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Abstract

We study the distribution of the time to ruin in the classical risk
model. We consider some methods of calculating this distribution, in
particular by using algorithms to calculate finite time ruin probabili-
ties. We also discuss calculation of the moments of this distribution.

1 Introduction

In recent years, research in ruin theory has focussed on moments of the time
to ruin, particularly in the classical risk model. Lin and Willmot (1999 and
2000) present methods from which explicit solutions for moments of the time
to ruin can be found recursively for this model provided that an explicit
solution exists for the ultimate ruin probability. Egidio dos Reis (2000)
presents a recursion scheme to find the moments of the time to ruin for a
discrete time risk model, and uses this to approximate moments of the time
to ruin in the classical risk model, while Picard and Lefévre (1998) consider
the classical risk model with a discrete individual claim amount distribution.
Cheng et al (2000) consider a discrete time risk model and find expressions
for the moments of the time to ruin for this model. Cardoso and Egidio dos
Reis (2001) study the shape of the density of the time to ruin.

Our objective in this paper is to study aspects of the time to ruin in the
classical risk model. In particular, we focus on the actual distribution of
the time to ruin. By calculating values of both finite and infinite time ruin
probabilities, we can construct numerically the conditional distribution of
the time to ruin, and use this to create density functions. We also show how
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Lin and Willmot’s (2000) results can be used to calculate approximate values
for moments of the time to ruin when explicit solutions for the probability
of ultimate ruin do not exist.

The layout of this paper is as follows. In Section 2 we introduce notation.
In Section 3 we summarise the algorithms we apply to compute the distrib-
ution of the time to ruin in Section 6, and in Section 4 we briefly describe
some numerical methods of approximating finite time ruin probabilities for
the classical risk model. In Section 5 we illustrate how moments of the time
to ruin can be found, and in Section 6 we give some illustrations of densities
of the time to ruin, given that ruin occurs.

2 Notation

In the classical risk model, the insurer’s surplus at time ¢, given an initial
surplus u, is U(t) where

Ut)=u+ct — S(t).

The aggregate claims process {S(¢)}:>0 is a compound Poisson process, with
Poisson parameter A. We denote by P the distribution function of individual
claim amounts, and assume that P(0) = 0. Let p; denote the kth moment of
this distribution. We assume that the insurer’s premium income is received
continuously at rate ¢ per unit time, where ¢ = (1 4+ 0)Ap; and 8 is the
premium loading factor. Without loss of generality we can set both A and
p1 to be 1 and these values will be assumed in all numerical illustrations in
this paper.
The time to ruin is denoted T and defined by

T— inf(t: U(t) <0)
"] o if U(t) >0 forall t > 0.

The probability of ultimate ruin from initial surplus u is denoted ¥ (u) and
defined by ¢¥(u) = Pr(T < oo). We write 6(u) = 1 — ¢(u) and denote by
T. the random variable T|T < oo. The aggregate loss process {L(t)}i>0 is
defined by L(t) = S(t) — ct. We denote by L the maximum of the aggregate
loss process so that ¥(u) = Pr(L > u).

It is straightforward to show that:

E[L] = /Omw(m)dx=2—% 2.1)




E[LY] = 2 /0 Y rg(a)dr = 23 4 % (3)2 (2.2)
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3
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See, for example, Gerber (1979).
The probability of ruin by time ¢ from initial surplus u is denoted ¥ (u, t)
and given by ¢(u,t) = Pr(T < t) so that

Pr(T < T < 00) = 9(u,1)/9(u)

is the distribution function of the time to ruin given that ruin occurs.

3 Algorithms for ruin probabilities

Our calculations in Sections 5 and 6 are based on calculated values of ¥(u, t)
and ¢(u). Values of 9(u,t) have been calculated using the algorithm de-
scribed in Dickson and Waters (1991, Section 8). Values of 1(u) have been
calculated from the stable recursive algorithm described in Dickson et al
(1995).

Each of these algorithms is based on a rescaling and a discretisation of the
classical surplus process described in Section 2. Values of ruin probabilities
are calculated in a recursive manner for a discrete time risk model, and
are used to approximate probabilities for the classical model. In general,
the scaling factor, denoted 3 in these papers, determines the quality of the
approximations. The larger the value of 3, the better the approximations
are.

4 Approximations and asymptotic results

In this section we give a brief description of some approaches to approximat-
ing the distribution of the time to ruin.

