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Abstract

We derive an expression for the density of the time to ruin in the
classical risk model by inverting its Laplace transform. We then apply
the result when the individual claim amount distribution is a mixed
Erlang distribution, and show how finite time ruin probabilities can
be calculated in this case.
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1 Introduction and notation

In the classical risk model, the insurer’s surplus process {U(t)}t≥0 is given
by

U(t) = u+ ct− S(t)

where u is the insurer’s initial surplus, c is the rate of premium income per
unit time, and S(t) is the aggregate claims outgo up to time t. Further,

S(t) =
∑N(t)

i=1 Xi where {N(t)}t≥0 is a Poisson process with parameter λ,
and {Xi}∞i=1 is a sequence of independent and identically distributed random
variables, with Xi representing the amount of the ith individual claim. Let
P (x) = Pr(X1 ≤ x) = 1 − P̄ (x) be the distribution function of individual
claims. We assume throughout that P has a density function p, and that
P (0) = 0 so that all claim amounts are positive. We use the notation p̃ to
denote the Laplace transform of X1, so that

p̃(s) =

∫ ∞
0

e−sxp(x)dx.

Let m1 denote the mean individual claim amount, and assume that c =
(1 + θ)λm1 where θ > 0 is the premium loading factor.



At this stage it is convenient to introduce the equilibrium distribution of
P which we denote by P1, with associated density p1(x) = P̄ (x)/m1, and
Laplace transform p̃1.

Define Tu to be the time to ruin (from initial surplus u) so that Tu = inf{t:
U(t) < 0}, with Tu =∞ if U(t) ≥ 0 for all t > 0. We denote the ultimate ruin
probability from initial surplus u by ψ(u), so that ψ(u) = Pr(Tu <∞), and
denote the finite time ruin probability by ψ(u, t), so that ψ(u, t) = Pr(Tu ≤
t). Clearly Tu is a defective random variable with (defective) density

w(u, t) =
∂

∂t
ψ(u, t).

We can alternatively consider the proper random variable Tu,c defined as
Tu,c = Tu | Tu <∞ with proper density function wc(u, t) = w(u, t)/ψ(u).

In recent years, there has been considerable interest in the moments and
distribution of the time to ruin in the classical risk model. For example, Lin
and Willmot (2000) present a recursion scheme from which moments of Tu
can be found, while Drekic et al (2004) discuss evaluation of these moments.
Dickson and Waters present a numerical approach to finding the density of
Tu,c, while Garcia (2002), Drekic and Willmot (2003) and Dickson et al (2003)
all consider inversion of the Laplace transform of Tu. In this paper we pursue
the latter approach in order to derive an expression for the density of Tu.

This paper is organised as follows. In the next section we set out some
properties of the Laplace transform of Tu. Then in Section 3 we consider
the situation when u = 0 and find an expression for the density of T0,c by
first deriving an important transform identity. In Section 4 we consider the
more general situation when u > 0, and we conclude with an illustration of
our main result in Section 5 in the case when the individual claim amount
distribution is a mixture of Erlangs. In this special case, an expression for
ψ(u, t) then follows, and this may be interpreted in terms of the transient
waiting time distribution in the M/G/1 queue. See, for example, Asmussen
(2000, Section V.4).

2 The Laplace transform of Tu

Central to the subsequent analysis is Lundberg’s fundamental equation, given
by

λ+ δ − cs = λp̃(s),

where δ is a non-negative parameter. Gerber and Shiu (1998) show that this
equation has a unique positive solution which we denote by ρ, rather than
the more cumbersome ρ(δ).
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We now consider the function

φρ(u) = E
[
e−δTuI(Tu <∞)

]
where I(Tu <∞) = 1 if Tu <∞ and is zero otherwise. It is well known (see
Gerber and Shiu (1998)) that the function φρ depends on δ solely through
ρ = ρ(δ), and it is convenient to adopt the present notation. This function
is actually a special case of a more general function introduced by Gerber
and Shiu (1998), and we will treat it as the Laplace transform of the time to
ruin.

