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Summary

It is well known that the exponential dispersion family (EDF) of univariate distributions 

is closed under Bayesian revision in the presence of natural conjugate priors.  However, 

this is not the case for the general multivariate EDF.

This paper derives a second order approximation to the posterior likelihood of a 

naturally conjugated generalised linear model (GLM), i.e. multivariate EDF subject to a 

link function (Section 5.5).  It is not the same as a normal approximation.  It does, 

however, lead to second order Bayes estimators of parameters of the posterior. 

The family of second order approximations is found to be closed under Bayesian 

revision.  This generates a recursion for repeated Bayesian revision of the GLM with the 

acquisition of additional data.

The recursion simplifies greatly for a canonical link.  The resulting structure is easily 

extended to a filter for estimation of the parameters of a dynamic generalised linear 

model (DGLM) (Section 6.2).  The Kalman filter emerges as a special case. 

A second type of link function, related to the canonical link, and with similar properties, 

is identified.  This is called here the companion canonical link.  For a given GLM with 

canonical link, the companion to that link generates a companion GLM (Section 4). 

The recursive form of the Bayesian revision of this GLM is also obtained (Section 

5.5.3).

There is a perfect parallel between the development of the GLM recursion and its 

companion.  A dictionary for translation between the two is given so that one is readily 

derived from the other (Table 5.1). 

The companion canonical link also generates a companion DGLM.  A filter for this is 

obtained (Section 6.3). 

Keywords: Bayesian revision, companion canonical link, dynamic generalised linear 

model, exponential dispersion family, generalised linear model, Kalman filter. 

c:\greg\research\bayesian revision of glm\bayesian revision of a glm.doc



Bayesian Revision of a GLM 2

1. Introduction 

This paper is concerned with a generalised linear model (GLM) whose 

parameter vector is subject to a prior distribution, and with calculation of the

posterior distribution of that parameter vector conditional on a vector of data. 

This is the framework of the dynamic generalised linear model (DGLM).

A natural conjugate prior can be found, and the posterior calculated quite

simply, in certain degenerate cases, eg for a 1-dimensional data vector and 

identity link in the GLM, which amounts to Bayesian revision of a univariate 

member of the exponential dispersion family (EDF) (Nelder and Verrall, 1997; 

Landsman and Makov, 1998). 

An alternative degenerate case occurs when the natural parameter of the GLM is 

assumed subject to a natural conjugate prior.  However, as pointed out by West,

Harrison and Migon (1985), this imposes severe and unrealistic restrictions on 

the form of the prior. 

In the general case the Bayesian revision of the GLM is analytically rather 

intractable.  Various devices have been used to approximate the revision.  For 

example, West, Harrison and Migon retain the natural conjugate prior on the

natural parameter mentioned above and impose certain specific forms of 

parameter revision that are justified by analogy with dynamic linear models.

Fahrmeir and Kaufman (1991) and Fahrmeir (1992) focus on estimation of the 

mode of the posterior rather than entire distribution or its mean.  Smith (1979) 

approached the problem from a decision theoretic standpoint.  De Jong (1997) 

addresses the Bayesian revision problem by means of a scan sampler.  An 

example is given in which this is applied to a DGLM, but one in which the prior 

is Gaussian.

More recent literature has approached Bayesian models of this type by means of 

Markov chain Monte Carlo (MCMC) simulation (Hastings, 1970; Smith and

Roberts, 1993; Tierney, 1994).  Examples in the actuarial literature appear in

Scollnik (2001, 2002), Ntzoufras and Dellaportas (2002), de Alba (2002). 

While the MCMC approach is flexible and practical, there remains some 

advantage in the use of closed form analytical expressions for Bayesian revision.

The present paper pursues this objective, but does so in a manner different from 

the analytic approaches mentioned above. 

It adopts a family of priors F on the GLM parameter vector (not the natural 

parameter) that is a natural generalisation of natural conjugate prior for the 

univariate case mentioned above.  In general, these priors are not natural

conjugate, and so the posterior does not lie within F.   It can, however, be 

approximated by the member of F with the same first and second moments.

In certain cases, this approximate posterior is in a form convenient for it to 

function as a prior for a further Bayesian revision.  Repeated revision can then 

take place as additional items of data are received.  This is of particular use in 

the estimation of DGLM parameters.
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2. Notation and preliminary results

When it is helpful, the dimensions of vectors and matrices will be written

beneath the symbols representing them, eg 
xm q

X .

If f: R R , and  R 1,..., mx x x m
, then f(x) will be understood as the vector 

1

x1

,...,
T

m
m

f x f x f x  (2.1)

ie scalar functions will be understood to operate component-wise on vectors. 

Composition of functions will be indicated by the operator symbol .  Thus, for

scalar functions f and g

.f g x f g x  (2.2)

For any vector 1,...,
T

mx x x , define 

1
x1

x

,..., mm m m
DIAG x diag x x  (2.3)

The inverse operation is denoted VEC, ie 

1 1
x1

x

,..., ,...,
T

m mmm m
VEC diag x x x x x .

For R  R ,:ig q
iDg t  denotes the gradient of  evaluated at t  R , ie ig q

1/ ,..., / .i i iDg t g t t g t tq  (2.4)

For R q R ,1,..., :
T

mg g g m Dg t  denotes the Jacobian matrix

evaluated at t, ie:

1

x

.
m q

m

Dg t
Dg t

Dg t
 (2.5)

Also,  denotes the q x q Hessian matrix with (j,k) element

.  Let 

2

iD g t

/i j kt t2g t 2D g t  denote the stacked Hessian matrix:

2

1

2

2xmq q
m

D g t
D g t

D g t
. (2.6)
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For m x q and n x r matrices A and B, with (j,k) elements  and b
respectively, the Kronecker product 

jka jk

A B  is defined as the following 

partitioned matrix:

11 12

21 22

x
.

mn qr

mn

a B a B
a B a B

A B

a B

 (2.7)

A subscript associated with an expectation operator indicates that the

expectation is taken with respect to the variate appearing in the subscript, ie 

E f f dF  (2.8)

where  is a random variable with measure F.

