormal vari-
ables when volatility, or maturity, tends either to 0 or to infinity. The limits obtained
are either normal or lognormal, depending on the normalization chosen. This justifies
the lognormal approximation, much used in practice, and also gives an aymptotically
exact distribution for averages of lognormals with a relatively small volatility; it has
been noted that all the analytical pricing formulas for Asian options perform poorly
for small volatilities. Asymptotic formulas are also found for the moments of the
sums of lognormals. Results are given for both discrete and continuous averages.

ASIAN OPTIONS; BASKET OPTIONS; RECIPROCAL ASIAN OPTIONS; EXPONENTIAL
FUNCTIONAL OF BROWNIAN MOTION ’

1. Introduction

Asian (or average) options have payoffs expressed in terms of the average price of some
security (stock, market index) or commodity. Basket options have payoffs which depend
on linear combinations of the prices of several securities. Options on commodities (such as
oil and gas) often replace the price of the underlying with an average in order to decrease
volatility, or else to reduce the possibility of manipulating prices close to expiration. If, as
in the Black-Scholes model, the underlying securities are modelled as geometric Brownian
motions, then the pricing of Asian or basket options is intimately related to finding the
distribution of the sum or of the integral of geometric Brownian motions; some explicit
results are known in the particular case where an Asian option has continuous averaging
with equal weights, see Geman & Yor (1993) or Dufresne (2000), for details. The case of
continuous averaging is, of course, an idealization of reality, but more explicit results can
be found regarding continuous averages than for discrete ones; the continuous-averaging
formulas (with appropriate corrections) are good approximations of the discrete ones when
the averaging dates are numerous enough and evenly spread through time, but, for other
types of averages, there are no explicit formulas for option prices. Moreover, the explicit
formulas known so far in the continuous case are relatively complex. The consequence is
that practitioners rely on approximate formulas (the most common being the lognormal
approximation and Edgeworth series) or on Monte Carlo simulations. The lognormal ap-
proximation is sometimes very accurate, a fact which has apparently not been justified
mathematically so far; Taleb (1997, Chapters 22 and 23) mentions the lognormal approx-
imation, but, with regard to Asian options, recommends the use Monte Carlo simulations
whenever volatility exceeds 30 %. This claim relates directly to the conclusions of this
paper, as it will be shown that the limit distribution of the sums or averages involved in
Asian or basket options are either normal or lognormal as volatility tends to 0. With the
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Asian and basket asymptotics

exception of two brief numerical examples in the Conclusion, this paper deals exclusively
with the mathematical derivations of the limit distributions; the numerical comparison of
option prices with their approximation is left for a subsequent paper. The combinations of
geometric Brownian motions considered are general enough to include all Asian or basket
options, whether dicrete, continuous, or mixed.

Some preliminary comments will now be made regarding the only particular case
where explicit formulas are known. As explained in Geman & Yor (1993) and elsewhere,
in the Black-Scholes model the random variable of interest in the pricing of Asian options
with continuous averaging is

T
/ Soe™s+7Be g5, (1.1)
0

where Sy is the initial price of the underlying security and B is standard Brownian motion
under the risk neutral measure. The drift m is, for example, equal to r — 02/2 when the
underlying does not pay dividends and the risk-free rate of interest is r. In this and in
other situations m may be positive or negative.

Geman & Yor (1993), as well as several other papers by Yor (many of which are
reproduced in Yor (2001)) and by this author (Dufresne, 2000, 2001a, 2001b), use the
following transformation of (1.1): let

t = —— and p=—; (1.2)

then, by the scaling property of Brownian motion, the random variable in (1.1) has the
same distribution as 45p/0? times

’

AW =/ e2(ms+Bs) g,
0

This parametrization is advantageous in many ways, as shown especially by the work of
Marc Yor.

However, the above transformation may not be the most natural one for the purpose
of finding the asymptotic distribution of (1.1) when T tends to zero or infinity. We will
instead use the following one: let

t = T, v = —; (1.3)

Then
T d SO t
/ Soe™mstoBs g S — My, where M} = / e?stBs s
0 9 0

(The symbol “ 2 » means “has the same distribution as”.) It can be seen that t is the
cumulative variance (or quadratic variation) of the log of the underlying security over time
period [0,t]. The standardized drift » may be positive or negative.
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Both parametrizations (1.2) and (1.3) remove o from the algebraic manipulations.
Lettlng t' or t tend to 0 can mean either letting the maturity 7 fixed, while letting o
decrease to 0, or else letting the volatility o fixed, while letting maturity decrease to 0.
One can go from one set of parameters to the other by employing the identity in distribution

d 44
My £ 440 (1.4)

A complete list of references on Asian option pricing will not be given here, the reader
is referred to Dufresne (2000) and Linetsky (2001). The greater difficulty of pricing Asian
options with short maturities, or small volatilities, was noticed by Rogers & Shi (1995,
p-1087), who solve the associated PDE numerically, and also by Fu et al. (1999), who
invert the Geman & Yor (1993) Laplace transform for Asian calls. Dufresne (2000) was
unable to compute Asian option prices for ¢ smaller than approximately .1, while the
Laguerre series performed better as ¢ increased (the number of required terms decreases
with increasing t). Linetsky (2001) also notices that more terms of his series expression for
Asian option prices are required for small ¢; he is able to get an accurate price in a case
wheré t = .09 at the cost of computing 57 terms of the series (400 terms are required in a
case where t = .01), while larger ¢ require less computational effort. Now an option with a
maturity of one year on an underlying with a volatility o = .30 has a normalized maturity
of ¢ =.09. A one-month averaging period in an oil or gas price with 60 % annual volatility
yields ¢ = .03. Much shorter standardized maturities ¢ result when the original maturity
or volatility are smaller. A maturity 7' = 1/12 (one month) and a 10% annual volatility
means ¢ = .000833. Standardized volatilities of .0001 or less arise in practice. Therefore,
it would seem that the analytical expressions known so far for Asian options, as well as
some of the numerical procedures, are good mostly for relatively large values of ¢, which
are not very common in practice. The conclusion is that there is a clear need for better
approximations for small ¢. Observe that simulation does not seem to suffer from the small
t problem, but has, however, its own difficulties when used to price Asian options. See for
instance Vazquez & Dufresne (1998), Fu et al. (1999), and Su & Fu (2000).

