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Abstract

In the Sparre Andersen risk model, we derive a general expression
for h(u,z,y), the joint density function of the surplus prior to ruin
and the deficit at ruin when the initial surplus is w. This density
function is expressed in terms of the corresponding density function
when the initial surplus is 0. We apply a known result for h(0, z,y) in
the situation when claim inter-arrival times follow a generalised Erlang
distribution to derive expressions for h(u, z,y) when individual claims
have a phase-type(m) distribution, m € Z+. We also consider the case
when claim inter-arrival times follow a phase-type(2) distribution and
derive an expression for h(0,z,y). Finally, we illustrate our results
with examples.

1 Imtroduction

In this paper, we consider the Sparre Andersen risk model. Thus we assume
that the time until the first claim and the times between claims form a se-
quence of independent and identically distributed (i.i.d.) continuous random
variables, {T;}32, , with common density function k. Let {X;}2, be a se-
quence of 1.i.d. random variables, where X; denotes the amount of the ith
claim. Let P(z) = 1 — P(z) = Pr(X) < x), > 0, denote the distribution
function of X;. We assume that P(0) = 0 and that X; is a continuous ran-
dom variable with density function p. We further assume that the sequences
{T:}2; and {X;}2, are independent. Let K = E(X;) and p = E(TY).

Let ¢ denote the insurer’s premium income per unit time, which we assume
to be received continuously. We define the probability of ultimate ruin for




this risk process by

P(u) =Pr (u + Z (cT; — X;) < 0 for somen, n=1,2,3, )
i=1
and define §(u) = 1 — ¥(u). It is well known (see, for example, Rolski et
al (1999, Section 6.5)) that 6(u) = Pr(L < u) where the random variable
L denotes the maximum of the aggregate loss process. We assume that
cu — k > 0, so that 1(u) < 1. The implied loading factor is 8 = cu/k — 1.
Let {U(t)}+>0 denote the surplus process starting from U(0) = u > 0,
and define the time of ruin, 7', as

T inf{t: U(t) < 0}
" | ooifU(t)>0forallt>0

so that ¥(u) = Pr(T < 00). Let T~ denote the time immediately prior to
ruin.
We now define three defective distribution functions. First of all, let

H(u,z,y) = // (u,r, 8)dsdr

= UT™ )<z, |[UT)| <y, T <oo | U(0) = u)

denote the joint distribution function of the surplus prior to ruin and the
deficit at ruin, where h denotes the joint density function. Then we can
define the marginal distribution functions

F(u,z) = lim H(u,z,y) and G(u,y)= lim H(u,z,y)
y—00 T—00

so that F is the distribution function of the surplus prior to ruin, and G is
the distribution function of the deficit at ruin. Let their respective defective
density functions be denoted by

fu,2) = -F(wa) and gluy) = £-Glwy)

It is convenient to introduce the proper density function of the deficit at ruin
when u = 0, which we denote vy, and define by v(y) = ¢g(0,y)/%(0). Finally,
define the function ¢ by

¢(u) = E [w (U(T), |[UT)|) I(T < ) | U(0) = u] (1.1)

where w is an arbitrary bounded function and I(A) denotes the indicator of
an event A.




The remainder of the paper is as follows. In Section 2, we provide a
general solution for H(u,z,y), and consequently its joint density function,
h(u,z,y). In Section 3, we consider the case in which the density function
k bas a generalised Erlang distribution (as considered by Gerber and Shiu
(2003a, 2003b)) in combination with claim amount density function p being
phase-type(m), m € Z*. In Section 4, we consider the case when the
density function k is phase-type(2), or, equivalently, Coxian(2). As the
phase-type(2) class is not a special case of the generalised Erlang family of
distributions, the approach we take in Section 4 is different to that of Section
3. In fact, our approach leads to a much simpler method of finding h(u, z, y)
than that of Cheng and Tang (2003) who consider the situation when k is
an Erlang(2) density function, a density function which belongs to both the
phase-type(2) and generalised Erlang classes. In Section 5, we give some
examples.