Matrix identities

Occasionally, the following results will be useful.  Let A,B be matrices such that

AB is square and 1+AB is non-singular.  Then 

1
1 1AB A A BA 1  (2.9)

1
1 1

1
.B AB A BA BA  (2.10)

Taylor expansions

The Taylor expansion of f: R  R  about q , truncated to second order, is 

1
2

1x x

.
T

q q
f x f Df x x Df x

q
 (2.11)

The corresponding expansion of f: R  R  is q m

2

1

1
2

x1 x1 x x1
2

1

1x x x1

T

m m m q q T

q q q q

x D f x
f x f Df x

x D f x

21
2

x
x1 x

1

T

m mq mq q
f Df x x D f x .  (2.12)

Taking expectations on both sides of (2.12) gives 
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2

1

1
2

2

,

m

Tr Var X D f
Ef X f

Tr Var X D f
 (2.13)

where Tr  denotes the trace of its argument.

A special case arises when q = m and f has the meaning assigned in (2.1) for

f: R  R .  Then 2

iD f  has all elements zero except  in the (i,i)
position, and (2.13) reduces to 

if

1
2

x1 x1 x1xm m mm m
Ef X f PRIN Var X f  (2.14)

where, for an m x m matrix A, PRIN A denotes the matrix obtained by setting all 

elements off the principal diagonal to zero. 

Taking into account that Ef X f  to first order, by (2.14), equation (2.12) 

gives the following second order approximation:

TT

T

Var f X E Df X X Df

Df Var X Df
 (2.15)

3. Exponential dispersion family

The exponential dispersion family was introduced by Nelder and Wedderburn

(1972) and is treated in depth by McCullagh and Nelder (1989). 

Consider a real valued random variable Y, depending on a location parameter

 and a scale parameter , and subject to the (quasi-) log-likelihood: 

; , ,L y y b k y  (3.1)

for suitable functions b (called the cumulant function) and k.

The EDF is the family of such random variables. 

The member of the family represented by (3.1) can be denoted more explicitly

as .  This notation will be used occasionally, though the briefer 

form will be preferred where the context makes the choice of b and k clear.

; , , ,L y b k

The moments of Y are obtained by repeated differentiation of the equation 

 with respect to exp ; , 1L y dy , giving 

| ,E Y b  (3.2)
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| , / .Var Y b  (3.3)

Denote b  by  whence, provided that  is one-one, 

| , /Var Y V  (3.4)

for some function V  called the variance function.

Many applications of the EDF restrict the form of the variance function thus: 

pV  (3.5)

for some constant p.  This will be referred to subsequently as the case of the 

power variance function.

It may be checked, by reference to (3.2) and (3.3), that (3.5) corresponds to 

2 / 11
2 1

p
b p p

p
 (3.6)

where ,p  and (3.6) contains the limiting cases 

expb  for p = 1 (3.7)

log  for p = 2. (3.8)

In the case of the power variance function, substitution of (3.6) in (3.2) gives 

1/ 1

1
p

p  (3.9)

1 / 1p p  (3.10)

with a limiting case for p = 1. 

The power variance case includes normal 0p , Poisson , gamma

 and inverse Gaussian 

1p

2p 3p  distributions.  The most common 

distribution not included in it is binomial, for which 

log 1b e  (3.11)

1V .  (3.12)
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4. Generalised linear models

Let  be a vector valued random variable with each of the 

stochastically independent components Y  a member of the EDF 

.  Thus, all components have a common cumulant function, but

are allowed different location and scale parameters.

1,...,
T

mY Y Y

; , , ,i i i b k
i

L y

Suppose further that the location parameter vector  can be expressed in terms

of a linear transformation of a further parameter vector 1,..., ,
T

q q m :

1

x x1x1
m q qm

h X  (4.1)

where  is the m-vector of values i , X is an m x q design matrix, h is a

strictly monotone function with range ,  called the link function, and

the vector equation (4.1) is interpreted in accordance with (2.1).

The quantity X in (4.1) is called the linear response.

Relation (4.1), together with the EDF specification of error structure, are said to 

constitute a generalised linear model for Y.

By (3.1), and the independence of the Y , the log-likelihood of Y takes the formi

1

; , 1 ,
m

T T
i i

i
L y y b k y  (4.2)

where  and 1 is the m-vector with all entries unity.1,..., mdiag

The GLM represented by (4.2) is defined by b, h,  and X.  Denote it by 

.G , , ,b h X

By (4.1) and definition of ,

1 1b h X  (4.3)

whence (4.2) takes the form (henceforth terms not involving the natural

parameter  will be omitted)

1 11; , 1 .T TL y y b h X b b h X1  (4.4)

A link function of particular significance is the canonical link .  This 

reduces (4.3) to

1h b
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.X  (4.5)

That is, the location parameter vector is simply equal to the linear response. 

In the case of the canonical link, the log-likelihood (4.2) may be expressed in the 

form

1

; , 1 , .
m

T T
i i

i
L y y X b X k y

p

 (4.6)

Though the canonical link function is widely used, note that for power variance 

function (3.5), it takes the form (see 3.10) 

1 / 1ph  (4.7)

which does not satisfy the requirement of range ,  for p other than

integral and even.  As a result, it can lead to undefined values of b X  in (4.6).

It will prove useful to define a companion to a link function h as 

1*h h b b b  (4.8)

whence (4.3) is replaced by 

11 * 1 1 .b h X b b h X1  (4.9)

By (4.8) and the definition of the canonical link, the companion canonical link

is

1* .h b b  (4.10)

Equivalently,

1
*1/ .h b 1

p

p

 (4.11)

For the power variance function (3.5), substitution of (3.6) in (4.10) yields 

* 2 / 2 .ph  (4.12)

If h,  are written as h  to make the dependence on p explicit, then it 

follows from (4.7) and (4.12) that 

*h *,p h

*

1.p ph h  (4.13)
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Example 4.1:  gamma error, companion canonical link.  The gamma

cumulant function is given by (3.8).  Then * logh .