The same phenomenon is observed for the known formulas for the density of A(“ ). Yor
(1992) derived the joint law of (By, A%,

/ 2
i”t exp (”- ~ ~(1 + e%)) o= u(t) du,

P(AW € du|B, +pt =1) = -

where

2 00
0.(t) = exp (%) /0 dy exp(—y?/2t) exp(~—r cosh y)(sinh y) sin (%)

r
V2m3t
The trigonometric function in that expression causes numerical problems, because of

the increasing oscillations of the integrand when t gets smaller. Observe that the factor
exp(m2/(2t)) is at the same time getting bigger. The Laguerre series obtained in Dufresne
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(2000) also suffer from the small ¢ problem, though the reason is apparently that the re-
quired moments of 1 /A,E“ ) get very large when t is small. Dufresne (2001b) obtains the
following expression for the density of 1/ (2A§“ )):

fulm,t) = eT#H/2 gmug=E / e g(y,1) cos (§(¥ — p)) Hyu(vzsinhy) dy,
(1.5)
for z > 0, where ,
e%‘f‘"%‘c‘

q(y,t) = T

and H,(-) is the Hermite function (Lebedev, 1972, p.290). Again there is a trignonomet-
ric function with an argument in 1/t and a factor exp(n?/(8t)), which cause numerical
instability when t is small.

coshy

Sections 2 and 3 deal with continuous averaging. The limit distributions are normal
or lognormal when ¢ tends to 0, and lognormal when ¢ tends to infinity. The lognormal
approximation is given what may be its first rigorous justification. (As far as this author
knows, the only prior justification of the lognormal approximation, though imperfect, was
Theorem 3.3(b) below, which shows that, as ¢ tends to infinity, the normalized logarithm
of M tends to the law of the absolute value of a normal variable; Revuz & Yor (1999,
p.48) trace this result back to Durrett (1982).) Section 2 looks at limits of M} when t
tends to 0, while Section 3 is concerned with limits as ¢ tends to infinity.

Section 4 defines a general integral functional of several geometric Brownian motions,
which includes the combinations or averages involved in all Asian or basket options, and
studies its distribution as the volatilities tend to 0. Again, normal and lognormal distribu-
tions are obtained in the limit. This paper does not tell which of the two approximations,
normal or lognormal, will be best for pricing Asian options; this will be studied in a sub-
sequent paper.

Section 5 compares two slightly different lognormal approximations, and also shows
that the difference of two lognormals approximates combinations with both positive and
negative weights. Section 6 looks at the limits of processes related to Asian option pricing
when volatility tends to 0. Section 7 concludes the paper with a preview of a follow-up
contribution, including two numerical examples of Asian option prices with their normal
and lognormal approximation. The Appendix derives some asymptotic formulas for the

moments of 1/A§“ ), which are of interest by themselves, but that are used in some of the
proofs.

The “big oh” and “small oh” symbols have their usual meanings:
a(t) = O@t*) as t— 0+
if |a(t)/t*| remains bounded as ¢ decreases to 0, and

a(t) = o(tF) as t— 0+
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means
a(t)
Y 0.
t—0+ ¢

We denote N,, ;2 a random variable with a N(m, s2) distribution, and “X, 4 X*” means

“X; converges in distribution to X*,” while “X; 3 X*” means “X; converges almost
surely to X*.” We will use the following general results related to convergence in distribu-
tion (Billingsley, 1999, p.27):

(1) Suppose || - || is a norm (in what follows either the Euclidean norm on R<, or the sup

norm on C[0,T]), and that X, > X*; if | Xn — Ya| 25 0, then Y, & X*.

(2) Suppose that X, < X* and that {X,} is uniformly integrable; then E X,, — E X*. A
sufficient condition for uniform integrability is sup,, E | X,|'*¢ < oo for some € > 0; another
one is that Y7 < X, < Y3 ass. for all n, where Y1,Y, are integrable.

- Finally, B is one-dimensional standard Brownian motion, with

B, = inf B B, = sup B
L4 0<u<t Uy t OSu,I;t uy

and we write B = B;, B = B;. Each element of the vector (B(,..., BM) is one-
dimensional standard Brownian motion, and the above notation is also used for its running

maximum and minimum, but it is not assumed that these Brownian motions are indepen-
dent.

2. Limit distribution of M} as t tends to 0

Theorem 2.1. (Normal limit ast — 0+)
Let m(t) =t or m(t) = EMY
t3

v(t) = g o v(t) = +/Var(M}).

Then, as t — 0+,

M} —m(t) 4
——> — Ny
Vu(t)
and, for k € N, .
E <M> — ENE,. (2.1)
v(t) ’

Proof. First, let m(t) = t, v(t) = t3/3. An obvious change of variable yields

1
My =t / eVt But gy,
0
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The distribution of M} is the same as that of

MY =t /0 B g, (2.2)
We find
t-s/z(]\’)f’tu —t) = ¢~U/2 /Ol(eutu+\/23u ~ 1) du. (2.3)
Now . 2
\—/_—t(e”‘/z—l) = o+ — es,

where ¢ lies between 0 and z+v/%. Apply this with & = vuv/t + B,: since the trajectbries of
Brownian motion are a.s. continuous, they are also a.s. bounded over finite intervals, and
the ¢ above a.s. tends to 0 uniformly in u. We thus have

t—1/2(eutu+x/EBu -1) as p

u-.

Moreover, the function on the left is uniformly bounded for 0 < ¢,u < 1 (considering a
single continuous trajectory of B). Hence

1
t732(MY —t) 5 /Budu as t—0+.
0

It is well-known that the distribution of the integral on the right is normal with mean 0
and variance 1/3.

Finally, it is possible to replace m(t) = ¢t with E M}, because

t—EMY

$3/2 -0

as t decreases to 0 (see (2.5) below). Similarly, v(t) = t3/3 may be replaced with the
variance of M}, because of (2.7) below.

For the convergence of moments (Eq.(2.1)), we give two possible proofs, (i) an (ii). The
first one is more straightforward, but incomplete.