Lin and Willmot (1999) show that φρ(u) has a compound geometric rep-
resentation, namely

φρ(u) =
∞∑
n=1

(1− φρ(0)) (φρ(0))n Ḡn∗
ρ (u) (1)

where

φρ(0) = ψ(0)p̃1(ρ) =
λm1

c
p̃1(ρ),

Gρ(x) = 1−
∫∞
x
e−ρ(y−x)P̄ (y)dy

m1p̃1(ρ)
,

and Gn∗
ρ = 1− Ḡn∗

ρ is the n-fold convolution of the distribution function Gρ

with itself. Further,

d

dx
Gρ(x) =

1

m1p̃1(ρ)

∫ ∞
x

e−ρ(y−x)p(y)dy.

We can rewrite equation (1) as

φρ(u) =
∞∑
n=1

(φρ(0))n
(
G(n−1)∗
ρ (u)−Gn∗

ρ (u)
)

(2)

= φρ(0) +
∞∑
n=1

(
(φρ(0))n+1 Gn∗

ρ (u)− (φρ(0))nGn∗
ρ (u)

)
where G0∗

ρ (u) = 1 for u ≥ 0 and equals 0 otherwise. Now define

hρ(x) =

∫ ∞
x

e−ρ(y−x)p(y)dy,

and let

Hρ(x) =

∫ x

0

hρ(z)dz.
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As Hρ(x) = m1p̃1(ρ)Gρ(x), it follows that

Gn∗
ρ (u) =

Hn∗
ρ (u)

(m1p̃1(ρ))n

where Hn∗
ρ is the n-fold convolution of Hρ with itself, and hence

φρ(u) =
λm1

c
p̃1(ρ) +

∞∑
n=1

(
λ

c

)n(
λm1

c
p̃1(ρ)Hn∗

ρ (u)−Hn∗
ρ (u)

)
. (3)

It is straightforward to show that

φ̃ρ(s) =

∫ ∞
0

e−suφρ(u)du

=
ψ(0)(p̃1(s)− p̃1(ρ))

ρ− s− λ
c

(p̃(s)− p̃(ρ))
.

Thus

φ̃ρ(s) = φ̃s(ρ) =

∫ ∞
0

e−ρuφs(u)du

and it is not difficult to see that φρ is a Laplace transform with respect to ρ.
In particular, we will demonstrate that

φρ(u) =

∫ ∞
0

e−ρtξ(u, t)dt

and in Section 4 we explicitly identify ξ(u, t). The function that we obtain
on inversion is not, however, w(u, t), as we must invert expression (3) with
respect to δ to obtain that. However, as shown in the next section, there is a
relationship between transforms with respect to ρ and δ, and we can exploit
this relationship to obtain w(u, t) from ξ(u, t).

We conclude this section by remarking that in the special case when
P (x) = 1− e−αx, we have Gρ(x) = P (x), and so

G(n−1)∗
ρ (u)−Gn∗

ρ (u) = e−αu
(αu)n−1

(n− 1)!
.

Thus, equation (2) becomes

φρ(u) =
∞∑
n=1

e−αu
(αu)n−1

(n− 1)!
(φρ(0))n ,

which is equation (2.2) of Drekic and Willmot (2003). Thus, for this indi-
vidual claim amount distribution, the techniques that are presented in the
next two sections are not required to obtain w(u, t). We remark, however,
that this special case is covered by the more general mixed Erlang example
of Section 5.
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3 A transform relationship

As φρ(0) = ψ(0)p̃1(ρ), it follows that p̃1(ρ) is the Laplace transform (with
respect to δ) of the density function wc(0, t), so that∫ ∞

0

e−ρtp1(t)dt =

∫ ∞
0

e−δtwc(0, t)dt.