The log-likelihood  of Y corresponding to L in (4.4) is obtained by using (4.9) 

to substitute for  in (4.2), thus 

*L

1* 1 1

11 1

; ,

1 .

T

T

L y y b b h X

b b b h X
 (4.14)

This may be written more concisely, by means of (4.3), as 

* 1 *; , 1T TL y y b *

in which the roles of the vectors y  and 1 in L are reversed, the cumulant

function b is replaced by 1b , and the natural parameter is taken as .* b

Note, however, that the cumulant function of the GLM is not changed. It is still 

b.

When  is considered in isolation, just as a conditional log-likelihood of y,

rather than in conjunction with L, the natural parameter may as well be written 

as just , in which case

*L

* 1; , 1 .TL y y b T  (4.15)

It is also possible to define GLMs in companion pairs.  For given GLM 

, define its companion GLMG , , ,b h X

*G , , ,b h X G *, , ,b h X  (4.16)

with log-likelihood  as set out in (4.15).*L

Note that this may be written in the alternative form

* ; , 1T TL y y b*

*

 (4.17)

if  is defined as *b

* 1 .b b  (4.18)

Differentiating through (4.18) and comparing the result with (4.11) gives 

1
*1/ / .h d d b  (4.19)
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Comparison of (4.17) with (4.2) shows that G  corresponds to the 

following replacements:

*G

* *, , ,b b h h y 1.  (4.20)

Example 4.2:  Companion canonical pair with power variance function

Suppose GLM G  has power variance function, so that b  is given by (3.6), 

characterised by p, and h is the canonical link.  Then it may be checked, using 

(4.7) and (4.13), that in parallel with (4.13)

* *

*  with 3 .p pb b p p  (4.21)

Example 4.3:  Normal error term.  Consider the GLM G  with normal error term

and canonical link.  This is the case p = 0.  By (4.21) and (4.13), the companion GLM 

 has cumulant function corresponding to *G * 3p , and link corresponding to 

.  For this case,*p 1
1
2, 2   The

companion likelihood is inverse Gaussian  The likelihoods are given by (4.6) and 

(4.14):

2 * * 21 1
2 2

, , .b b h h

21
2

; , 1T TL y y X X  (4.22)

1
2* ; , 1 2T TL y X y X .  (4.23)

Example 4.4:  Gamma error term.  Consider the GLM G  with gamma error

term and canonical link.  This is the case p = 2.  By (4.21) and (4.13), the 

companion GLM G  has both cumulant function and link corresponding to 

, which is the Poisson canonical link.  For this case 

*

* 1p
log , exp , 1/ ,b b h* * logh .  The likelihoods 

are:

; , 1 logT TL y y X X  (4.24)

* ; , 1 expT TL y X y X .  (4.25)

5. Bayesian revision of a GLM

5.1 General development

Consider the GLM G  with log-likelihood (4.2).  Because of (4.3), it 

would be possible to express G in terms of

, , ,b h X
 rather than .  Equivalently, 

express G in terms of t , where the function t is defined as 
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1 1t b h M  (5.1)

M being an as yet unspecified q x q non-singular matrix.

It follows that

1M h b t  (5.2)

where t  is denoted just t, and so, by (4.3), 

g t  (5.3)

with

1 1 1 .g b h XM h b  (5.4)

Then the log-likelihood (4.2) may be expressed in the form

; , 1 .T TL y y g t b g t  (5.5)

As a prior log-likelihood, select

0 0
1x 1xx1 x1

.T T

q qq q
w t n b t  (5.6)

Appendix B gives a simple proof that 0 0/j jE b t w n j

1

1

.

Therefore

1

0 0E b t N w

where .0 0N DIAG n

By (5.1), this may be written as

1

0 0.E h M N w  (5.7)

Note that, by (5.1) 

11 .t M b h  (5.8)

Then

1 11 1

0 0

1

q

j j j
j

M w b h n b b h 1

j
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and the prior consists of independent priors on the separate components 

.  The matrix M may therefore be used to introduce a prior correlation

structure on .

1,..., q

The posterior log-likelihood implied by (5.5) and (5.6) is

0

0

| ,

1 .

T T

T T

L y w t y g t
n b t b g t

 (5.9)

In choosing a prior , one might have considered defining t  as

, instead of as in (5.1).  However, this definition would, in

general, produce components of 

1 1M b h

t  of differing signs, whereas the domain of 

b will often be of only one sign (see e.g. (3.8)).  The definition (5.1) achieves

this constancy of sign in the same way as expression (4.3) achieves it for , also

an argument of b (see (3.1)).

Example 5.1:  Univariate case.  Consider the case m = q = 1, so that X = M = 1 

without loss of generality.  Then, by (5.4), g = 1, and comparison of (5.9) with 

(5.6) shows that the latter family is closed under Bayesian revision with 

0 0 0 0, ,w n w y n .

.

This is a well known result for the EDF (Landsman and Makov, 1998; Nelder 

and Verrall, 1997). 

5.2 Canonical link

The above likelihoods simplify somewhat in the case of a canonical link.  Then 

1,t M g XM  (5.10)

The log-likelihoods (5.5), (5.6) and (5.9) become

; , 1T TL y y X b X  (5.11)

0 0

T Tw M n b M  (5.12)

0 0| , 1 .T T T TL y w M y X n b M b X  (5.13)

5.3 Companion canonical link 

Similar simplifications occur in the case of the companion canonical link (4.10).

Substitution of this in (5.1) and (5.4) yields 

1 1,t b M g b XM 1 .b  (5.14)

The log-likelihoods (5.5), (5.6) and (5.9) become
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1; , 1TL y y b X XT

0

T

 (5.15)

1

0

Tw b M n M  (5.16)

1 1

0 0| , 1T T T TL y n M X w b M y b X .  (5.17)

5.4 Companion GLM

Consider the GLM G , , ,b h X  and its companion G  with log-likelihood 

(4.14).  In parallel with (5.1) and (5.4), define 

*

11* *t b h M

*

 (5.18)

11* * 1 .g b h XM h b  (5.19)

Then, in parallel with (5.5),

* * * *; , 1 .T TL y y g t b g t*

1 1h

t

1

 (5.20)

This result can also be checked by noting that, by definition (4.8), 

11 * 1b h b b  (5.21)

and using this to show that 

* * 1g t b g  (5.22)

* *b g t      [by (5.3)] (5.23)

which may be substituted in (4.15) to yield (5.20). 