(i) Suppose m(t) = EM}, v(t) = t3/3. Recall the formula for the moments of MY
(Dufresne, 1989; Yor, 1992):

n n -1
E(M)" = n!Zeakt[H(ak—aﬁ] , (2.4)
k=0

where oy = kv + k2/2, k € N. In particular,

v € 2 2 3
EM; = ( %) = t+2 <V—-|—2)t + O(t?), (2.5)
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and
2 2 2 1 2
MY — (2v+2)t _ (v+2)t .
EMY)” = i D@ 13 Do+ Twrn@sn @9
= t*+ (1/ + -g) 2+ 0(tY),

which implies (by subtracting the square of (2.5)) that

Var My
£ 33 L 27)

We have thus proved (2.1) for k = 1,2. The author has checked the cases k = 3,...,6 in
the same way, that is, by considering the Taylor series of the moments up to the required
order, and then simplifying (the reader is spared the messy details). The case of arbitrary
k has not been proved in this fashion, though this appears feasible.

(ii) Suppose m(t) = t, v(t) = t*/3. Since 1 — e~ < z for non-negative z, we find that (see

(2.3))

1 1
t—1/2/ (eutu+\/ZBu _ 1) du > t—~1/2/ (eutu+\/z_f_?_ _ 1) du
0 0
t vt
_ 4-1/2( ViB _ et —1 eVt —1—-ut
t (e 1) ( i)t vt3/2
et —1 e’t —1—ut
2 _3( iy ) + (W) . (2.8)

Observe that the last expression converges to B as t — 0+. Similarly,

R 1 1 —
: t'_1/2/ (eutu+\/ZBu _ l)du < t—1/2/ (eutu-f—\/EB _ 1) du
0 0 :
t vt
— —-1/2 \/ZT;'_ e’ —1 ev* —1—ut
t (e 1) ( vt + vt3/2

vt vt
= vip (e -1 et —-1—-uvt
S Be (7—) + <—I/—t3/2— . (29)

The last inequality follows from:
—%(e”c‘/E ~1) = ze < eV,

where ¢ lies between 0 and 2v/%, and which is valid for z > 0.

Noting that B and BeVtE are both integrable, we have thus shown that the variables
in (2.3) (for 0 < t < 1) are bounded below and above by integrable random variables;
they are hence uniformly integrable. Since (2.3) converges in distribution as t — 0+, those
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inequalities imply convergence of first moments to the first moment of the limit distribution
(see the end of Section 1). The same reasoning works for higher moments, only raise the

inequalities to the appropriate power, and note that the variables B* and erk\/z—é are
integrable for any k£ € N.

The same results (in (i) or (ii)) are correct if m(t) = E MY, instead of m(t) = t, since

v v k v k k-1 v J v k—j
E(Mt——EMt> _E(Mt-t> zz(k>E(Mt—t) (t-EMt>
v(t) v(t) AV Vu(t) v(t)
which is seen to tend to 0 by a recursive argument. The same limits (2.1) hold if v(¢t) is
replaced with Var M}, because of (2.7). O

Remark. Yor (2001, p.54) recently found that formula (2.4) for the moments of MY was
known at least as far back as 1955, in a paper by Ramakrishnan. When one of the constants
{ag; k > 1} equals 0, the expressions for the moments are slighly different, as explained in
Dufresne (1989). This does not affect the results above. O

Theorem 2.2. (Lognormal limit as t — 0+)

Let m(t) and v(t) be as in Theorem 2.1. Then, as t — 0+,

0,1,

m(t) MY
\/;,mlog( (t)) S

k
m(t) MY
E(mlog( (t))> — EN&I.

We will use the following lemma.

and for k € N,

Lemma 2.3. Assume that, as n tends to infinity, the constants {an;n > 1} tend to 0.

(a) Suppose the sequence of random variables {Z,;n > 1} converges in distribution to Z*.
Then

1
— log(1 4+ anZn)1{14a,2,>0} 4 gz as n — oo.
n
(b) Conversely, suppose that {Up;n > 1} converges in distribution to U*. Then

U
eintn —1 4
_ = U as m — 00.
an

Proof of Lemma 2.3. (a) Apply Skorohod’s Representation Theorem (Billingsley, 1999,
p.70): there is a probability space (Q, F, P) on which variables {Z,;n > 1}, Z* are defined,
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such that Z, & Z, for all n, Z*< Z*, and Z, converges almost surely (P) to Z*. Clearly
1(14q,2, >0 CODVerges almost surely to 1 as n tends to infinity, and so

L rog(1 + anZa)1 Z /Z du_y =
= = = —_— > —d .
an g n<n {1+anZn>0} n a,nZn 0 1 + U {1+anzn>0}

Part (b) of the Lemma is proved similarly. O

Proof of Theorem 2.2. The limit distribution follows at once from part (a) of Lemma
2.3 and

m(t) | (M ml) Vult) MY = m(t)
v(t)lo (m(t) \/’“ (1 v) Vu(t) )’

noting that lim;—o4 y/v(t)/m(t) =0.
(b) Recall B and B from the proof of Theorem 2.1, and note that

eViB (e—ut;t_—l> t < J\Z" < eVIB <El%£> t. (2.10)
Hence, .
m(t) -
9(t)B+h(t) < \/17(71 g( (t)) < g(t)B + h(t), (2.11)
where

9(t) = veml) V3,  h(t) = 1og[(fft_‘_l) __t__] 50

v(t) vt m(t)

as t — 0+. Hence, the variables in the middle of (2.11), raised to a power k > 1, are
uniformly integrable, and thus all moments converge to those of the limit distribution. []

Theorem 2.2 implies in particular

E(logMY) = logt+ o(\1), Var(log My) ~ é— ast—0+.

Theorem 2.4. (Normal limit for reciprocal average ast — 0+)

Let m(t) and v(t) be as in Theorem 2.1. Then, ast — 0+,

and, for k € N,

k
m(t) (m(?)
E[—\/E—?)<Mt" —1)] — EN§,.
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Proof. There are at least two ways to prove convergence in distribution. A first one is to
use part (b) of Lemma 2.3: let

om() MY\ @ e _ V@)
U = —mlog<m(tt)> S U = Nopy,  ap = mt)

A second more direct proof also yields convergence of moments. Initially, let m(t) = ¢, and
recall (2.2), (2.8),(2.9) and (2.10). Then

t ____t_~ d t ._L _ t fol(eutu+\/ZBu__1)du
v(t) <1 Mf) = e (1 1\7;’) T W) [Tem B gy (2.12)

The last expression is easily seen to converge to

1
x/??/ Bydu ~ N(0,1),
0

while it is bounded below by

vt -1 141
_vip , [€'—1 et —1—vt\ _sp
Be ”+(7> (“““t/—“ cT TP

and bounded above by

t3/2

Vo(t)

Those two bounds converge to v/3B and /3B, respectively, and are each uniformly
bounded (for 0 < ¢ < 1, say) by variables which have all moments finite.