In order to obtain an expression for wc(0, t) we require an expression for e−ρt

in terms of δ, and, as noted in Lin and Willmot (1999), we can obtain this
from Lagrange’s implicit function theorem (see, for example, Goulden and
Jackson (1983)). We restate this result as there is a typographical error in
Lin and Willmot (1999): for any analytic function η(z),

η(ρ) = η

(
δ + λ

c

)
+
∞∑
n=1

(−1)n
(λ/c)n

n!

dn−1

dzn−1

{
η′(z)

∫ ∞
0

e−zxpn∗(x)dx

}∣∣∣∣
z=(δ+λ)/c

where pn∗ is the n-fold convolution of the density p with itself.
In particular, when η(z) = e−zt, we have

e−ρt = e−(δ+λ)t/c

+
∞∑
n=1

(−1)n
(λ/c)n

n!

{
dn−1

dzn−1
(−t)

∫ ∞
0

e−z(x+t)pn∗(x)dx

}∣∣∣∣
z=(δ+λ)/c

= e−(δ+λ)t/c

+
∞∑
n=1

(−1)n
(λ/c)n

n!

{
(−1)nt

∫ ∞
0

(x+ t)n−1e−z(x+t)pn∗(x)dx

}∣∣∣∣
z=(δ+λ)/c

= e−(δ+λ)t/c

+
∞∑
n=1

(λ/c)n

n!
t

∫ ∞
0

(x+ t)n−1e−(δ+λ)(x+t)/cpn∗(x)dx.

Thus, for an arbitrary function f ,

f̃(ρ) =

∫ ∞
0

e−ρtf(t)dt

=

∫ ∞
0

e−(δ+λ)t/cf(t)dt

+
∞∑
n=1

(λ/c)n

n!

∫ ∞
0

t

∫ ∞
0

(x+ t)n−1e−(δ+λ)(x+t)/cpn∗(x)dxf(t)dt

= c

∫ ∞
0

e−(δ+λ)rf(cr)dr
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+
∞∑
n=1

(λ/c)n

n!

∫ ∞
0

t

∫ ∞
t/c

cnrn−1e−(δ+λ)rpn∗(cr − t)drf(t)dt

= c

∫ ∞
0

e−(δ+λ)rf(cr)dr

+
∞∑
n=1

λn

n!

∫ ∞
0

rn−1e−(δ+λ)r

∫ cr

0

tpn∗(cr − t)f(t)dtdr

=

∫ ∞
0

e−δt

(
ce−λtf(ct) +

∞∑
n=1

λn

n!
tn−1e−λt

∫ ct

0

ypn∗(ct− y)f(y)dy

)
dt

= g̃(δ)

=

∫ ∞
0

e−δtg(t)dt

where

g(t) = ce−λtf(ct) +
∞∑
n=1

λn

n!
tn−1e−λt

∫ ct

0

ypn∗(ct− y)f(y)dy. (4)

If we now return to the problem of determining wc(0, t), we see that the
inverse with respect to δ of p̃1(ρ) is found by replacing f by p1 in equation
(4). Hence

wc(0, t) = ce−λtp1(ct) +
∞∑
n=1

λn

n!
tn−1e−λt

∫ ct

0

ypn∗(ct− y)p1(y)dy. (5)

This expression is implicit in the literature, but was derived in a different
context. Dickson and dos Reis (1996, p.152) give an expression for the density
(which they denote by a(t)) of the time to recovery to surplus level 0 from the
time of ruin given that ruin occurs from initial surplus u ≥ 0. When u = 0,
a duality argument shows that the time to recovery is distributed as T0,c.
Setting u = 0 in Dickson and dos Reis’ formula for a(t) yields formula (5) for
wc(0, t) using the well-known fact (see, for example, Bowers et al (1997)) that
p1 is the density of the deficit at ruin when ruin occurs from initial surplus
0.