4.1 Segerdahl’s asymptotic result

Segerdahl (1955) showed that asymptotically as u — oo, the distribution of
T, is normal provided that the moment generating function of the individual
claim amount distribution is finite for some positive value of the argument.
Asmussen (1984) suggests conditions under which Segerdahl’s result gives a
reasonable approximation to the distribution of 7,. We mention this result
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as it is well-known in the literature. However, we will not apply it in our
examples in Section 6. It will be apparent from our calculation of the coeffi-
cient of skewness of T, in Section 5 and our graphical illustrations in Section
6 that it would be unreasonable to approximate the densities we plot there
by normal densities.

4.2 Diffusion and Inverse Gaussian approximations

We can approximate the surplus process {U(t)} by a diffusion process. Let-
ting U(t) = u + W(t) where W(t) ~ N(OApit, Apot) for all t > 0, we find
(see, for example, Klugman et al (1998)) that for u > 0 the conditional dis-
tribution of the time to ruin, given that ruin occurs, for the process {U(t)}
is Inverse Gaussian with density

2
t~%/“exp { “ontp | (4.1)

'f(t):\/2_:/\—pg

The moments of this distribution can be regarded as approximations to the
moments of T,; we illustrate this idea in Section 5. In Section 6, we use f as
an approximation to the density of T,.

Based on this exact result for the diffusion surplus process, we also test
the idea in Section 6 that the distribution of T}, can be approximated by an
Inverse Gaussian distribution, with parameters determined by the first two
moments of T.

4.3 Translated gamma approximation

Dickson and Waters (1993) show that 1 (u,t) for a classical surplus process
for which the premium loading factor is § can be approximated by the ruin
probability ¥ ¢q(Bu, at) for a standardised gamma process for which the pre-
mium loading factor is 6 = 6(1 + kB/c) where the parameters o, 3 and k are
given by

a=4p3/p5  B=2p/ps k= X\(p —2p3/ps).

Formulae to calculate values of ¥ ¢o(u,t) are given by Dickson and Waters
(1993, Section 2). Dufresne et al (1991) explain how values of

bs(w) = lim gq(u,t)

can be calculated. Thus, we can use the methods of these papers to compute
Ysc(Bu, at)/Ysc(Bu) as an approximation to the distribution of Te.
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The numerical illustrations in Dickson and Waters (1993) suggest that
this approach should give reasonably good approximations, except for small
values of u (relative to p;). The main advantage of this approach is that,
for large values of ¢, the calculation of a finite time ruin probability is fairly
quick as it involves numerical integration rather than a recursive calculation.

4.4 Other approaches

Seal (1978) describes methods for calculating or approximating finite time
ruin probabilities. In particular, when the individual claim amount distri-
bution is exponential, a formula exists from which values of ¥ (u,t) can be
calculated. (See also Asmussen (2000).) As the algorithms described in Sec-
tion 3 give excellent approximations to both finite and infinite time ruin
probabilities, we will not employ the techniques described by Seal, although
we acknowledge that these provide alternative methods of approximation.

Similarly, in the case when u = 0, a formula exists from which finite time
ruin probabilities can be calculated:

1 pet

(0,0 =1-— [ Glz,t)de
where, for a fixed value of t, G(z,t) = Pr(S(t) < z). In this special case,
given that ruin occurs, the distribution of the time to ruin is the same as the
distribution of the time to recovery to surplus level 0, and Dickson and Egidio
dos Reis (1996, Figure 1) illustrate this density in the case of exponential
individual claim amounts. In this case, the distribution of T, has a strong

positive skew, a feature that will be evident in the examples in Sections 5
and 6.

5 Moments of the time to ruin

In this section we illustrate how the first three moments of T, can be calcu-
lated and approximated. We note that Delbaen (1988) proved that the kth
moment of T, exists only if the (k + 1)th moment of the individual claim
amount distribution exists. In the following subsection we assume that py
exists and that we can calculate values of ¥(z) for z = 0, h, 2h, ..., u, where
u is an integer multiple of the constant h, using the algorithm mentioned in
Section 3. The ideas presented here can be extended to higher moments.