2 A formula for H(u,z,y)

To derive an expression for H(u, z,y), we apply arguments given in Section
6.5 of Rolski et al (1999). We consider first the case when u > z. In order
for the surplus immediately prior to ruin to be less than or equal to z, the
surplus cannot fall below 0 on the first occasion that it drops below its initial
level u. Hence it follows that

H(u,z,y) = /Oug(O, 2)H(u — z,z,y)dz = (0) /Ou v(2)H(u — 2, z,y)dz.

Taking partial derivatives with respect to z and y yields

h(u,7,3) = $(0) / “(Dhlu — 7,7, 9)d=.

In the case when 0 < u < z, it is possible for ruin to occur at the time the
surplus first falls below its initial level u, and for the surplus prior to ruin to
be less than or equal to z, and for the deficit at ruin to be less than or equal
to y. The probability of this event is

T—u u+y
J(u,z,y) = / / h(0,r, s)dsdr (2.1)
0 u

as the event is equivalent to ruin occurring from initial surplus 0 with a
surplus immediately prior to ruin less than or equal to x — u and a deficit at
ruin between u and u + y. Hence, for 0 < u < z, we have

H(u,z,y) = ¢¥(0) /Ou Y(z2)H(u — z,z,y)dz + J(u, z,y)
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and
hu,2,) = $(0) [ 2h(u - 22,0)dz+ b0,z = u,u+3).
0
Therefore, for u > 0, we have

H(w,2,9) = #0) [ 1) H (= 22,0)dz + Z(a, 2,9
where Z(u,z,y) = I(u < z)J(y, z,y), and

h(u, z,y) = ¥(0) /Oufy(z)h(u —z,z,9)dz + I(u < 2)h(0,z — u,u + y).

Let o
H*(s,z,y) =/ e H(u,z,y)du
0

be the Laplace transform of H, with similar notation for Laplace transforms
of other functions. Then by basic properties of Laplace transforms,

. __2Z(s,3,y)
H (S,.’L',y)—l—_—l/]m.

From Rolski et al (1999, Section 6.5), L has a compound geometric distrib-
ution, and so its Laplace-Stieltjes transform is given by

—sLy __ oo —su _ 5(0)
B )—/0 ) = T 0 e

which implies that

E(e~°h)

H*(S,.’L‘,y) = —56)—

Z*(s,z,y).

Since the product of two transforms is the transform of a convolution, it
immediately follows that

H(uz,y) = 5—(10—) /0 " Zu— 2, 3,9)d6(2)
1 u
- 5 /0 I(u=2<2)J(u-23,9)d5(z).  (22)



Hence the above equation provides a means of finding H(u,z,y) provided
that we know both § and J. In a similar fashion, we also have the corre-
sponding analogue for h(u, z,y), namely

h(u,z,y) = 3% AuI(u —z<z)h(0,z —u+z,u—z+y)dé(z). (2.3)

We remark that equation (6.4) of Dickson and Hipp (2000) for G(u,y)
can be obtained from equation (2.2) as

lim J(u,z,y) = G(0,u +y) — G(0,u).

See also Willmot and Lin (1998, p.92). - Moreover, Dufresne and Gerber
(1988) show that in the classical Poisson risk model

h(0,2,y) = £(0,z )(‘”(;)y) (2.4)

As the arguments underlying this formula equally apply in the Sparre An-
dersen model, finding J reduces to finding the density function of the surplus
prior to ruin when the initial surplus is 0.

We end this section by remarking that in the classical model
f(0,z) = (A\/c)P(z), so that h(0,z,y) = (A\/c)p(z + y) (see, for example,
Dufresne and Gerber (1988)). Hence, for 0 < u < z, equation (2.3) yields

h(u,z,y) = 505 / 2p(z + y)dé(z2) = (z+y) Eg; (2.5)

and for u > z it yields

h(w,9) = 575 / p(z -+ y)ds(z) = /C\P(z+y)7’b(u1_ _zzba);b ®)  (26)

results first given by Dickson (1992).