5.5 Second order approximation 

5.5.1 Revision of likelihood

The objective here is to approximate the revised log-likelihood (5.9) by an 

expression of the form

1 1

T Tw Pt n b Pt  (5.24)

where P is a linear transformation; w  are vectors corresponding to n ;

and the approximation is accurate to second order in 

1,n 0 0, w
t  about 0 0t t

where  is an arbitrarily selected value of 0 .
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This is done by taking the Taylor expansion of each member of (5.9).  The 

results, from Appendix A, are substituted in (5.9), yielding 

1
0 0 0 02

1 2

0 0
x

| ,

1

T T T

T

q q

L y t t a t t N B Dg G Dg

y h X D g t t
 (5.25)

where 0-th order terms in t (which do not depend on ) have been omitted, and 

1

0 0 0 0

Ta w N h M Dg y h X1

0

0

 (5.26)

1 1

0B DIAG b b h M  (5.27)

1

01
H DIAG h X  (5.28)

1 1

0G DIAG b g t DIAG b b h X  (5.29)

and  is as defined in Section 2.  These quantities, as well as , are

evaluated at .

2D g ,b b

0t t

At this point, it is convenient to fix the arbitrary parameter 0  by setting

1 1

0 .h M E h M

2

 (5.30)

Then (5.7) reduces the first member of a in (5.26) to zero, giving 

1

0 .
Ta Dg y h X  (5.31)

Now diagonalise the matrix within braces in (5.25):

1

0 0 0
x
1

T
TT

q q
P DP N B Dg G Dg y h X D g  (5.32)

where D is diagonal and P orthogonal. 

Then

1
0 02

1
0 02

| ,
T T T

T T

L y t t a t t P DP t t
u u Pa u u D u u

0

0

0.

 (5.33)

where

0,u Pt u Pt  (5.34)
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Define

1

1 .N D DIAG b u0  (5.35)

Then (5.33) can be rewritten as 

0 0 1

1
0 0 1 0 1 02

| ,
T

T T

L y u u Pa DIAG b u n

u u DIAG b u n u u N DIAG b u u u0

1 1

T Tw u n b u  (5.36)

where

1 1 0

1

0 1

T

w Pa N b u
P Dg y h X N b u0

1

 (5.37)

1n VEC N  (5.38)

b u

1 0

Tw u

 has been substituted for its second order Taylor expansion, and the term

 has been omitted.

Thus Bayesian revision of the prior  in (5.6) is effected, to second order 

accuracy, by the substitutions

0 1 0 1, ,w w n n t Pt .  (5.39)

Note that, by (5.10), in the case of the canonical link the last of these

substitutions is the same as M PM .

The second order Bayesian revision of (5.6) thus maintains that parametric form

subject to a rotation of the parameter vector, and the revision (5.6)  (5.36) is a 

recursion.

This is not so for links other than canonical because
1 1Pt P b h M ,

which is not of the form
1 1b h Q  for some Q.

The revision is second order in the sense that the function b  appearing in the 

prior is reproduced in the posterior up to a second order term involving b .  In

view of (3.3), and the fact that the variance in (3.3) varies inversely with sample

size (through ), posterior estimators must be second order Bayes in the sense 

of Levit (1980). 

These have been applied in an actuarial context by Landsman (2002, 2004, and 

other papers referred to there).  Landsman (2004) in particular gives some

examples of second order Bayes estimators that return highly accurate results in

the single-dimensional case. 
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Note also that, while second order approximation here amounts to matching the 

first two orders of the log-likelihood, it is not a normal approximation.  This can 

be seen in (5.36), which is not normal.

5.5.2 Revision of mean and covariance 

Recall the prior (5.6), expressed in terms of the parameter :t t

0 0 .T Tt w t n b t  (5.40)

By (5.1), 

1 .b t h M  (5.41)

The mean and covariance of b t  are given by (5.7) and (C.8): 

1

0E h M E b t N w1

0

0

0

0

 (5.42)

11

0 0Var h M N A A  (5.43)

where

0A DIAG v  (5.44)

0A DIAG v  (5.45)

1

0v h M 0  (5.46)

1b b  (5.47)

Appendix C also shows that 

1|E Y h X  (5.48)

and so unconditional moments of Y are given by 1E Y E h X  and

.  The quantities are calculated in Appendices C.2 and C.3, where 

 is written in the form

1V h X
1h X

1h X v  (5.49)

with

1 1 .h XM h  (5.50)
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It is shown that 

111
0 02 1

1i i i
E Y v H XM H N A A0 0

1 1
2 211 11

0 0 02 1

T

i i

H XM H N A A H XM H
1

 (5.51)

11

0 0 01

T
Var Y H XM H N A A H XM H1

1

i

 (5.52)

where Y ,i  are the i-th components of Y ,  and 

1

0 E h M N w1

0 0

0

       [by (5.42)] (5.53)

0H DIAG h  (5.54)

0H DIAG h  (5.55)

1

01
H DIAG h  (5.56)

1

01
H DIAG h  (5.57)

0 X  (5.58)

and ...
i
 denotes the i-th row of the matrix argument and  denotes the 

transpose of that row. 

...
T

i

For the case of a canonical link, the Bayesian revisions of E Y  and Var  are 

made by substitution of (5.39) in (5.51) and (5.52), ie 

Y

0 1 0 1, ,w w n n M PM .  (5.59)

The case of other links involves a considerably more complex transformation

than M PM , and is not pursued further here. 