5.1 Formulae for moments

Lin and Willmot (2000, formula (6.21)) show that F(T,) = v, («)/v(u) where

00 = s [ o= 2pptalte + [ ptarie - ) 5

Using (2.1), we can rewrite (5.1) as

Pi(u) = %19‘ (/0" Y(u — z)P(z)dz + E(L)6(u) — /Ou ¢(x)dx)
= )\;19 (E(L)(S(u) — /O" Y(x)b(u — x)dg;) (5.2)

so that we can evaluate 1, (u) using numerical integration.
Similarly, Lin and Willmot (2000, Theorem 6.3 and formula (6.29)) show

that
E(TY) = ¢ (u) /9(u),
where

)‘;:9 (/ Y(u — )y (z)dz + 6( u)/ Yy 1(:v)d:r:—-/ Y1 ( dz)_

(5.3)
This formula involves integration over an infinite range and so cannot in
general be used directly to calculate ¥,(u) and ¥5(u).
For k = 2 the first and third terms on the right hand side of formula (5.3)
can be combined and evaluated by numerical integration. To evaluate the
middle term, we proceed as follows:

ot [Cnde = [ (] bl =+ [ by~ BL() d
/O°° /y°° Yz - y)dey(y)dy + /Ooo [)y dzij(y)dy — E(L)?

— B+ [ whly)dy - BLY
= 1B,

PYp(u) =

using (2.2). Thus, we can write 1,(u) as

Azie ( (QL)\prG(u - [ @)t~ :v)dx) (5.4)

Po(u) =

Similarly, we can write 15(u) as




bs(0) = 55 {0 [ ate) do = [ 6w ) (o) s}

The second integral on the right hand side can be evaluated by numerical
integration. Consider the first integral. Using (5.3), we can write this as:

/Oool/fz(u)du = E%{Lw[)u¢(u—x)¢l(x)dxdu
+/Ooo/:°¢1(a:)d:cdu
- [ [ o) duaul

We consider the evaluation of this expression term by term below. First:

/(;oo/ou@b(u—x)tﬁl(x)dxdu = / / (u — 2) 9, (z) dudz
= /0 ¢1($)/0 Y(z) dzdx

= Bl [ (@) ds
_ Bl B[
- 2Ap, 0

Next:

/0°°/u°°¢1(x)dxdu - /0°°u¢1(u)du

- A—;é{/()oou/ouﬁp(u—x)@b(m)dmdu
+/O°°u/uooz/)(m)d9:du
—/Ooou¢(u)/ooo1,l)(x)dxdu}

= A;le{/()mib(m)[toouw(u—m)duda:
+/0°°¢(a:) /:ududx— %E[L]E[LQ]}

- A—;;é{/ww(x)/w 2+ 2)%(2) dz do
+/ r)dz — LE[L] E[L ]}




1

S { /0 " y(z) [L EIL?) + o E[L]] da

+1E[L?) - $E[L) E[L7)}

- ﬁ {3B(L) EIL?) + {B[L*]}
Finally:
[0 [Th@ s [Te@ i e - B2

Putting all these pieces together, we have:

u) = 36(u) E[L) E[L?] = 6(u) E[L?] B

3 U
o oottt O | su=2)4y(e) da. (55)

5.2 Approximate moments

In Section 4.2 we noted that the time to ruin, given that ruin occurs, for
a diffusion process has an Inverse Gaussian distribution. By choosing the
parameters of the diffusion process appropriately, as in Section 4.2, we can
regard the moments of the Inverse Gaussian distribution as approximations
to the moments of T, for values of u greater than 0. Hence, we can write for
u>0:

u upy
) VIT] = )
Aepl [ ] )\293p§’

1/2
~ ~ P2
E[T,) ~ Sk|T,) = 3 (Oplu) (5.6)
where Sk(T.) denotes the coefficient of skewness of T..

Note that these approximations do not depend on any moments of the
individual claim size distribution above the second. This is because the sur-
plus process is being approximated by a diffusion process matched through
the first two moments. However, it should be remembered that if, for exam-
ple, ps does not exist, then the third moment, and hence the coefficient of
skewness, of T, does not exist. The advantage of these formulae is that they

are simple and depend on the various parameters in a transparent way.