3 Generalised Erlang inter-claim times

In this section we consider the situation where k£ has a generalised Erlang
density function. In particular, we assume that k is the density function of
Ty = Y ;_, W; where {W;}7_, are n independent, exponentially distributed
random variables with E(W;) = 1/);. This generalised Erlang distribution
belongs to the phase-type(n) family of distributions and as such, k& can be
written as

k(t) = Bexp{tS}S°, t >0 (3.1)

)




where 8 = (1,0,0,...,0,0) is a 1 x n row vector,

S VI VR 0 0

0 =X X 0 0

0 0 =X 0 0

S = ) ) i X .
0 0 0 A1 A1
0 0 0 0 =\,

is an n X n transition rate matrix, and S° = (0,0,0,...,0,)\,) is an n x 1
column vector. Also, the matrix exponential in equation (3.1) is defined by

© 4
exp{tS} = Z t_,"S].
=07

For a detailed treatment of phase-type distributions, we refer the reader to
Neuts (1981), Latouche and Ramaswami (1999), Rolski et al (1999), and
Asmussen (2000).

For this choice of k, Gerber and Shiu (2003b) show that

h(0,z,y) =Cp(z +y) Z aje”Pi® (3.2)

=1

where C = H::l ()\,-/C), a; = H::l,r;éj (pr _pj)_la and {pr}:}:l are the n roots

in the right half of the complex plane (assumed to be distinct) satisfying the

following equation for &:

n c .
(1-Lo-p©=0 (33

- 7

7=1

We remark that equation (3.3) may be alternatively expressed as
k*(—ct)p*(€) = 1. Furthermore, it is clear from equation (3.3) that £ =0 is
always one of these n roots. Substituting equation (3.2) into equation (2.3),
we obtain

) = P49 Do [l < npe ). @0

Let us now assume that claim amounts have a general phase-type(m) dis-
tribution, m € Z*, with density function p(z) = aexp{zA}A°’ and corre-

sponding distribution function P(z) = 1 — aexp{zA}e,, where e, denotes
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an m X 1 column vector of ones and A° = —Ag¢,,. From Theorem 4.4 in
Asmussen (2000), the distribution function of the maximal aggregate loss L
in the general Sparre Andersen model with phase-type(m) distributed claim
amounts is given by

6(u) =1 —nexp{u(A+ A°n)}en, ©>0 (3.5)

where the defective row vector 7 is the unique solution satisfying the relation

n=(1/0)a /0 " exp{t(A + An)Yk(t/<)dt. (3.6)

However, since k has the phase-type form given by equation (3.1), an explicit
solution for 7 may actually be obtained. Omitting the tedious mathematical
details, it can be verified that

n= CQZ a; (piIm — A1 (3.7)
i=1

satisfies equation (3.6) where I, denotes the m x m identity matrix. Fur-
thermore, it follows from equation (3.5) and the fact that A° = —Ae,, that
the density function of L is given by ¢'(u) = 6(0)n exp{u(A+A4°n)}A°, u > 0,
with 6(0) =1 — ne,,. B

Consider first the case when 0 < 4 < z. In this case, [(u—2 <z) =1
for all 2 € [0, u], and so equation (3.4) becomes

h(u,z,y) :% p(z +y) é aje P [(5(0) + /Ou e“"izé'(z)dz]

=Caexp{(z + y)A}A° Z aje P (1+/ e~Pi*n exp{zD}A"dz)
j=1 0

(3.8)

where we define D = A + A°n for the sake of notational convenience. How-
ever, note that

/ e P*nexp{zD}A°dz = 7 (/ exp{zD}e“ﬂjzdz> A°
0 0

=1 ( /0 ) eXP{Z(D—PjIm)}dz) A°
= 1By (exp{uB;} — I.) A° (3.9)
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where we define B; = D — p;I,,. Substituting equation (3.9) into equation
(3.8) immediately yields for 0 < u < z

h(u,z,y) = Caexp{(z+y)A}A° Z aje""i(’_“) [1+n Bj—l(exp{qu}——Im) A’
i=1 |
(3.10)
On the other hand, if u > z, then I(u— 2z < z) =1 for all 2z € (u—z,u], and
so equation (3.4) becomes

h(u, z,y) = Caexp{(z + y)A}A° Zaje"i(“‘x) / e fi*nexp{zD}A%dz.
J=1 u—=x
(3.11)
In a similar fashion which led to equation (3.9), we have