Canonical link

Considerable further simplification occurs in the case of canonical link 

.  Specifically, 
1h b

t M    [by (5.1)] (5.60)

1g t XM t   [by (5.4)] (5.61)
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1 2,Dg t XM D g t 0  (5.62)

0,u PM u PM 0

0

0

  [by (5.34)] (5.63)

0G DIAG b X [by (5.29)] (5.64)

0B DIAG b M [by (5.27)] (5.65)

The parameter  is defined by (5.30) and (5.42): 0

1 1

0 0M h N w .

Then, by (5.32) and (5.62), 

0 0 .
TTP DP N B Dg G Dg  (5.66)

Note that  is diagonal, and so (5.66) becomesG G

1

0 0 .
TTP DP N B XM G XM 1  (5.67)

Now the prior mean of 1h M  is given by (5.42), and the posterior mean by 

the same expression with  replaced by .0 0,N w 1 1,N w

Thus

1 1

1 1

1 1 1

1 0

|
T

E h PM y N w

N P XM y h X b PM 0

1

 (5.68)

by (5.37) and (5.62). 

By (5.35) and (5.67), 

1 1

1 0

1
1

0 0 0

T

N P DIAG b PM D P

DIAG b PM P N B XM G XM
 (5.69)

whence

1

0|E h PM y b PM PJ y h X1

0  (5.70)

with
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1
1 1

1 0 0

TTJ P B P N B XM G XM XM 1
T

0

1

0

0

 (5.71)

and

1 .B DIAG b PM  (5.72)

Also,  is given by (5.43) – (5.47) with  replaced by 

and M by PM:

1 |Var h PM y 0N 1N

11

1 1|Var h PM y N A A  (5.73)

with

1

1A DIAG h PM  (5.74)

1

1 .A DIAG h PM  (5.75)

Example 5.2:  normal error, identity link.  This is the case

21
2

b  (5.76)

.h  (5.77)

The identity link is canonical, and so the immediately preceding results may be

applied.  With  given by (5.76), those results give: .b

0 11, 1, 1G B B  (5.78)

1, 0  (5.79)

and then (5.70) reduces to

0|E PM y PM PJ y X 0  (5.80)

where

1
1 1 1

0

T
J N XM XM XM

T
 (5.81)

and, by (5.30) and (5.42), 

1 1

0 .E M N0 0w  (5.82)

Then
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1

0 0

| TE y M P E PM
K y X

| y
 (5.83)

where

1
1 1 1 1 1 1 1

0 0

1

1

1

T TT T

T T

K M J M N M X XM N M X

X X X
 (5.84)

by (2.9) and where 1 1 1

0 .
T

M N M

By (5.73) and (5.79), 

1

1|Var PM y N .

1

 (5.85)

Then, by (5.69), 

1
1 1 1

0

1
1

1

|

1 .

T T

T

T

Var y M N XM XM M

X X

X X

But note that

1

1

1 1 1

1 ,

T T

T

KX X X X X

X X

by (2.10). 

Thus

| 1Var y KX .  (5.86)

By (5.43) the prior variance of M  was 1

0N , and so the prior variance of 

was .  Thus, the Bayesian revision has “contracted” this variance by a factor of 

1-KX, where K is the weight given to the data in the revision (5.83) of the mean.

Example 5.3:  gamma error, reciprocal link.  This is the case

logb  (5.87)

1/ .h  (5.88)
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The link is canonical, and so the results preceding Example 5.2 may be applied. 

They give: 

2 2

0 0 0 1, ,G DIAG X B DIAG M B DIAG PM 2

0  (5.89)

2 2.  (5.90)

Then (5.70) gives 

01/ | 1/ 1/E PM y PM PJ y X 0  (5.91)

where P is the orthogonal matrix given by (5.67), and 

1

0 0 1/ .0M N w

The results (5.50) to (5.59) are then applied to obtain the Bayesian revisions of 

E Y  and Var .  These results giveY

11/ 1/XM  (5.92)

2

1 2H DIAG H DIAG 3

1  (5.93)

2

11 1
2H DIAG H DIAG 3

1  (5.94)

1

1 11/ | , 1/ ,TE PM y XM P 1  (5.95)

where the last relation has been obtained with the help of (5.46). 

5.5.3 Companion GLM

For given GLM G, the transformation to the companion GLM G  is, 

according to (4.16), given by h , with  defined by (4.8).  The log-

likelihood  of G  is 

*G
*h *h

*L *

* 1; , 1 .T TL y y b (4.15)

Define t, g by (5.1) and (5.4) as for G.   Note that t, g are still defined in terms of 

h, not .*h

Then (4.15) may be re-written in the form

* ; , 1 .T TL y g t y b g t1  (5.96)

Choose the prior 
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* * * 1

0 0 .T Tw t n b t  (5.97)

Comparison of (5.96) and (5.97) for G  with their counterparts (5.5) and (5.6) 

for G shows that the transformation G  and the transformation of the

associated prior are given by: 

*

*G

1,b b y 1.  (5.98)

The companion of the posterior log-likelihood (5.9) is then 

* *

0

* 1 1

0

| , 1

.

T T

T T

L y w t g t

n b t y b g t
 (5.99)

Now (5.9) was approximated by (5.25) using the results of Appendix A, and 

(5.25) was approximated by (5.36).  Appendix E provides the parallel 

development for , leading to the following result corresponding to 

(5.36):

* | ,L y

* * * *

1 1| , T TL y w u n b u1 *

0

 (5.100)

where
1

* * * * 1

1 11
1 1/

Tw P Dg H y N b b u  (5.101)

*

1n VEC N *

1

0

0

 (5.102)

* * *

0,u P t u P t  (5.103)

1
* *

01
H DIAG h X  (5.104)

1

* * 1

1N D DIAG b u  (5.105)

*,P D*  are orthogonal and diagonal matrices respectively such that 

* * * * * *

0 0

1
*

1
1 1

TT

T

P D P N B Dg DIAG G y Dg

H y D g2

*

0

 (5.106)

*

0N DIAG n  (5.107)
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1* 1 1

0B DIAG b b h M 0

1
*

0

 (5.108)

1* 1 1

0G DIAG b b h X  (5.109)

and  is chosen to satisfy0

1
*

0 01/ .h M N w  (5.110)

Thus, Bayesian revision of the prior (5.97) is effected, to second order accuracy, 

by the substitutions

* * * * *

0 1 0 1, ,w w n n t P t .  (5.111)

Companion canonical link

Recall that the companion canonical link is given by (4.8) with , which 

is the canonical link.  In this case 

1h b

t M  (5.112)

just as in (5.10), and so the last substitution in (5.111) reduces to *M P M , in 

parallel with the case of the canonical link (see just after (5.39)).  Relations 

(5.61) and (5.62) continue to hold. 