4 Analysis when u > 0

Our aim in this section is to invert φρ(u) with respect to ρ, then to use the
transform relationship of the previous section to obtain w(u, t). Thus, if

φρ(u) =

∫ ∞
0

e−ρtξ(u, t)dt, (6)
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then it follows from equation (4) with f(t) replaced by ξ(u, t) and g(t) by
w(u, t) that

w(u, t) = ce−λtξ(u, ct) +
∞∑
n=1

λn

n!
tn−1e−λt

∫ ct

0

ypn∗(ct− y)ξ(u, y)dy. (7)

The remainder of this section is therefore devoted to finding ξ(u, t) in equa-
tion (6), which may then be substituted into equation (7).

Our starting point is equation (3), namely

φρ(u) =
λm1

c
p̃1(ρ) +

∞∑
n=1

(
λ

c

)n(
λm1

c
p̃1(ρ)Hn∗

ρ (u)−Hn∗
ρ (u)

)
.

We can invert this with respect to ρ on a term by term basis. Consider first
inverting Hn∗

ρ (u). For n = 1, 2, 3, ... let

Hn∗
ρ (u) =

∫ ∞
0

e−ρtbn(u, t)dt.

To obtain an expression for bn(u, t) we first find an alternative expression for
Hn∗
ρ (u). From Dickson and Hipp (2001) we know that∫ ∞

0

e−suhρ(u)du =
p̃(ρ)− p̃(s)
s− ρ

so that for n = 1, 2, 3, ...∫ ∞
0

e−suhn∗ρ (u)du =

(
p̃(ρ)− p̃(s)
s− ρ

)n
and hence ∫ ∞

0

e−suHn∗
ρ (u)du =

1

s

(
p̃(ρ)− p̃(s)
s− ρ

)n
. (8)

Now note that

1

s

(
p̃(ρ)− p̃(s)
s− ρ

)n
=

(s− ρ)−n

s

n∑
j=0

(
n

j

)
(−1)j [p̃(ρ)]n−j [p̃(s)]j

=
(s− ρ)−n

s

(
[p̃(ρ)]n +

n∑
j=1

(
n

j

)
(−1)j [p̃(ρ)]n−j [p̃(s)]j

)
,

and that

(s− ρ)−n =

∫ ∞
0

e−sx
xn−1eρx

Γ(n)
dx.
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Further, s−1 [p̃(s)]j is the Laplace transform (with respect to s) of P j∗(u)
(which is the j-fold convolution of P with itself, with P 0∗(u) = 1 for u ≥ 0).
It therefore follows from equation (8) that

Hn∗
ρ (u) = [p̃(ρ)]n

∫ u

0

xn−1eρx

Γ(n)
dx

+
n∑
j=1

(
n

j

)
(−1)j

[p̃(ρ)]n−j

Γ(n)

∫ u

0

xn−1eρxP j∗(u− x)dx

=
(−1)n

Γ(n)

∫ u

0

xn−1eρxP n∗(u− x)dx

+
n−1∑
j=0

(
n

j

)
(−1)j

[p̃(ρ)]n−j

Γ(n)

∫ u

0

xn−1eρxP j∗(u− x)dx.

To invert this with respect to ρ, note that

e−ρuHn∗
ρ (u)

=
(−1)n

Γ(n)

∫ u

0

xn−1e−ρ(u−x)P n∗(u− x)dx

+
n−1∑
j=0

(
n

j

)
(−1)j

[p̃(ρ)]n−j

Γ(n)

∫ u

0

xn−1e−ρ(u−x)P j∗(u− x)dx

=
(−1)n

Γ(n)

∫ u

0

(u− t)n−1 e−ρtP n∗(t)dt

+
n−1∑
j=0

(
n

j

)
(−1)j

[p̃(ρ)]n−j

Γ(n)

∫ u

0

(u− x)n−1 e−ρxP j∗(x)dx

=
(−1)n

Γ(n)