5.3 Numerical illustrations

In Examples 5.1 and 5.3 below, approximate values of E(TF) for k = 1,2,3
were calculated using (5.2), (5.4) and (5.5) respectively, with numerical inte-
gration by the trapezoidal rule. These values are labelled “App.” in Tables
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Mean St. Dev. Skewness

u | Exact | App. | IG | Exact | App. 1G Exact | App. IG

0 | 10.00 | 10.00 45.83 | 45.83 17.737 | 17.737

10 | 100.91 | 100.91 | 100 | 148.66 | 148.66 | 141.42 | 4.238 | 4.238 | 4.243

20 | 191.82 | 191.82 | 200 | 205.18 | 205.18 | 200.00 | 3.070 | 3.070 | 3.000

30 | 282.73 | 282.73 | 300 | 249.20 | 249.20 | 244.95 | 2.528 | 2.528 | 2.449

40 | 373.64 | 373.64 | 400 | 286.53 | 286.53 | 282.84 | 2.199 | 2.199 | 2.121

50 | 464.55 | 464.55 | 500 | 319.53 | 319.53 | 316.23 | 1.972 | 1.972 | 1.897

Table 5.1: Mean, standard deviation and coeflicient of skewness of T,, Expo-
nential claims, § = 10%.

5.1 to 5.6. Values of § were calculated using the stable recursive algorithm
of Dickson et al (1995), with a scaling factor of 1000. This means that (ap-
proximate) values of ¥(w) were calculated for w = 0,0.001,0.002, ..., so that
each trapezium had a base of 0.001. Similarly, values of t;(w) and ¥,(w)
were calculated for the same values of w, using exactly the same method of
numerical integration. A second set of approximate values for the first three
moments of T, was calculated using (5.6). These values are labelled “IG”
in the Tables below. In Example 5.2, only the first two moments are shown
since the fourth moment of the individual claim amount distribution does
not exist.

Example 5.1 Let the individual claim amount distribution be exponential
(with mean 1). Tables 5.1 and 5.2 show exact and approzimate values of the
mean, standard deviation and coefficient of skeumess of T, when 6 = 10% and
when 8 = 25%, respectively. The exact values are calculated from formulae
(5.2), (5.4) and (5.5). When 8 = 10%, over the range of values of u in Table
5.1, the smallest value of ¥(u) is 0.0097 (when u = 50).

Example 5.2 Let the individual claim amount distribution be Pareto with
distribution function P(z) =1 — (3/(3 4+ z))*. Table 5.3 shows approzimate
values of the mean and standard deviation of T, when 8 = 10% and when
0 = 25%. In this case it is not possible to compare these approxrimations with
exact values. When 6 = 10%, over the range of values of u in Table 5.3, the
smallest calculated value of ¥(u) is 0.0102 (when u = 80).

Example 5.3 We now extend the previous example by introducing excess of
loss reinsurance, with retention level M. In this case all moments of the
individual claim size distribution, and hence of T, exist. Tables 5.4, 5.5 and




Mean St. Dev. Skewness

u | Exact | App. | IG | Exact | App. | IG | Exact | App. | IG
0 4 4 - | 12.00 | 12.00 - 8.963 | 8.963 -
10| 36 36 40 | 37.74 | 37.74 | 35.78 | 2.861 | 2.861 | 2.683
20| 68 68 80 | 52.00 { 52.00 | 50.60 | 2.076 | 2.076 | 1.897
30| 100 100 120 | 63.12 | 63.12 | 61.97 | 1.711 | 1.711 | 1.549
40 | 132 132 | 160 | 72.55 | 72.57 | 71.55 | 1.488 | 1.486 | 1.342
50 | 164 | 163.98 | 200 | 80.90 | 81.01 | 80.00 | 1.335 | 1.313 | 1.200

Table 5.2: Mean, standard deviation and coefficient of skewness of T, Expo-
nential claims, § = 25%.

0 =10% 0 = 25%
Mean St. Dev. Mean St. Dev.
u | App. | IG | App. IG App. | IG | App. IG
0| 1500 | - 71.94 6.00 - 19.90 -

20| 203.77 | 200 | 271.39 | 244.95 | 70.49 | 80 | 75.50 | 61.97
40 | 372.13 | 400 | 373.14 | 346.41 | 119.00 | 160 | 113.74 | 87.64
60 | 531.90 | 600 | 456.49 | 424.26 | 155.88 | 240 | 164.94 | 107.33
80 | 681.88 | 800 | 535.33 | 489.90 | 186.27 | 320 | 233.05 | 123.94

Table 5.3: Mean and standard deviation of T, Pareto claims.
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Mean St. Dev. Skewness

u | App. 1G App. IG App. IG
0| 14.64 - 86.25 - 17.765 -
20 | 426.94 | 434.78 | 472.16 | 465.81 | 3.246 | 3.214
40 | 842.32 | 869.57 | 663.27 | 658.76 | 2.311 | 2.273
60 | 1257.70 | 1304.35 | 810.51 | 806.81 | 1.891 | 1.856
80 | 1673.07 | 1739.13 | 934.89 | 931.62 | 1.639 | 1.607

Table 5.4: Mean, standard deviation and coefficient of skewness of T, Pareto
claims and excess of loss reinsurance, M = 2.