This yields the following result corresponding to (5.70): 

1
* * 1 * * *

0
ˆ1/ |E h P M y b P M P J y y

where

1
* * * * * * 1 * 1 1 *

1 0 0 1

T TTJ P B P N B XM DIAG G y XM XM H
1

* *

01
ˆ 1y H h X

* 1 *

1 0B DIAG b P M

Revision of mean and variance

This sub-section is developed in parallel with Section 5.5.2 but in relation to the 

companion GLM G .  This is done by replicating Appendix C with the

appropriate replacements, as set out in Table 5.1. 

*
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Table 5.1 

Correspondences for mean and variance of GLM and its companion

G *G
b 1b

1h b 1
* 1 1/h b b b 1

y 1

1 y

0w *

0w

0n *

0n
1h X 1

*h X
1h M 1

*1/ h M

The first three rows of the table simply repeat (5.98).  The next two are derived 

from a comparison of (5.97) with (5.6).  The last two require some comment. 

Equation (5.48) relates the mean of a GLM to its linear response through the 

inverse of its link.  If the link changes from h to , but no other aspect of the 

GLM changes, as is the case in the substitution G , then h is simply

replaced by  in (5.48).  This is the case whenever 

*h

h

*G
1*h  operates on X .

On the other hand, when 1h  operates on M , it is being used to express 

moments of the prior  and, as shown in (E.14), it is replaced by 1/ .*
1

*h

As an example of the application of Table 5.1, the counterpart of (5.43) for the 

companion GLM is

1
1

* * *

0 01/Var h M N A A*

0

*

0

*

0

0

 (5.113)

where

* *

0A DIAG  (5.114)

* *

0A DIAG  (5.115)

1
* *

0 1/ h M  (5.116)

1

* 1 1 .b b  (5.117)
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Example 5.4:  gamma error, log link.  This is the case 

logb  (5.118)

log .h  (5.119)

By (4.8), this link is companion to that in Example 5.3, and so henceforth will be 

written

* logh  (5.120)

companion to 

1/ .h  (5.121)

The GLM of the present example is thus the companion of that in Example 5.3, 

and so the results of the present sub-section may be applied.  They give: 

* *

0 0exp , expG DIAG X B DIAG M 0

0

0

 (5.122)

1 1 2, ,g t XM t Dg XM D g  (5.123)

* * *

1 expN D DIAG P M  (5.124)

where  and  are obtained from the orthogonal decomposition*D *P

* * * * * 1 * 1

0 0

TTP D P N B XM DIAG G y XM  (5.125)

* * * * 1

1 1 0 0exp exp 1
T

w N P M P XM DIAG X y  (5.126)

The posterior version of (B.9) is 

1
*

1exp | ,E P M y N * *

1w  (5.127)

*

0
x1

ˆexp 1
q

DIAG P M K y y  (5.128)

with

1
* * 1

T
K D P XM G*  (5.129)

and

0
ˆ exp .y X
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Expression (5.128) takes a neat form for the present special case of gamma error 

and log link. It may be desirable for some purposes, however, to express it in a 

form analogous to (5.70), as follows: 

* * *

0
ˆexp | , expE P M y P M P J y* y

*

*G

where

* *

0expDIAG P M K P J

ie

1
* * * * * 1

1

TTJ P B D P XM

with

* *

1 0exp .B DIAG P M

To convert (5.128) to the posterior mean of exp X , define 

* *

1 exp | , .E P M y  (5.130)

Define  through the relation 1

1 1
* * * *

11/ 1/ | ,h P M E h P M y        [c.f. (5.30)] 

ie

1 * *

1 log .TM P 1

1

 (5.131)

Also define 

*

1 .X  (5.132)

By (5.130) and (5.132), *

1  and *

1  serve the same purpose in the calculation of 

the posterior mean of exp X  as did 0  and 0  in the calculation of its prior

mean in Section 5.5.2; and similarly *

0  in the application of Table 5.1 

immediately before the present example.  Therefore, *

0  is replaced by  there,

giving

*

1

* * * *

1 1, exp ,A DIAG M A1 0,  (5.133)

where  replaces , and *

1A *

0A * *M P M .
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Table 5.1 then yields the following replacements in Example 5.3: 

1 1
1 * * * * 1 * * *

1 1 1 1 11/ exp , exph h h h *

1

*

1

*

1

 (5.134)

* * *

1 1 1log , logh h  (5.135)

* * *2

1 1 1
* *

1 1 1 11 1

1/ exp , 1/ exp 2

exp exp , exp exp

H DIAG DIAG M H DIAG DIAG M
H DIAG DIAG X H DIAG DIAG X
 (5.136)

1 * 1

11
exp exp 2H XM H DIAG X XM DIAG M *

1  (5.137)

1
2 1 * 11

121
exp exp .H XM H DIAG X XM DIAG M *

1  (5.138)

Making the replacements (5.137) and (5.138) in (5.51), and recalling (5.133),

gives

1
* * 11
1 12

1
* 1 * * *1 1

1 1 12 2

exp | , exp exp

exp exp exp

T
i i i

i

E X y DIAG X XM DIAG M n

DIAG X XM DIAG M N DIAG M

* *

1 1

1

* 1 *1
1 12

exp exp
T

i
DIAG X XM DIAG M (5.139)

where T
iX  is the i-th row of X and, by (5.50), (5.134) and (5.135), 

* * 1 *

1 1exp log exp 1XM X  (5.140)

(by 5.131). 