The proof for m(t) = EMY is obtained as follows. Denote X; the right hand side of

vt vt3/2

v -1 v
BeViE-B) | (e ‘- 1) (e -1 —Vt) e—ﬂﬁ] ,

(2.12) and
_ ) (mt) _
= V() (Mr 1)'
Then

Y- X, = m(tz(;)t(m%:’t—l),

which tends to 0 almost surely as t — 0+. This shows that Y; has the same limit distribution
as X;. Finally, turn to moments: for £ > 1,

k
EYf~EX} = ) (f) E[X{ ™ (Y; — X)),

Jj=1

10 16-7-2002
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where the expectations on the right all tend to 0 as ¢ — 0+, and so the k-th moments of
X, and Y; have the same limit. |

This theorem implies that

1 1 1 1 1
— ) =z = Var[ — ) ~ =
E(M:) t+o(ﬁ)’ a'(M:) 30

as t — 0+. These could also be obtained (with a little more effort) from the integral
formulas for the moments of one over M/}, see Dufresne (2000, p.417). O

As a last comment, observe that Lemma 2.3 may be reformulated as follows:

Corollary 2.5. Suppose ap,bn, X, > 0,b,/a, — 0. Then the following are equivalent:

(i) ———-—X”b_a" < u-

(ii) Z—"log (—)&‘—) < U

Qn

Qnp Qn d *
i) 2 (=1 & —~yu~,
@) 5 (Xn ) v

When considering limit distributions as ¢ — 0+, the normal and lognormal limits
occur simultaneously, because y/v(t)/m(t) — 0 as t — 0+. However,

v/ Var M}

—EW% 0 as t—*OO,

which explains why there is a lognormal limit distribution in the next section, but no
normal limit.

3. Limit distributions of M} as ¢ tends to infinity

Recall that (Dufresne, 1990) lim;—., M} = MY is finite if, and only if, v < 0, and

that, moreover
2

MU

o0

~ Gamma (—2v,1), v <O0. (3.1)

Theorem 3.1. (No normal limit for average ast — o)
Let m(t) = EM}, v(t) = Var M}. For any v € R, the reduced variable
M} — m(t)

Vu(t)

does not converge to a normal distribution ast — co. If v > —1, then it tends to 0 almost
surely.

(3.2)
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Proof. First, suppose v < 0. Then M} converges almost surely to an inverse gamma
variable, while the denominator tends either to a positive constant, or to +00. A normal
limit distribution is impossible. If -1 < v < 0, then, by (2.5), (2.6) and (3.1), the variance of
MY tends to infinity, while the squared mean either tends to a constant, or tends to infinity
at a slower rate than the variance. Hence, (3.2) tends to 0 almost surely if —1 < v < 0.

Suppose next that v > 0. From (2.5)-(2.6),

1
V+%

~ e I D 4 3/2), v -1,

1
et v>—=

m(t) ~ :

1

Vou(t)

and so m(t)/+/v(t) — 0; it is thus sufficient to consider the limit of MY /\/v(t). We get

t _ t
e—(l/+1)t / eVS+Bs ds < e—t+Bg / eV(S—t) ds,
0 0

which tends to 0 almost surely as t tends to infinity. O

Theorem 3.2. (No normal limit for reciprocal average as t — co)

For any v € R, the distribution of

1 1
= (3r)
My \M/ (3.3)
Var (&g/)

does not converge to a normal distribution as t — oo. If v > 0, then the above variable
tends to 0 almost surely.

Proof. If v < 0, then the limit distribution is obviously a Gamma(—2v, 1) minus its mean
and divided by its standard deviation.

For v > 0, it is perhaps easier to consider expression (3.3) with M} replaced with AE“ ),
i = v/2. Refer to the Appendix for the asymptotic behaviour of the first two moments of

Ag“) (see (A.6), (A.10) and the comment after (A4.10)). For all x> 0, it can be seen that
(1
A
Var —-(1—-)-
AF

12 16-7-2002
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as t tends to infinity. Thus, it only remains to show that

1

Ag“ ), | var —i)—

almost surely. In the case p = 0, this follows from Theorem 3.3(b) (see below), which will
now be seen to imply that

— 0

lim =t~ = a.s.

for all p. Suppose there are C,p > 0 and a set E of positive probability such that
A(O)
liminf 22— < C
t—oo P

on E. Then it follows that 1

liminf — log A,EO) <0

t—o0 t

on E, which is a contradiction, since Theorem 3.3(b) says that

. 1 0)
lim P(—logA( > o) = 1.
Vit t

t— o0 t

Next, consider p > 0. First, note that
Pt AW 2% o, p>—2u
as t tends to infinity, since the above may be rewritten as

i

o(P+21)t+2B, [e—2ut—2BgA§#):|

the first factor tends to co almost surely, while the second has a strictly positive limit in
distribution. Eqgs. (A.6) and (A.10), (see Appendix) show that

Var —% ~ KtPetWt

as t — 0o, where K and p are constants, and

12

alp) = ¢ 4
4—-2u if p>4.

if 0<pu<4
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Obviously a{p) > —2u for all g > 0, which ends the proof. O

Theorem 3.3. (Limits of logM} ast — o)
The following limits hold when t — oc.

(a) Suppose v < 0. Then
i(logM”—l/t) 2B —1——logM" =0
\/E t ’ t .
(b) Suppose v =0. Then

k
1
%bthO 4 |Noil  and E(wlothO) — E|Ng.¥, keN.