/ e~P*nexp{zD}A°dz = n B;"[exp{uB;} — exp{(u — ) B;}] A°.
Therefore, for u > z, equation (3.11) becomes after some straightforward
manipulation

h(u, z,y) = Caexp{(z+y)A}A° Z a;n B; 7 [e7#” exp{uD}—exp{(u—z)D}] A°.
=1
(3.12)
If we now integrate equations (3.10) and (3.12) from y = 0 to y = oo,
we immediately obtain the following marginal density function of the surplus
prior to ruin. For 0 < u < z,

f(u,z) = Caexp{zAle,, Z a;e~?= 1 + n B; " (exp{uB;} — I.) A°]
=1
, (3.13)
and for u >z

f(u,) = Caexp{zAlen Y a;n B; ™ [e™" exp{uD} — exp{(u — 2) D}] A°.
j=1

(3.14)
The marginal density function of the deficit at ruin can also be obtained
by integrating equation (3.12) from z = 0 to z = u followed by integrating
equation (3.10) from z = u to £ = oco. This is equivalent to integrating
equation (3.4) from z = 0 to z = co. After a fair bit of matrix algebra and
simplification, it can be shown that

9(u,y) = nexp{uD} exp{yA}A°, y >0, (3.15)
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a result which agrees with that of Drekic et al (2001, p.12).

We conclude this section with a few remarks. First of all, by comparing
equations (3.13) and (3.14) as z — u~ and £ — u™, respectively, the density
function f(u,z) has a jump discontinuity at z = u unless } 7 ; a; = 0, in
which case f(u, z) is strictly continuous. Furthermore, in the classical model
(i.e. when k(t) = e ™), wehaven =1,C = \/c, p, =0,a, =1, B, = D,
and n= —(\/c)aA~!. With these values, it is a straightforward exercise to
show that (i) equations (3.13) and (3.14) reduce to give equations (3.1) and
(3.2), respectively, in Dickson (1992), and (ii) equation (3.15) agrees with
the result given in Drekic et al (2001, p.13).

Finally we remark that the most obvious, and we believe useful, applica-
tion of the generalised Erlang distribution is the Erlang distribution itself.
Whilst there are many distributions in the class, the class is restrictive in
the sense that the generalised Erlang density is a combination of densities
and the parameters {A;}7_, determine the coefficients of the densities in the
combination.

4 Phase-type(2) inter-claim times

In this section, we consider the case when k is a phase-type(2) density func-
tion. In what follows, we adopt the notation and approach of Dickson and
Hipp (2000) who observed that when k is a phase-type(2) density function,
it satisfies the differential equation

k(t) + Ak () + Ak (t) = 0 (4.1)

for t > 0, where A; and A, are constants with A; > 0. Cheng and Tang
(2003) considered the Erlang(2,0) case with k(t) = o%te="%, so that A, = 2/0
and A2 =1 / (22 2.

We begin by deriving an expression for h(0, z,y) which is required to use
equation (2.3). In order to do so, we use the function ¢ defined in equation
(1.1) with w(z;, z2) = I(z; < z)I(z; < y). However, we will initially work
with a general function w. We start from equation (2.3) of Cheng and Tang
(2003) which applies to any Sparre Andersen model:

cp(u) = /:o k (S ; u) /08 (s — z)p(z)dzds

+/u°° k (S : u) /:o w(s, z — s)p(z)dzds

= [T rs) + wis)] ds (42)
u C
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where 7(u) = [’ ¢(u — z)p(z)dz and w(v) = [°w(u,z — u)p(z)dz. Differ-
entiation of equation (4.2) then yields

cd' (u) = —k(0) [1(u) + w(u)] — % /°° v (3 -

u

u) [7(s) + w(s)] ds
and hence

c¢’(u) = —k(0)[7'(u) + o' (w)] + lk’(O) [7(w) + w(u)]

vz [ e (3 )[T(s>+w(s>1ds

Following Dickson and Hipp (2000, p.152), we use equation (4.1) to obtain

Azc®¢" (u) — Arcg' (u) + ¢(u)
= Ak'(0) [7(u) + w(u)] — A2ck(0) [ (u) + ' (u)] + k(0)A; [7(u) + w(u)]
7(u) + w(u) — Azck(0) [7'(u) + w'(u)]
since A;k(0) + Azk’(0) = 1 (see Dickson and Hipp (2000, equation (2.1))).