∫ u

0

(u− t)n−1 e−ρtP n∗(t)dt

+
n−1∑
j=0

(
n

j

)
(−1)j

Γ(n)

∫ u

0

(u− x)n−1 P j∗(x)

∫ ∞
0

e−ρ(t+x)p(n−j)∗(t)dtdx

=
(−1)n

Γ(n)

∫ u

0

(u− t)n−1 e−ρtP n∗(t)dt

+
n−1∑
j=0

(
n

j

)
(−1)j

Γ(n)

∫ u

0

(u− x)n−1 P j∗(x)

∫ ∞
x

e−ρvp(n−j)∗(v − x)dvdx

=
(−1)n

Γ(n)

∫ u

0

e−ρt (u− t)n−1 P n∗(t)dt
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+
n−1∑
j=0

(
n

j

)
(−1)j

Γ(n)

∫ u

0

e−ρt
∫ t

0

(u− x)n−1 P j∗(x)p(n−j)∗(t− x)dxdt

+
n−1∑
j=0

(
n

j

)
(−1)j

Γ(n)

∫ ∞
u

e−ρt
∫ u

0

(u− x)n−1 P j∗(x)p(n−j)∗(t− x)dxdt

=
(−1)n

Γ(n)

∫ u

0

e−ρt (u− t)n−1 P n∗(t)dt

+
n−1∑
j=0

(
n

j

)
(−1)j

Γ(n)

∫ u

0

e−ρt
∫ t

0

(u− x)n−1 P j∗(x)p(n−j)∗(t− x)dxdt

+
n−1∑
j=0

(
n

j

)
(−1)j

Γ(n)

∫ ∞
0

e−ρ(t+u)

∫ u

0

(u− x)n−1 P j∗(x)p(n−j)∗(t+ u− x)dxdt.

As

e−ρuHn∗
ρ (u) =

∫ ∞
0

e−ρ(t+u)bn(u, t)dt

it follows by equating coefficients of e−ρ(t+u) for t > 0 that

bn(u, t) =
n−1∑
j=0

(
n

j

)
(−1)j

Γ(n)

∫ u

0

(u− x)n−1 P j∗(x)p(n−j)∗(t+ u− x)dx.

Finally, inversion of equation (3) with respect to ρ gives

ξ(u, t) =
λ

c
P̄ (t) +

∞∑
n=1

(
λ

c

)n(
λ

c

∫ t

0

P̄ (x)bn(u, t− x)dx− bn(u, t)

)
.

5 Mixed Erlang claim amounts

In this section we apply the results of the previous section when the individual
claim amount distribution is a mixture of Erlang distributions with the same
scale parameter. Thus,

p(x) =
∞∑
i=1

qi
βixi−1

(i− 1)!
e−βx = e−βx

∞∑
i=1

qi
βi

(i− 1)!
xi−1,

and hence

P (x) = 1− e−βx
∞∑
k=0

Q̄k
(βx)k

k!
= e−βx

∞∑
k=0

Qk
βk

k!
xk
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where

Qk = 1− Q̄k =
k∑
i=1

qi

and we note that Q0 = 0. Then

p̃(s) =
∞∑
i=1

qi

(
β

β + s

)i
and hence

[p̃(s)]j =
∞∑
i=1

qj∗i

(
β

β + s

)i
where the coefficients {qj∗i }∞i=1 are obtained from the relationship(

∞∑
i=1

qiz
i

)j

=
∞∑
i=1

qj∗i z
i

and we adopt the notational convention that qj∗i = 0 for i < j. It then follows
that

pj∗(x) = e−βx
∞∑
i=1

qj∗i
βi

(i− 1)!
xi−1

and

P j∗(x) = e−βx
∞∑
k=0

Qj∗
k

βk

k!
xk

where Q0∗
k = 1 and for j = 1, 2, 3, ..., Qj∗

k =
∑k

i=1 q
j∗
i .