Mean St. Dev. Skewness
u | App. IG App. IG App. IG
0| 12.29 - 59.98 14.666

20 | 241.73 | 249.00 | 271.16 | 264.98 | 3.247 | 3.193
40 | 472.32 | 498.00 | 379.14 | 374.74 | 2.322 | 2.257
60 | 702.90 | 747.01 | 462.56 | 458.97 | 1.903 | 1.843
80 | 933.48 | 996.01 | 533.10 | 529.97 | 1.651 | 1.596

Table 5.5: Mean, standard deviation and coefficient of skewness of T, Pareto
claims and excess of loss reinsurance, M = 4.

5.6 show approrimate values of the mean, standard deviation and coefficient
of skeuness of T, when 6 = 10% and when the reinsurance premium is cal-
culated by the expected value principle with a loading £ = 25%, for three
different values of M.

5.4 Comments

In each of the above examples, we have taken a fairly large scaling factor
in our algorithm to calculate 6. With the smaller scaling factor of 100, ap-
proximations in Example 5.1 are poorer than those given by Egidio dos Reis
(2000) who also considered this example. As his algorithms are based on the
same model we use to calculate values of 6, the role of the scaling factor is
identical in each method. Our method is perhaps a little more transparent
than his, and does not appear to suffer from problems of numerical stability.
Interestingly, choosing a more sophisticated method of numerical integration
such as Simpson’s rule does not materially improve the quality of our approx-
imations in Example 5.1 with a scaling factor of 100. In Example 5.1 at least
we can see that the integrand in formula (5.2) is an exponentially decreasing
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Mean St. Dev. Skewness

u | App. IG App. IG App. IG
0| 12.72 - 60.05 - 14.128 -
20 | 213.93 | 220.41 | 251.36 | 243.90 | 3.379 | 3.320
40 | 414.91 | 440.82 | 350.24 | 344.92 | 2.425 | 2.347
60 | 615.89 | 661.22 | 426.80 | 422.44 | 1.990 | 1.917
80 | 816.87 | 881.63 | 491.57 | 487.79 | 1.727 | 1.660

Table 5.6: Mean, standard deviation and coefficient of skewness of T,, Pareto
claims and excess of loss reinsurance, M = 6.

function (using the well known formula 1(u) = exp{—6u/(1 + 6)}/(1 + 9))
whereas our numerical integration technique effectively assumes it is a lin-
early decreasing function. In each of the above examples, the choice of a
large scaling factor did not result is lengthy computer run times.

A feature of Examples 5.1 and 5.3 is the large positive value for each of
the coefficients of skewness. This indicates that in each case the distributions
of T, are far from normal. This feature will be illustrated in the examples in
Section 6. Formula (5.6) indicates that

uh—»r{olo Sk[T,]=0

as Segerdahl’s (1955) asymptotic result shows it must for these examples
since in the limit the distribution of T, is normal. We can use formula
(5.6) for the coefficient of skewness of T, to gain some insight into when the
distribution of T, is approximately normal. For example, consider Example
5.1, for which p; = 1, p = 2 and § = 10%. Formula (5.6) indicates that
to obtain a coefficient of skewness as low as 0.5, © must be about 720 and
for the coefficient to be as low as 0.25, u should be about 2880. However
for these two values of u, the probabilities of ultimate ruin are 3.4 x 10~%°
and 1.34 x 10714, respectively, way beyond any area of practical interest.
(We note that for these two values of u the exact values of the coefficient of
skewness are 0.525 and 0.262 respectively.)

We remark that the quality of the approximations denoted “App.” in
Example 5.1 is excellent.
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6 The density of T,

6.1 Calculation methods

In this section our aim is to illustrate the shape of the density of T,. In
each of the examples in this section, four different methods of calculat-
ing/approximating this density were used. The following methods were used
to produce graphs of density functions.