Taking the Laplace transform of this equation, and noting that 7 is a convo-
lution, we obtain

Axc®[s%¢"(s) — 5¢(0) — ¢'(0)] — Axc[sg*(s) — ¢(0)] + ¢*(s)
= ¢*(s)p*(s) +w*(s) — Axck(0) [s¢"(s)p"(s) + sw*(s) — w(0)]
so that

5(5) = Ayc?[s9(0) + ¢'(0)] — A1ch(0) + w*(s) — Azck(0)[sw*(s) — w(0)]
' Axc?s? — Ajes + 1 — p*(s) + Aack(0)sp*(s)

or, equivalently

56 (s) = Ayc?[sé(0) + ¢'(0)] — A1cg(0) + w*(s) — Azck(0)[sw*(s) — w(0)]
Aac?s — Arc+ kg*(s) + Azck(0)p*(s)

(4.3)
where we define ¢*(s) = [1 — p*(s)]/(xs). Dickson and Hipp (2000, Section
3) show that there is a unique positive number sy such that

Axc®sy — Arc+ Kg*(s0) + A2ck(0)p*(s0) = 0.

As sp is a zero of the denominator in equation (4.3), it must also be a zero
of the numerator. Making use of this observation, we write

s (s) = A2¢® (s — 50) $(0) + w*(s) — w*(s0) — Apck(0)[sw*(s) — sow* (s0)]
Aoc?s — Arc+ kg*(s) + Aack(0)p*(s)
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If we now set s = 0 in the denominator, we get —Ajc+x+Aack(0) = k—cp #
0 (see Dickson and Hipp (2000, equation (2.3))). Hence the numerator must
be zero with s = 0 as lim,_,o+ s¢*(s) = 0. Thus

—Aac?s0¢(0) + w*(0) — w*(s0) + A2ck(0)sow*(so) = 0

giving

80) = 50" (0) — (o)) + 2L (o) (4.4

We remark that equation (4.4) generalises Corollary 2.3 of Cheng and Tang
(2003) as their 7, is our so.

Now let w(z1,z2) = I(z1 < z)I(z2 < y), so that ¢(0) = H(0,z,y). It
then follows that

w(u) = /00 I{u < 2)I(r —u < y)p(r)dr

= I(u< x)/ooI(r < u+y)p(r)dr
= I(u<z)[Pu)~ Plu+y)].
This gives

w*<o>=/0°°f<us$>[<> (u+y)]du_/0’[() P(u+y)] du

and .
W (s0) = / ~su [B(u) — P(u +y)] du
thereby yielding

~ san | [P - Pu+y)

_ 1= Ayck(0)so /0 e~ [P(u) — P(u+y)] du. (4.5)

Aycsg
Differentiating equation (4.5) with respect to z and then y gives

H(0,z,y)

h0,2,9) = o {p@+9) — [~ Axck(O)sole™p(z + 1)}

- m e ptes ) Mo g

We can easily verify that

s = £(0.p PEFY)
h(0,z,y) = f(0,z) P)
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by first letting y — oo in equation (4.5) and then differentiating the result
with respect to z.

We remark that equation (4.6) generalises equation (3.9) of Cheng and
Tang (2003) with u = 0, as their k(0) is equal to 0. Also, note that equation
(4.6) may be expressed in the form of equation (3.2) by settingn =2, C =1,
py =0, py = 80, a3 = (A2c?s0) 7}, and ag = k(0)/c— (Azc?sp) ™. Moreover, it
is readily verified that £ = 0 and £ = s; are the two distinct roots in the right
half of the complex plane satisfying k*(—c€)p*(§) = 1. Therefore, if claim
amounts have a phase-type(m) distribution, then equations (3.4) through to
(3.15) continue to hold (with constants assigned as above) in the case when
inter-claim times are phase-type(2) distributed.

5 Examples

In this section, we present three examples to illustrate the results of the
previous sections. The results in Examples 5.2 and 5.3 were obtained with
the aid of the symbolic computational package Mathematica.