We now write bn(u, t) as

bn(u, t) =
n−1∑
j=0

(
n

j

)
(−1)j

Γ(n)
σn,j(u, t) = n

n−1∑
j=0

(−1)j

j!(n− j)!
σn,j(u, t)

where

σn,j(u, t) =

∫ u

0

(u− x)n−1 P j∗(x)p(n−j)∗(t+ u− x)dx

=

∫ u

0

xn−1P j∗(u− x)p(n−j)∗(t+ x)dx.
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Noting that

p(n−j)∗(t+ x) = e−β(t+x)

∞∑
i=1

q
(n−j)∗
i

βi

(i− 1)!
(t+ x)i−1

= e−β(t+x)

∞∑
i=1

q
(n−j)∗
i

βi

(i− 1)!

i−1∑
m=0

(
i− 1

m

)
tmxi−1−m

= e−β(t+x)

∞∑
i=1

q
(n−j)∗
i βi

i−1∑
m=0

tm

(i− 1−m)!m!
xi−1−m,

we obtain

σn,j(u, t)

=

∫ u

0

xn−1e−β(u−x)

{
∞∑
k=0

Qj∗
k

βk

k!
(u− x)k

}
e−β(t+x)

×

{
∞∑
i=1

q
(n−j)∗
i βi

i−1∑
m=0

tm

(i− 1−m)!m!
xi−1−m

}
dx

= e−β(u+t)

∞∑
i=1

q
(n−j)∗
i βi

i−1∑
m=0

tm

(i− 1−m)!m!

×
∞∑
k=0

Qj∗
k

βk

k!

∫ u

0

xn+i−m−2(u− x)kdx

= e−β(u+t)

∞∑
i=1

q
(n−j)∗
i βi

i−1∑
m=0

tm

(i− 1−m)!m!

×
∞∑
k=0

Qj∗
k

βk

k!
un+i−1−m+k

∫ 1

0

vn+i−m−2(1− v)kdv

= e−β(u+t)

∞∑
i=1

q
(n−j)∗
i βi

i−1∑
m=0

tm

(i− 1−m)!m!

×
∞∑
k=0

Qj∗
k

βk

k!
un+i−1−m+k (n+ i−m− 2)!k!

(n+ i− 1−m+ k)!

= e−β(u+t)

∞∑
i=1

q
(n−j)∗
i βi

i−1∑
m=0

(n+ i−m− 2)!

(i− 1−m)!m!

×

{
∞∑
k=0

Qj∗
k β

k un+i−1−m+k

(n+ i− 1−m+ k)!

}
tm
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= e−β(u+t)

∞∑
m=0

tm

m!

∞∑
i=m+1

q
(n−j)∗
i βi

(n+ i−m− 2)!

(i− 1−m)!

×
∞∑
k=0

Qj∗
k β

k un+i−1−m+k

(n+ i− 1−m+ k)!

= e−β(u+t)

∞∑
m=0

tm

m!

∞∑
i=0

q
(n−j)∗
i+m+1β

i+m+1 (n+ i− 1)!

i!

∞∑
k=0

Qj∗
k β

k un+i+k

(n+ i+ k)!
.

Thus, we can write

σn,j(u, t) = e−βt
∞∑
m=0

αn,j,m(u)
tm

m!

where

αn,j,m(u) = e−βu
∞∑
i=0

q
(n−j)∗
i+m+1

(n+ i− 1)!

i!

∞∑
k=0

Qj∗
k β

i+m+k+1 un+i+k

(n+ i+ k)!
.

Hence,

bn(u, t) = ne−βt
n−1∑
j=0

(−1)j

j!(n− j)!

∞∑
m=0

αn,j,m(u)
tm

m!