Similarly, by (5.52) with the appropriate replacements,

* 1 *

1 1

1
* * 1

1 1

exp | , exp exp

exp
T

Var X y DIAG X XM DIAG M

N XM DIAG X
* 1 * 1 * 1

1

1

exp

exp

T
DIAG X XM D XM

DIAG X
 (5.141)

by (5.124). 
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6. Dynamic generalised linear models

6.1 Preliminary commentary

Section 5 shows how to obtain a second order approximation to the Bayesian

revision of a GLM. 

The form of the revision is given by (5.39).  The passage immediately following 

that result points out that (5.39) becomes a recursion in the case of a canonical 

link.

A similar result is obtained for a companion canonical link (see (5.111) and 

(5.112) and associated text). 

These recursions enable one to carry out multiple Bayesian revisions, retaining

distributional forms and just varying parameters at each step.  This leads to a 

filtering algorithm akin to the Kalman filter for producing a sequence of 

Bayesian revisions of a location parameter and its associated dispersion. 

6.2 Canonical link

6.2.1 Framework

Consider the Bayesian framework described by (5.11) and (5.12), but generalise 

to the situation in which it applies to a sequence of epochs s = 1, 2, etc. 

Specifically,

| 1 | 1 | 1 | 1 | 1T T
s s s w s s M s s s n s s b M s s s  (6.1)

; , 1T T
sL y s s s y s s X s s s b X s s  (6.2)

where generally the notation s s| j  indicates an estimate of  a quantity current

at epoch s but where the estimate takes account of data up to and including s-j.

As to the form of the matrices | 1M s s , note from (6.1) that the prior

distribution of the vector | 1M s s s  has independent components.  One

choice of  is therefore the orthogonal matrix that diagonalises 

 as follows:

| 1M s s

| 1Y sVar s

| 1 | 1 | 1 | 1TVar s Y s M s s Q s s M s s .  (6.3)

where  is diagonal, and | 1Q s s Y s  denotes the total information

.1 ,...,y y s
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Now (6.1) denotes the distribution for s  taking account of data up to (s-1),

and it is the prior that is revised by observations made at s.  Note that b  does 

not depend on s.

.

Equation (6.2) gives the log-likelihood for the GLM G , , ,b h s X s  with 

canonical link 
1h b .  Suppose in addition that the parameter vector .

evolves over time as follows: 

1 1x1 x x1 x1

1 1
s s s s sq q q q q
s s s s 1  (6.4)

where the matrix  is non-stochastic and 1s 1s  is a centred stochastic

quantity that is independent of 0 ,..., ,..., y s, 1s y  and with 

.Var s R1 1s

Thus it is assumed that the dimension of the parameter vector may change over 

time.

The objective is to evaluate 1 | |E h M s s s Y s  and 

1 1| 1 |E h M s s s Y s  and the corresponding variances in terms of 

(6.1) and (6.2), where |M s s  will be defined shortly. 

6.2.2 Estimation

With a slight abuse of notation, let h s  denote 1 | s j
1 | |E h M s s j s Y s j .  Let |s s j  denote 

1 | |Var h M s s j s Y s j
1 |h s s |s s

.  The objective is then the evaluation of 

 and , and then 1| s1h s  and 1|s s .

Estimation of and1 |h s s |s s

Consider the first of these.  It may be expanded as follows: 

1 1

1

| | |

| | 1 |

h s s E h M s s s Y s

.E E h M s s s Y s y s

| 1

 (6.5)

Define

|M s s P s M s s  (6.6)
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where orthogonal  will be defined below.  Note that the orthogonality of 

both matrices on the right side of (6.6) implies orthogonality of 

P s

|M s s .  Then 

(6.5) becomes:

1 1| | 1 |h s s E E h P s M s s s Y s y s1 | .  (6.7)

This is the Bayesian revision of 1 | 1 | 1E h P s M s s s Y s  to take

account of data , and is given by (5.70) with the replacementsy s

| 1 ,,M M s s P sP s .   The relevant quantities are defined

below, with their corresponding equation numbers from Section 5 attached in 

square brackets. 

Define | 1s s  by the relations

1 1| 1 | 1 | 1 | 1 5.30h M s s s s E h M s s s Y s
1 | 1 | 1 5.7N s s w s s  (6.8)

| 1 5.64G s DIAG b X s s s  (6.9)

| | |B s s j DIAG b M s s j s s j1 , 0,1 [(5.65) and (5.72)] (6.10)

Define P s  and  as the orthogonal and diagonal matrices respectively 

satisfying:

D s

| 1 | 1

| 1 | 1 5.67

T

T T

P s D s P s N s s B s s
M s s X s s G s X s M s s

 (6.11)

1

| | 1 |

| 1 | 1

T

T T

J s P s B s s P s N s s B s s

M s s X s s G s X s M s s

1

| 1 5.71TM s s X s s  (6.12)

1 1

1

| | | 1

| 1 5.70

h s s h M s s s s
P s J s y s h X s s s

 (6.13)

With
1

5.47b b
1

1

| | 1 5.74

| | 1 5.75

A s DIAG h M s s s s

A s DIAG h M s s s s
 (6.14)
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1| | 5.65N s s D s B s s  (6.15)

1

| | . 5.s s N s s A s A s 73  (6.16)

Estimation of 1 |E s Y s  and 1 |r s Y sVa

By (6.4), 

1 | 1 |E s Y s s E s Y s  (6.17)

1 | 1 | 1 1 .TVar s Y s s Var s Y s s R s  (6.18)

To evaluate these quantities, express s  in the form

1| |Ts M s s h h M s s s .

Take the Taylor expansions (2.14) and (2.15) of ...h  about 

1 | |E h M s s s Y s  to obtain the second order approximations 

1 1
2

| | | |TE s Y s M s s h h s s s s H s s| 1

|

 (6.19)

| | | | |
TTVar s Y s M s s H s s s s H s s M s s  (6.20)

where it has been recognised from (6.16) that |s s  is diagonal, and 

1| | , |H s s DIAG h h s s H s s DIAG h h s s1 | .  (6.21)

Substitution of (6.19) and (6.20) into (6.17) and (6.18) gives 

1 1
2

1 | 1 | | | | 1TE s Y s s M s s h h s s s s H s s  (6.22)

1 | 1 | | | |

| 1 1 .