Example 5.1 We start with a straightforward example for which the phase-
type machinery is not required. Let p(z) = ve™*, £ > 0, and let k(t) =
4te=?, t > 0 (i.e. exponential claim amounts and Erlang(2,2) inter-claim
times). In this case, k(0) =0 and A; = 1/4, so that equation (4.6) becomes

4V —80Z —NT
h(0,z,y) = e (1 — e7%0%) e7=+9),
It is well known (see, for example, Rolski et al (1999, Section 6.5.1)) that
S(uy=1-(1-R/v)e®
where R is the adjustment coefficient. Hence, for 0 < u < z,
1 u
h(u, z, =——/ h(O,z —u+2z,u—2z+1y)dé(z
(u,2,9) 5(0)0( y)dd(z)
-R

4pe~v(@+y)

. [(1 —emooE) 4 v = (1- e~ Rv)
_ SVO :L 1; gm0l (1 _ e-(80+R)u)]
and integrating out y we obtain
flu,z) = 4;—: [(1 ) ;%R (1-e R
_ :0 :L 1:_3 e ole=) (1 — e-(som)u)] _

12



Similarly, for u > z,

1 u

h(u,z,y) = 30) h(0,z —u+ z,u — z + y)dé(2)
eV o T1, o efr g0z
= (I/ — R)——We [E (6 - 1) - —-;0—+'RT—]

and

_ 4 o [1 , g efr _ =502
f(w,2)= (v —R) 250 [R (e D so+ R ] '

We remark that these results can also be obtained from Example 1 of Li and
Garrido (2003) by setting n = 2 there.

Example 5.2 Consider an inter-claim time distribution that is an equal
mixzture of two exponentials at rates 1/3 and 1 respectively, so that

1 1
k(t) = —2—e_t + Ee“m, t>0.

We remark that this distribution belongs to the phase-type(2) class but is
not a member of the generalised Erlang family. Moreover, we have u = 2,
k(0) =2/3, Ay =4, and A, = 3. Suppose that the individual claim amount
distribution is Erlang(3,1.5), so that

2 _
p(z) = I—sze’l's”, z>0, and P(z)=e '™ (1 + gx + gxz) , z>0.

We note that k = 2. Written in phase-type form, we have a= (1,0,0),

A° = (0,0,1.5), and
15 15 0
A=| 0 -15 15 |.
0 0 -15

Let 6 = 0.1 so that ¢ = 1.1. Then we obtain (to 5 decimal places of accuracy)
so = 0.79184, n= (0.34458, 0.30566, 0.28019), and

—1.50000 1.50000 0
D= 0 —1.50000 1.50000
0.51687 0.45849 —1.07972

As D has one real eigenvalue (—0.05110) and two complex ones (—2.0143 +
0.733571), expressions for h(u, z,y) will involve trigonometric functions. For

13



0 < u <z, we obtain

h(u, z,y) =p(z + y){5 — (4.T147 + 0.21209¢~0791847) ¢=0.0511u
+O.43824e—0.79184(z—u)
+ (0.06263 + 0.032¢ 0791847 ¢~201434 (5[0, 733574
+ (0.04288 + 0.02663¢~079184=) ¢=20143ugin[0.73357u) }

and foru > x

h(u, z,y) =p(z + y){— (4.7147 + 0.21209¢ 0 791847) ¢~0.0511u
+4.926826—0'0511("_z)
+ (0.06263 + 0.032¢ 079184 ¢~201434 (5[0, 7335 7u)
+ (0.04288 + 0.02663¢~0791847) ¢~201434gin[0.73357u]

—0.09464e~20143(v=2) C05[0.73357 (u — )]
—0.06951e~20143(+—2)8in[0.73357 (u — )]}

The density function f(u,z) has the same form as the two equations above,
except that p(z +y) is replaced by P(z). Figures 1 and 2 display the shape
of f(u,z) for u = 1 and u = 3, respectively. The density functions are
very similar to those illustrated by Dufresne and Gerber (1988) and Dickson
(1992). Since k(0) = 2/3 # 0, we have a; + a; # 0. Based on our earlier
remark at the end of Section 3, this implies that f(u,z) possesses a jump
discontinuity at x = u. This is indeed the case as evidenced by Figures
1 and 2, although it becomes more difficult to tell for larger values of u.
Finally, the density function g(u,y) s

g(u, y) = (0.6925 + 0.71232y + 0.27792y>)e~0-0511u-1.5y
—(0.27222 + 0.02459y — 0.30356y°)e~20143v=1-5vCos[0.733574]
—(0.38035 — 0.55516y + 0.0029632)e~20143u=1-5vGin[0.733574).