= e−βt
∞∑
m=0

{
n
n−1∑
j=0

(−1)j

j!(n− j)!
αn,j,m(u)

}
tm

m!

so that we can write

bn(u, t) = e−βt
∞∑
m=0

γn,m(u)
tm

m!

where

γn,m(u) = n

n−1∑
j=0

(−1)j

j!(n− j)!
αn,j,m(u).

Next, we have∫ t

0

P̄ (x)bn(u, t− x)dx

=

∫ t

0

e−βx

{
∞∑
k=0

Q̄k
(βx)k

k!

}
e−β(t−x)

{
∞∑
m=0

γn,m(u)
(t− x)m

m!

}
dx

12



= e−βt
∞∑
k=0

Q̄k
βk

k!

∞∑
m=0

γn,m(u)

m!

∫ t

0

xk(t− x)mdx

= e−βt
∞∑
k=0

Q̄k
βk

k!

∞∑
m=0

γn,m(u)

m!
tk+m+1 k!m!

(k +m+ 1)!

= e−βt
∞∑
k=0

Q̄kβ
k

∞∑
m=0

γn,m(u)
tk+m+1

(k +m+ 1)!

= e−βt
∞∑
k=0

Q̄kβ
k

∞∑
m=k+1

γn,m−k−1(u)
tm

m!

= e−βt
∞∑
m=1

tm

m!

m−1∑
k=0

Q̄kβ
kγn,m−k−1(u).

Therefore,

λ

c

∫ t

0

P̄ (x)bn(u, t− x)dx− bn(u, t)

=
λ

c
e−βt

∞∑
m=1

tm

m!

m−1∑
k=0

Q̄kβ
kγn,m−k−1(u)− e−βt

∞∑
m=0

γn,m(u)
tm

m!

= e−βt
∞∑
m=1

tm

m!

(
λ

c

m−1∑
k=0

Q̄kβ
kγn,m−k−1(u)− γn,m(u)

)
− e−βtγn,0(u)

= e−βt
∞∑
m=0

tm

m!
an,m(u)

where an,0(u) = −γn,0(u) and for m = 1, 2, 3, ...

an,m(u) =
λ

c

m−1∑
k=0

Q̄kβ
kγn,m−k−1(u)− γn,m(u).

Thus,

ξ(u, t) =
λ

c
P̄ (t) +

∞∑
n=1

(
λ

c

)n(
λ

c

∫ t

0

P̄ (x)bn(u, t− x)dx− bn(u, t)

)

=
λ

c
e−βt

∞∑
m=0

Q̄m
(βt)m

m!
+
∞∑
n=1

(
λ

c

)n(
e−βt

∞∑
m=0

tm

m!
an,m(u)

)
.

We can write this in a condensed form as

ξ(u, t) = e−βt
∞∑
m=0

τm(u)
tm

m!

13



where

τ0(u) =
λ

c
+
∞∑
n=1

(
λ

c

)n
an,0(u)

and for m = 1, 2, 3, ...,

τm(u) =
λ

c
Q̄mβ

m +
∞∑
n=1

(
λ

c

)n
an,m(u).

To obtain w(u, t), we next require∫ ct

0

ypn∗(ct− y)ξ(u, y)dy

=

∫ ct

0

e−β(ct−y)

{
∞∑
i=1

qn∗i
βi

(i− 1)!
(ct− y)i−1

}
e−βy

{
∞∑
m=0

τm(u)
ym+1

m!

}
dy

= e−cβt
∞∑
i=1

qn∗i
βi

(i− 1)!

∞∑
m=0

τm(u)

m!

∫ ct

0

(ct− y)i−1ym+1dy

= e−cβt
∞∑
i=1

qn∗i
βi

(i− 1)!

∞∑
m=0

τm(u)

m!
(ct)i+m+1 (i− 1)!(m+ 1)!

(i+m+ 1)!

= e−cβt
∞∑
i=1

qn∗i β
i

∞∑
m=0

τm(u)
(ct)i+m+1

(i+m+ 1)!
(m+ 1)

= e−cβt
∞∑
i=1

qn∗i β
i

∞∑
m=i+1

(m− i)τm−i−1(u)
(ct)m

m!