(c) Suppose v > 0. Then

k
ilog(M")—yt — ENE,, keN.
n t 0,1

7

\/iz[log (MY — vi] 4 Noa and E (

Proof. Part (a) is an obvious consequence of (3.1). The limit distribution in (b) has a
well-known proof, see Comtet et al. (1998, Section 3.1), or Revuz & Yor (1999, Exercise
1.18, p.23). We will give another proof, based on Bougerol’s identity (for more details on
the results used below, see Bougerol (1983) and Alili et al. (1997)). This identity says that
if (V, W) is two-dimensional Brownian motion, then

¢
/eVS aw, & sinh(W;)
0

for each fixed ¢t > 0. This is equivalent to

AgO)NO,l g Sinh(\/ZNoyl),

if Np,1 is independent of A§°). This implies

1 1 1
—log A + —tlog(Ngyl) 4 — log[sinh?(v/tNp 1)]

vt vt vt

The second term on the left hand side tends to 0 almost surely as ¢ tends to infinity, and
sinh? y behaves like e2!¥! /4 as y — oo, which yields

1
—log A 5 2|No.

Vi
This is the result sought, by (1.4).
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Convergence of moments results from the same uniform integrability argument as in
the proof of Theorem 2.1, after noting that

1 1 —~ 1 —
—logt+B < —logM? < —1logt+ B.

(b) Time reversal implies that, for any v (Dufresne, 1989),
t
Mty :i__ eut-l—Bt/ e—uu—Bu du.
0

Take logs on either side, subtract vt, and divide by v/t to get

1 t
%(lOthy—Vt) 4 \/_ \/_log/ e V¥ Bu gy,

The first term on the right has an N(0, 1) distribution, while the second one converges to
0 almost surely. To prove convergence of moments, it is sufficient to show that the last
expression is uniformly integrable. This is done by noting that it has lower and upper

bounds

B; — Bt <1—e"’t) B; - B, 1 <1—e"’t>

log{ —— and ———+ —=log| ——— ),
Vi \f v Vit Vit

respectively. Those bounds are uniformly integrable, because

B,-Bia , = B-B
Vi

e

Part (b) implies that, as t — oo,

2t
E(log M?) ~ ’/?, Var(log M) ~ t(l— %>,

while part (c) means that for v > 0,
E(log M?) = vt+o(vt), Var(logM?) ~ t.
Observe that exact integral expressions can be found for the moments of log M}, using

" the density (1.5). Comtet et al. (1998) give other formulas regarding the first moment of
log MY .

4. Convergence of more general sums of lognormals

The continuous straight averages studied in the previous sections are important mathe-
matically, as they allow explicit formulas for many quantities of interest. However, financial
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computations concern discrete averages with weights which are not necessarily equal, and
these are not always well approximated by continuous averages with equal weights. In this
section, we consider more general averages involving any number of different securities.
This includes all Asian and basket payoffs, as well as hybrids of the two types. For in-
stance, an option’s payoff might be based on the sum of the time-weighted averages of two
securities S(1) and S, say

ni n2

1 1 2 2
S w5V + 3 wPs?. (4.1)
i=1 j=1

Here (S, S@)) would often be correlated lognormal processes.

We consider n securities (S m . ...,8 (")), modelled as correlated geometric Brownian
motions (“lognormal processes”), and we look at the limit distributions of general averages
(such as (4.1) above) when the volatilities of all the securities tend to 0. Rather than letting
all the separate volatilities tend to 0, we simplify the algebra by introducing a factor p in
all the volatilities:

volatility of security k& = poyg, k=1,...,n.
As p decreases to 0, all the volatilities tend to 0. We assume that
S’t(k) = S(()k) exp(uxt +pakB(k)), k=1,...,n.

Here (BW), ..., B™) is, under the risk-neutral measure, a vector of (possibly correlated)
standard Brownian motions.

We now describe how the averages are denoted. Rather than writing averages as in
(4.1), we prefer writing any time-weighted combination of security k as an integral of the

(k) . .
process eP?+B:” with respect to a signed measure F(¥:
o . . T o B® (k)
combination of prices of security £k = ePoRZe T dF .
0

(N.B. A measure m is a set function which satisfies: m(A4) > 0 for all A; m(@) = 0; and
m(Uj>14;) = 3,5 m(A;) for all disjoint {A;}. A signed measure satisfies the last two
properties, but not necessarily the first one (non-negativity); a signed measure can always
be expressed as the difference of two measures.)

This notation accomodates both discrete and continuous averages, or combinations of
those. A discrete combination of security S*), with weights wj(.k) at time t;, j =1,...,ng

is therefore written as
o k) ok T (k) k
s = [ emt ar®,
j=1 0
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where the measure F(*) assigns mass S(()k)e“ktj 'wj(-k) to the time point ¢;, for j =1,...,ng.
A continuous average over [0,T] is written as the right-hand side of the last equation, but
now

Sk ps2
F(k)(31,32) — —-(1)_‘—\/ eﬂktdt
81

for any interval (s1,s2) with 0 < 81 < 83 < T. To avoid trivialities, we assume that, for
each k, F) is not the zero measure, F(¥) [0,T] is finite, and oy is strictly greater than 0.

In order to include all the above types of combinations of securities, we consider
random variables of the type

=T (k)
Xp = Z/ ehor s dFt(k),
k=10

where F(U ..., F™) are signed measures, and look for limit distributions of X, (suitably
normalized) as p tends to 0. First (Theorem 4.1), we consider normal limit distributions
for
X,—EX,
’ .

Observe that signed measures may assign a negative mass to a set, and so, in this case,

negative weights wgk) are allowed in Eq. (4.1). Next (Theorem 4.2), we restrict the analysis

to proper measures (that is, all weights must now be non-negative), and look for the limit
distribution of

1 o X,

» °\Ex, )

It will turn out that EX,, can always be replaced with X in the above expressions. Similar
results will be obtained for 1/X,, as well (Theorem 4.3).

Theorem 4.1. Suppose F(1) .. ,F(") are signed measures. Then, as p tends to 0,

X, —EX i T
e sy = Yoo [ BPAEY ~ No,
k=1 0

p
and, for k € N,
—EX,\"
E(X—p——g) — v*ENE,,
p b
where
v? = Var(Y)
n T T i . T T G) k)
= Zag/ / (i At)dEP dF P +2 Y pjkajak/ / (ti At2)dFY) dFP.
k=1 Jo Jo 1<5<k<n o Jo

These results also hold if E X, is replaced with Xo.
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Proof. No generality is lost by assuming that p > 0. We find
X, —EX n (T eporB® _q
P P Z / d Ft( ),
p =170 p
and the almost sure limit follows from dominated cconvergence, given that

(k)
epakBt — 1 s, k
— = 2% 5BP.
p

The variance of Y is found by expanding Y? and then taking expectations.