Example 5.8 Suppose inter-claim times have a generalised Erlang distrib-
ution with n = 3, A\; = A2 = 0.5, and A\3 = 2. With these values, equation
(3.1) simplifies to give

2 o5, 1, _ost
ge + 3te ,
with u = 4.5. Let the individual claim amounts be distributed with phase-type
representation o= (0.1,0.1,0.3,0.5), A° = (0,0,0,0.5), and

~1/10 1/10 0 0
0 -1/6 1/6 0
0 0 -1/3 1/3
0 0o 0 -1/2

k(t) = ge-% - t>0

A=
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Then the mean claim amount is Kk = 5.7. Moreover, we have

O g—z/o_ 1 a6 + 17 a3 _ 1 o

P(@) =115 40 70 g¢ >0

and 25 3 51 1

D _ 2V —2/10 _ © —x/6 S —x/3 __ -~ —z/2 >

P(z) £5¢ 20¢ + 70¢ 08 T2 0.
Let 0 = 0.2 so that ¢ = 1.52. Then we obtain (to 5 decimal places of accuracy)
C = 0.14238, p, = 0, p, = 0.56407, p; = 1.29160,

n = (0.15407,0.19102, 0.19612, 0.23601),

and
—0.10000 0.10000 0 0
D= 0 —0.16667 0.16667 0
- 0 0 -0.33333 0.33333

0.07703 0.09551 0.09806 —0.38199

We note that D has real eigenvalues, namely —0.50122, —0.27485, —0.18112,
and —0.02480. Therefore, for 0 < u < z, we obtain

h(u, 2, y) = 0.14238p(z + y)[6.1611 + 0.00217¢ 05122 _ 0.23444¢~0-27485
+0.09197e~0-18112v __ 4 482, 00248u | | 1547~ 1-2916(z—u) _ 9 g709,—0.56407(z—u)
+(0.00047¢0-50122 _ () 03189027485+ 4 (0 00877¢ 018112
—0.06796—0'0248"')6—1'2916“: _ (0.001826—0'50122" _ 0-136366_0'27485"'
+0.03969¢ 0181124 _ ( 34755 0-0248v) ¢=0.564072]

and for u >z

h(u, 7, y) = 0.14238p(z + y)[0.00217¢~ 030122 — 0.23444¢~ 027485+ 4 0,09197¢ 018112
—4.6482¢~00248u | 4 3685,=0.0248(u—2) __ () 06106 0-18112(v—2)
+0.12998¢~0-27485(+=2) _ 0,00083¢~0-50122(+ =) 4 (0.00047e 050122
—0.03189¢~0-27485u () 00877018112+ _ (0679 e—0.0248u) e—1-2916z
—(0.00182¢~%-50122« _ 0.13636¢ 02748 + 0.03969¢ 018112
_0_347556—0.024814)e—0.56407a:] .

As we commented in Example 5.2, the density function f(u,z) has the same
form as the two equations above, except that p(z + y) is replaced by P(z).
Figures 8 and 4 display the shape of f(u,z) for u =20 and u = 40, respec-
tively. Since a; + ag + a3 = 1.37257 — 2.43676 + 1.06419 = 0, f(u,z) is
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strictly continuous for all x > 0, as evidenced by Figures 8 and 4. For the
sake of completeness, the density function g(u,y) is given by

g(u,y) =

(0.00014¢~050122 — 0,01847¢~027%5% 4 0.01029¢ 1812 4 0.07682¢ =0 0#48+)e~¥/10
—(0.00005¢~059122 — 0,0087¢~ %2745 1 0.01683¢™ 18112 4 0.01187¢~0-0248%) v/
+(0.00034¢ 050122 4 .05711e~0-27485 _ (0,00567¢ 018112 | (0.01936¢~0-0248v)g—v/3
—(0.00122¢050122¢ 4 (0 00039¢ 027485 _ (0.00007¢~0-18112 4 .00033¢0-0248v)e~¥/2,
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