= e−cβt
∞∑
m=2

(ct)m

m!

m−1∑
i=1

qn∗i β
i(m− i)τm−i−1(u).

Inserting this in equation (7) for w(u, t), we obtain

w(u, t)

= ce−λtξ(u, ct) +
∞∑
n=1

λn

n!
tn−1e−λt

∫ ct

0

ypn∗(ct− y)ξ(u, y)dy

= e−(λ+cβ)t

(
c

∞∑
m=0

τm(u)
(ct)m

m!

+
∞∑
n=1

λn

n!
tn−1

∞∑
m=2

(ct)m

m!

m−1∑
i=1

qn∗i β
i(m− i)τm−i−1(u)

)

14



= ce−(λ+cβ)t

(
∞∑
m=0

τm(u)
(ct)m

m!

+
∞∑
n=1

(λ/c)n

n!
(ct)n−1

∞∑
m=2

(ct)m

m!

m−1∑
i=1

qn∗i β
i(m− i)τm−i−1(u)

)

= ce−(λ+cβ)t

(
∞∑
m=0

τm(u)
(ct)m

m!

+
∞∑
m=2

(ct)m

m!

∞∑
n=1

(λ/c)n

n!
(ct)n−1

m−1∑
i=1

qn∗i β
i(m− i)τm−i−1(u)

)
.

We remark that the above derivation is tedious rather than complicated.
However, an important point about this derivation is that the result is ex-
pressed in terms of simple functions of u and t and is therefore easy to
program to obtain numerical values of the density given a set of parameter
values.

Further, it is a straightforward exercise to integrate this density to obtain
a formula for ψ(u, t). Specifically,

ψ(u, t) =
∞∑
m=0

τm(u)cm+1

(λ+ cβ)m+1
E(m+ 1, (λ+ cβ) t)

+
∞∑
m=2

cm

m!

∞∑
n=1

λn

n!

(m+ n− 1)!

(λ+ cβ)m+n E(m+ n, (λ+ cβ)t)

×
m−1∑
i=1

qn∗i β
i(m− i)τm−i−1(u)

where for n = 1, 2, 3, ...,

E(n, x) = 1− e−x
n−1∑
j=0

xj

j!
.

Tables 1 and 2 show values of ψ(1, t) and ψ(10, t) respectively for some
values of t when θ = 0.1 and the individual claim amount distribution is
Erlang(n, n) for n = 1, 2, 3, 4. The Erlang(n, n) distribution is just a special
case of our mixed Erlang distribution, obtained by setting qn = 1 and qi = 0
for i 6= n, and β = n (which makes the distribution’s mean 1). Some of the
values in these tables already exist in the literature, e.g. Seal (1978) for the
case n = 1 and Garcia (2002) for the case n = 2, but the values for n = 3
and n = 4 are all new.
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t n = 1 n = 2 n = 3 n = 4

2 0.3546 0.3649 0.3669 0.3671
4 0.4753 0.4830 0.4840 0.4839
6 0.5404 0.5459 0.5462 0.5457
8 0.5826 0.5863 0.5860 0.5852
10 0.6126 0.6150 0.6142 0.6132
20 0.6906 0.6889 0.6866 0.6849
40 0.7471 0.7416 0.7379 0.7354

Table 1: Values of ψ(1, t)

t n = 1 n = 2 n = 3 n = 4

2 0.0013 0.0002 0.0000 0.0000
4 0.0059 0.0014 0.0006 0.0004
6 0.0131 0.0042 0.0023 0.0015
8 0.0220 0.0084 0.0050 0.0037
10 0.0319 0.0137 0.0088 0.0067
20 0.0822 0.0464 0.0345 0.0289
40 0.1573 0.1038 0.0840 0.0740

Table 2: Values of ψ(10, t)
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