Convergence of moments is established by noting that, for 0 < p < 1,

eroxB” _ 1

p

—_ (k)
’ < ok (BY - BIM)eB:"

where FE") = maxXo<¢<T Bt and Egk) = ming<t<t By.
The same results hold if E X, is replaced with Xy, because, as p tends to 0,

E X, — Xo
p

— 0. 0

Theorem 4.2. Suppose F(1) ..., F(™ qare measures. Then, as p tends to 0,

Liog(ZXp ) as ¥
p S\ EX, X,

1 X, \1* v \*_
Zlog — 1 E
[fes(&2)] - () e

where Y and v are as in Theorem 4.1. These results also hold if E X, is replaced with X.

and, for k € N,

Proof. The first claim results from

1 X 1 P X,—EX as. Y
Z1 2 ) = “logl1 P Ry as 2
p °g(EXp) P °°[ M EXp( P >] Xo

Moreover,
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Covergence of moments results from dominated convergence, after noting that
. (k) (k)
Xo exp prr}cln(akﬁt ) < Xk < X, exp me?x(akBt ). O

This theorem implies
P22

E(log X;) = logXo+o0(p),  Var(logX,) ~ X7
0

Theorem 4.3. Suppose FO , F™ are measures. Then, as p tends to 0,

1] 1 E 1 a.s. Y
p Xp Xp Xg’

—kg 1 - E 1 * — Y ka
p X, X, Xz ) "o

where Y and v are as in Theorem 4.1. The results above also hold if E(1 /Xp) is replaced
with 1/ Xo, or with 1/E(X,).

Zy = llog(‘)‘)%Z) 3 L

and, for k € N,

Proof. From

it follows that

1 1 1 1 Y
e L = 1 (o=DPZy _ as. ¥
p (Xp Xo> rXo (e D= X3

In the expressions on the left, 1/ Xy may be replaced with E(1 /Xp), since, for 0 < p<l,

i) = oo s (gt
(4.2)

171 1 . k . k
> (fo - 3(;) > —exp [— H}cm(okﬁrfp))} rr}cln(akE(T))-
These two bounds are integrable, the left hand side tends to 0 almost surely, and so

171 1

- = —E{ = — 0.

b [ Xo (Xp ) J

Similarly, 1/X, may be replaced with 1 /E X,, because
1/1 1) 1 [(EX,— X,
—_ - = - 0.
p\Xo EX, XoE X, p
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Convergence of moments results from bounds (4.2). O

This theorem implies

1 1 1 p?v?
E — = —_— - ~ .
(%) = mreo w(x) ~ 5

5. Some comments on lognormal approximations

We first compare two lognormal approximations in the case where each F(*) is a
measure, and then discuss a lognormal difference approximation when at least one F®*) is
a signed measure.

The usual way to find a lognormal approximation for a non-negative distribution is
to match first and second moments, which leads to X, ~ LogNormal(m;,, s%p), where

EX2 ]

s%p = log [(EX,,)z mip = log(E X)) —s%p/Q.

Now Theorem 4.2 suggests a different lognormal approximation:
X, ~ XgeP¥/Xo ~ Lognormal(mgp,s%p), with mg, = log Xo, s%p = p*v?/X2.

The following result shows that the two sets of lognormal parameters are close when
volatilities are small.

Theorem 5.1. Asp — 0,
mip —Mzp = 0(p2)a s%p - S%p = O(p4)
Proof. First, there exist &,,7,, both between 0 and p?, such that

1
F (S%p - S%p)

2
= -1—410g [e"”2”2/Xg EX”2
P (EX,,)
= LB B e, P P ] (EXp 2 BXDTN L
ptT X2 ' 2X} (E X,)2 X2 2

The expression inside the curly brackets may be rewritten as 1 + p4Kp, where K, can
be shown to have a finite limit as p tends to 0. For the first parameters the situation is
simpler:

1 . ]. EXp s]_p (k)
2 (mip —mgp) = P log< X, ) o Xo Z /tdF 2X2
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Next, turn to the case where at least one of the F(¥) is not a proper measure, that is,
that there are positive and negative weights in the combination of securitites. Theorem 4.1
suggests a normal approximation for X, but numerical computations (shown in a subse-
quent paper) reveal that a better approximation in this case is a difference of lognormals.
Separate the positive and negative components and express X, as the difference of two
positive sums, and apply Theorem 4.2 to each sum separately; the following result justifies
the approximation of X, by the difference of two lognormals (the simple proof is omitted):

Theorem 5.2 Suppose X,(,l) and X,(,2) are as in Theorem 4.2, with

(#) ()
llog(Xz(")) — % j=1,2.
p Xy X

Then

11%%[)(;,1) — X@ — (xPerY VXD _ x@epY®IXTy _ g g
p—}

This justifies considering the approximation

XI()I) _ X}(’2) ~ Xél)epy(l)/x(()l) _ Xéz)epy(z)/xéz),

6. Limits of some related stochastic processes

The following results, given without proof, concern some stochastic processes which
arise in the study of Asian options with continuous averaging. We let, for o > 0, v € R,

t t
MtV,U — / eVS-HTBs dS, S:,U — xel/t+o‘B: +eut+aBt/ e—us—aBs ds
0 0

v,0 v,0 v,o v,0
XY — Mt — Mt y¥o — St — St
t - ) t -

g g

_ 1 MY° _ 1 v,0
X7 = =1 —t Y = 2] ¢ .
t p 0g<Mtu,o>a t Jog(Sf’O)

It is known that, if z = 0, then M;”° and S}’ have the same distribution for fixed t;
however, the second process is Markov, while the first one is not. The theorem shows that
both processes have Gaussian limits, when suitably normalized, as o — 0+.

Theorem 6.1. In each of the following, convergence is almost sure in the sup norm over
[0,T], for any T < oo.

(a) The process X*° converges to X¥'°, where

t
X0 = / e”*B, ds.
0
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(b) The process Y7 converges to YV'°, where

¢
Y% = ze"'B, + / e’*=*)(B; — B,)ds
0
dy? = vy dt + 57 dB,.
(c) The process X** converges to X*°, where

v,0
.0 Xt vi,0
Xt =25 X0 =0
t

(d) If z > 0, the process Y*° converges almost surely to Y**°, where

7. Conclusion

The main conclusions of this paper are:

(1) For combinations of lognormal securities with small volatilities, or short maturities,
the limit distributions may be normal or lognormal, depending on the normalization chosen;
the normal and lognormal are equivalent because, intuitively, the standard deviation of the
sums are small relative to the mean, as volatilities tend to 0.