1. Algorithms: For a given value of u and a fixed value of ¢, the algo-
rithm to approximate finite time ruin probabilities described in Sec-
tion 3 provided approximate values of ¥(u,7) for 7 = j5/[(1 + 8)4],
j =1,2,...,(1 + 6)pt. Dividing these by the value of ¥(u) calculated
from the infinite time algorithm of Section 3 provides values of the dis-
tribution function, say H(7) = Pr(T < 7|T < o0). From these, we
estimated the density at 7 = j/[(1 + 6)0] as

<00 |4 () ~# (5a)|
for j=1,2,3,....

We regard this as the “true” density and measure the three approxi-
mations below against it. In the calculation in Examples 6.1, 6.2 and
6.3 we have set § = 20. Illustrations in Dickson and Waters (1991)
suggest this value is sufficient to calculate accurate approximations to
both finite and infinite time ruin probabilities. A larger value of 3 will
give better approximations, but such extra accuracy is of limited value

to us in what follows as our aim is to illustrate the shape of the density
of T..

2. Diffusion approximation: We have calculated this approximation
directly from formula (4.1) given the Poisson parameter A, the moments
p1(=1) and po, the initial surplus u, and the loading 6.

3. Inverse Gaussian approximation: We have calculated the first two
moments of T, using formulae (5.2) and (5.4). We then matched the
first two moments of an Inverse Gaussian distribution to these, and cal-

culated values of the density directly, using the formulation in Klugman
et al (1998, p.583).

4. Translated gamma approximation: For the same 7 values as under
Method 1 above, we approximated values of 1(u, 7) and, having divided
these by our approximation to ¢(u) under this method, we estimated
the density in the same way as under Method 1.
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6.2 TIllustrations

Example 6.1 Let the individual claim amount distribution be exponential.
Figure 1 shows densities calculated by each method for 8 = 10% and u = 40.
We have chosen this value of u as it provides an ultimate ruin probability
in the range of practical interest. (In fact ¥(40) = 0.024.) Using the exact
values of the mean and standard deviation from Table 5.1, we can calculate
the parameters of our approrimating Inverse Gaussian density as 373.64 and
635.36 (in the parameterisation used by Klugman et al (1998)). In Figure
1, the densities calculated by Methods 1 and 4 are virtually indistinguish-
able from each other, whilst the approximations under Methods 2 and 3 are
reasonably close to the true density. A clear feature of Figure 1 is that the
distribution is positively skewed, as indicated by the value of the coefficient
of skewness in Table 5.1. Figure 2 shows the densities when 0 = 25% and
u =20 (so that ¥ (u) = 0.015). It has exactly the same features as Figure 1.

Example 6.2 Let the individual claim amount distribution be Pareto as in
Ezample 5.2, let u = 80 and let 8 = 0.1 (so that 4(80) = 0.010). Figure 3
shows the same densities as Figures 1 and 2. In this example, we have used
the “App.” values from Table 5.3 to find the parameters of the approrimating
Inverse Gaussian density. We observe that Method 4 again provides the
best approximation to the true density and that Method 3 provides a better
approzimation than Method 2.

Example 6.3 We extend the previous example to include the effect of excess
of loss reinsurance. Figure 4 shows the density of T, when the retention level
is 6, 10 and 14, and when the reinsurance premium is calculated with a
loading of 50%. These densities have been calculated using Method 1. We
observe that the common feature of each of these densities is a strong positive
skew.

In each of the above examples, the consistent feature is that the true
density is positively skewed, and this feature was even more apparent in other
densities that we plotted for the same individual claim amount distributions,
but for smaller values of u. This is consistent with the numerical examples
in Cardoso and Egidio dos Reis (2001). Based on the numerical illustrations
in Dickson and Waters (1993), we are not surprised by the fact that Method
4 produces good approximations to the density of 7.

One feature that is apparent from our figures is that for the range of para-
meter values and individual claim amount distributions that we considered,
the distribution of T, is not normal. The straightforward approach of Meth-
ods 2 and 3 provides much better approximations than a normal distribution
does, particularly in Example 6.2.
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7 Concluding Remarks

Our aim has been to calculate moments of T¢, and to investigate the shape of
its density. A simple numerical integration procedure suffices for the former
provided we can accurately calculate values of the ultimate ruin probability.
Our examples in Sections 5 and 6 indicate that the distribution of T, is
positively skewed, and that simple approximations based on Inverse Gaussian
densities can give reasonable results, whereas a normal approximation would
be inappropriate.
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