(2) When maturities tend to infinity, lognormal limit distributions are sometimes
obtained, but no instance of a normal limit has been found.

Further theoretical and numerical work is required to determine the value of these
results for pricing Asian and basket options, and this will be done in a subsequent paper.
As a preview, however, two numerical examples are briefly presented below.

Ezample 7.1. Consider case 1 in Example 7.2 of Dufresne (2000), which had also been
used in other papers. An at-the-money Asian call option, with continuous averaging, has
maturity T' = 1 year, the volatility is ¢ = .10, the risk-free rate of interest is .02, and
the initial stock price is 2. Monte Carlo simulations (with 200,000 replications) give a 95%
confidence interval for the price of .05602 £+ .00017. The Laguerre series studied in the
same paper work when t = 2T is large enough, but they fail here, because t = .01 is
too small. The improved Laguerre series of Schréder (2002) may give an accurate answer
(this particular computation has not been performed), but the required programming and
computing are far form trivial. The expansion given in Linetsky (2001), with 400 terms
and very significant programming and computing efforts, yields .055986.

The normal approximation gives .0557, and the usual (moment-matching) lognormal
approximation yields .0560537, with, in each case, an insignificant computing effort. The
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relative errors are .005 and .001, respectively. The lognormal approximation is well within
the 95% confidence interval found by simulation. O

Ezample 7.2. Figure 7.1 shows the relative errors (as percentages of the prices obtained
by Monte Carlo simulation) of normal and lognormal approximations for the prices of at-
the-money Asian call options (again with continuous averaging), for different maturities.
The quantities approximated are

1
c(t) = e""tE(—Mf - 1>
¢ +
(As explained in the Introduction, here ¢ stands for o2T. For instance, t = .04 might
correspond to ¢ = 20% and T = 1, or to 0 = 40% and T = .25.) It is seen that, for both
approximations, the relative errors tend to zero as t tends to 0, but that the lognormal
approximation produces relative errors which are about 10 times smaller than those of the

normal approximation. The relative errors are roughly linear in ¢, and tend to 0 as ¢ tends
to 0. O

Acknowledgments

Support from the National Science and Engineering Research Council of Canada is
gratefully acknowledged. The author also thanks the Centre for Actuarial Studies, Depart-
ment of Economics, University of Melbourne, where part of this research was conducted.

References

Alili, L., Dufresne, D., and Yor, M. (1997). Sur Iidentité de Bougerol pour les fonctionelles
exponentielles du mouvement brownien avec drift. In: Ezponential Functionals and Prin-
cipal Values Related to Brownian Motion, pp. 3-14. Biblioteca de la Revista Matematica
Iberoamericana, Madrid.

Billingsley, P. (1999). Convergence of Probability Measures (Second Edition). Wiley, New
York.

Bougerol, P. (1983). Exemples de théorémes locaux sur les groupes résolubles. Ann. Inst.
Henri Poincaré 19: 369-391.

Comtet, A., Monthus, C., and Yor, M. (1998). Exponential functionals of Brownian motion
and disordered systems. J. Appl. Prob. 35: 255-271. [Reproduced in Yor (2001).]

Dufresne, D. (1989). Weak convergence of random growth processes with applications to
insurance. Insurance: Mathematics and Economics 8: 187-201.

Dufresne (1990). The distribution of a perpetuity, with applications to risk theory and
pension funding. Scand. Actuarial. J. 1990: 39-79.

Dufresne (2000). Laguerre series for Asian and other options. Mathematical Finance 10:
407-428.

23 16-7-2002




Asian and basket asymptotics

Dufresne, D. (2001a). An affine property of the reciprocal Asian process. Osaka Journal
of Mathematics 38: 379-381.

Dufresne, D. (2001b). The integral of geometric Brownian motion. Advances in Applied
Probability 33: 223-241.

Durrett, R. (1982). A new proof of Spitzer’s result on the winding of 2-dimensional Brow-
nian motion.. Ann. Prob. 10: 244-246.

Fu, M.C., Madan, D.B., and Wang, T. (1999) Pricing continuous Asian options: A compar-
ison of Monte Carlo and Laplace transform inversion methods. Journal of Computational
Finance 2: 49-74.

Geman, H. and Yor, M. (1993). Bessel processes, Asian options and perpetuities. Mathe-
matical Finance 3: 349-375.

Lebedev, N.N. (1972). Special Functions and their Applications. Dover, New York.

Linetsky, V. (2001). Exact pricing of Asian options: An application of spectral theory.
Preprint, 22 October 2001.

Revuz, D., and Yor, M. (1999). Continuous Martingales and Brownian Motion (Third
Edition). Springer-Verlag, New York.

Schréder, M., (2002). On the valuation of arithmetic-average asian options: Laguerre series
and theta integrals. Preprint. '

Su, Y. and Fu, M.C. (2000). Importance sampling in derivative securities pricing. Proceed-
ings of the 2000 Winter Simulation Conference: 587-596.

Taleb, N. (1997). Dynamic Hedging: Managing Vanilla and Ezotic Options. Wiley, New
York.

Vizquez-Abad, F., and Dufresne, D. (1998). Accelerated simulation for pricing Asian op-
tions. Proceedings of the 1998 Winter Simulation Conference: 1493-1500.

Yor, M. (1992). On some exponential functionals of Brownian motion. Adv. Appl. Prob.
24: 509-531. [Reproduced in Yor (2001).]

Yor, M. (2001). Ezponential Functionals of Brownian Motion and Related Processes.
Springer-Verlag, New York.

24 16-7-2002




Asian and basket asymptotics

APPENDIX

Asymptotic expressions for the first two moments of 1/ (2A§“ ) )

In this Appendix, we find asymptotic formulas for the first two moments of 1/ (2A§“ ))
as t tends to infinity. We use results from Dufresne (2000, 2001b),

.2
E 1 _e* t/2 wye_yz/@t)cosh[(u—l)y] dy
2AM) V2rt3 Jo sinh(y)

e—kt/2 oo _2/(20) e(h=2)y | o—ny

d
ot Jo ye 1 —e-2y Y,

1 1
E| —— | = et |, E| —
<2A§“+2) ) 24

for all 1 € R, and, from Dufresne (2001a),

(A1)

(A.2)

1 d 1
2407 24

+G, (A.3)

for all 4 > 0, where G, is independent of Aﬁ” ) and has a Gamma(y, 1) distribution.

It is enough to find an asymptotic formula for 0 < p < 2, and then use (4.2) — (4.3)
for the other u.

First, let 0 < p < 2. Then both u — 2 et —p are strictly negative, and (A.1) is a
function of ¢ times the sum of two integrals of the form

/ T el (A.4)
0

1—e2y

with @ > 0. For n > 1, there is {(y), between 0 and y?, such that
1)k 00 ey
n - /(2t) _ Z 2k+1
(2t)"n! [/0 Y (2t)* k! / 1—e2v dy]

_ [T 2 —<<y)/(2t)__f__d R RS
0 y 1—e2v ™Y 1—e-2 Y

as t — oo. The last integral is related to the logarithmic derivative of the gamma function,
¥(2), which has the following expression (Lebedev, 1972, p.7)

Wz = 22 _ F'(1)+/°°3_—uﬂdu, Re(z) > 0.
2 0

l—e
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Hence,

oo o —au/2
i€ 2_2n_2/ 2nt1 € du — 9-2n—2,(2n+1) (2)
/0 Vo1 ew ™ o L T—eu ™ v 3)>

and (A.4) has the asymptotic expansion

* e~ Y /(2t)__ (2k+1)
/0 e Z 4(8t)’°k'¢ (2) ’

Finally,

1 —ust/2 al(c“)
E| ——= | ~ , 0< <2, A5
24 Vortd =tk g (4.5)

as t — oo, with

o = T o (8) v (1)

Now turn to the case p = 0. Since

and
oo 2
/ Ry ——
0

the preceding considerations yield
1 1 1 ol
t( o) ~ = (11 %
2A§ ) 2mt oo ¢

o) _ ( ) 2k+1
A" = 23k+1kl¢( )(1)’ k20

with

Using (A.2)-(A.3), these formulas allow the derivation of asymptotic expressions for the
first moment of 1/ 2A£“ ) for any p € Ry. For example,

1 e—2t 1 a(o)
() ~ 5%

1 e—u2t/2 o0 a(—u)
E{—— | ~ -+ k. -2<pu<0
(2A§“)> V> ,;) tk 8
T 1 e—uzt/2 e a(#—z)
E ~ (p—2)e”@u=2t 4 ko< u<d
() ~ - o oy P g
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For the purposes of this paper, the first term in the asymptotic expressions is required,
which are easily seen to be

E(zAlg")) N \/% | (A.6a)
(ap) ~ S osne (40
E(2Al§2)) ~ \6/;271 (A.6c)
E(ﬁ) ~ (p=2)e” @2t 59 (A.6d)

Next, consider the second moment of 1/ (2A§“ )). From Dufresne (2000, p.417),

cosh[ —1)y]
E(zA“”) / WGy

2

2 3 e““2t/2 2
ou2ty) = |(1-5) + 5 - 15 ye ¥/, (A7)
2 4t 4t 23

where

The second moment of 1/ 2A§” ) is then sum of three integrals, and finding the asymp-
totic expansion of each of these integrals yields (for 0 < p < 2)

- 1 2 e_uztﬂiﬁl(cﬂ) (A 8)
24" Vaorts =tk '

with ) = (1 — )204(()“). From Dufresne (2001b, Corollary 3.4, let r = n = 1 in the first

formula),
2 2
B —L_) = e-teura (n—1)E L) pe( L (A.9)
2A§I"+2) 2A(N) 2A£I‘) ’ )

This formula implies, in view of (A.5), that (A.8) holds also for 2 < p < 4 (the constants

{ﬁ,(c“ )k > 0} are again combinations of derivatives of 9(-)). For the same values of p,
(A.6d) then implies

2
1 1
- ~ _ _ —(2u-2)t
(b -1)E (2A(#)) +E (2A§“)> (1t —=1)(p—2)e :
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which in turn gives

2

1 (e

E{ =] ~ (b=3)u—4e @, d<pu<s.
2A!

It can be checked by induction that the same formula holds for p € (2n,2n + 2), for all
n > 2. Now suppose p is an even, non-negative integer. From (A.7),

2

1 1 oo 3 y2 . -2
El—w | = = 143 Y| v |11

(2A§0)) Vv 2mi3 /0 [ + 4t 4t2J ye 1+ 1—e—2y dy,

Proceeding as for the first moment, we find that

2
E = |[1+—|E - = 3,-4%/(21) 1 49 awl
(a29) = [l (o) - sl [ [ roris] o

The expression is curly brackets has the asymptotic expansion

2y

1 [ 5 e e~ 1 1 X (=1)F
1 9 - ~ - (2k+3)
ve Fi | W 3t I;} e’

a2 J,

2t2
and so 5
1 1 1380
E RO) ~ =1t Z ﬁLk J
24; rt timo b
where the constants {0} are combinations of the derivatives of 1(z) at z = 1. In particular,

1

©_,0, =
0 o +4.

Using (A.9), this yields

2
(1 e (1,5 O _ o
24 Vor3 \4 = ’

In the same fashion, it is seen that (A.10e) (below) holds:

2
1 1
El — ) ~ —— A.10a
<2A§°)> Vort ( )
2 2
1 e~Ht/2 (
E{— | ~ W << A.10b
<2A§“)) o3 : (4.105)
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£ 1 2 o—2t
~ A.10c
24 423 (4.10c)
2
1 e—u2t/2 (
E ~ Mo o< pu<d A.10d
<2A§“’) on3 O H (4.104)
2
1 e 8t
E ~ A.10
<2A§4>> V2rt (A.10¢)
2
1 — p—
j <2A(u)> ~ (o BB e (A10f)
t

By subtracting the square of (A.6), it is seen that, in all cases, the first term of the
asymptotic expansion of Var(1l /Aﬁ“ )) is also given by the right hand sides of (A.10).

Asymptotic formulas for 1 < 0 can be found by appealing to (A.3), which yields

2 2
1 1 1
E{l——| =E|—— | +2uE|—— | +ulp+1).
<2AE““> (2A§“)) <2A§“’)
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