TT

T

Var s Y s s M s s H s s s s H s s
M s s s R s

 (6.23)

Estimation of 1 |M s s

1|M s s  is the orthogonal matrix that diagonalises Var , just

as in (6.3):

1 |s Y s

1 | 1| 1| 1| .TVar s Y s M s s Q s s M s s  (6.24)
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Estimation of 1 1 |h s s  and 1 |s s

Expand  as a second order Taylor series: 1 1|h s s

1 1 1

1
2 1

1| 1| 1 | 1| 1 |

1| 1 | 1| 1

h s s E h M s s s Y s h E M s s s Y s
Var M s s s Y s H s s

 (6.25)

where

1

1
1| 1| 1 |H s s DIAG h E M s s s Y s  (6.26)

and advantage has been taken of the fact that, by (6.24), the variance matrix in 

(6.25) is diagonal. 

Substitution of (6.24) into (6.25) yields

1 1

1
2 1

1| 1| 1 |

1| 1| 1

h s s h E M s s s Y s
Q s s H s s

 (6.27)

where, by (6.22), 

1 1
2

1| 1 | 1| 1 |

| | |

TE M s s s Y s M s s s M s s

h h s s s s H s s 1 .
 (6.28)

Similarly

1

1 1

1| 1| 1 |

1| 1| 1|

s s Var h M s s s Y s
H s s Q s s H s s

 (6.29)

where use has been made of (6.24) and 

1

1
1| 1| 1 | .H s s DIAG h E M s s s Y s  (6.30)

Calculation of 1 |N s s  and 1 |w s s

By (6.8) 

1 11| 1| 1| .h s s N s s w s s  (6.31)

Recall (B.7), (5.60) and the fact that the canonical link h b :
1
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1

1 1

1| 1| 1 |

1| 1| 1 |

s s Var h M s s s Y s

N s s DIAG E h M s s s Y s
 (6.32)

Take the second order Taylor series expansion of the expectation: 

1 1
21 1

1| 1| 1| 1| 1|s s N s s H s s Q s s H s s  (6.33)

by (6.24) and (6.30), and 

1

1
1| 1| 1 | .H s s DIAG h E M s s s Y s  (6.34)

By (6.31) and (6.33), 

1 1
21 1

1| 1| 1| 1| 1|N s s s s H s s Q s s H s s  (6.35)

11| 1| 1| .w s s N s s h s s  (6.36)

Initiation of the estimates

The above estimation procedure provides a filter by which estimates of  and

their variances may be progressively revised in accordance with the data vectors 

, etc. 1 , 2y y

The filter is initiated with the prior estimates 1E  and Var .  This 

yields

1

1| 0M  from (6.24), and then 01 1|h  and 1| 0  from (6.27) and 

(6.29).

The filter then proceeds through a sequence of iterations, each iteration revising
1 | 1h s s  and  to | 1s s 1 1| sh s  and 1|s s , s = 1, 2, etc by 

means of the steps set out above, specifically: 

(1) Calculation of | 1sN s  and | 1w s s  from (6.35) and (6.36); 

(2) ,1 | 1h s s 1| 1 | , |s s h s s s s  by (6.13) and (6.16); 

(3) Estimation of 1 | Y sE s  and 1 |s Y sVar  from (6.22) 

and (6.23); 

(4) Estimation of 1|M s s  from (6.24); 

(5) Estimation of 1 1| sh s  and 1|s s  from (6.27) and (6.29). 
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Forecasts

Equation (6.27), together with substitution (6.28), provides one-step-

ahead forecasts of 1 1| 1 |h M s s s Y s .  Forecasts of

1 1 1 |X s s Y s1 |E y s Y s E h  may be obtained by the 

procedure set out in Section 5.5.2. 

Equations (5.51) and (5.52) adapt simply to the present context to yield to the

following:

1
2

1

1
2 1

1
2 1

1 | 1| 1|

1| 1 1| 1| 1| 1

1| 1 1| 1| 1| ...

i i

T

i

TT
i

i

E y s Y s s s h s s

H s s X s M s s H s s s s

H s s X s M s s H s s s s

 (6.37)

1
1 | 1| 1 1| 1|

1| ...

T

T

Var y s Y s H s s X s M s s H s s

s s
 (6.38)

where

11| 1 1|Ts s h X s M s s h  (6.39)

and this time

1

1
1| 1 1 |H s s DIAG h X s E s Y s  (6.40)

1

1
1| 1 1 | .H s s DIAG h X s E s Y s  (6.41)

Discussion

Consider (6.1), the prior associated with the GLM log-likelihood (6.2).  It is 

applied for general s, which will be possible only if this family of priors is

closed under Bayesian revision. 

However, it was seen in Section 5.5.1 that this is not the case in general.  That 

section was concerned with approximating the posterior likelihood with a 

member of the relevant family.

Thus, in the above sequence of iterations, a single iteration commences with 

| 1s s  approximated by a member of the family.  Bayesian revision leads to 1|s s

which does not in general lie within that family.  However, Step (1) of the 

procedure then replaces it by its second order approximation from the family. 
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6.3 Companion canonical link 

Replace the Bayesian framework (6.1) and (6.2) by the companion form (see

(5.96) and (5.97)): 

* *

| 1

* 1

| 1 | 1

| 1 | 1

T
s s

T

s w s s M s s s
n s s b M s s s

 (6.42)

* 1; , 1T T
sL y s s s s X s s y s s b X s s .  (6.43)

The correspondences between a GLM and its companion were identified in 

Table 5.1 for the purpose of calculating moments of transformed variates.  Table 

6.1 adapts these to the present context of iterative Bayesian revision, and then it 

may be used to translate all of the working of Section 6.2 to the companion case. 

Table 6.1 

Correspondences between GLM and its companion

G *G
b 1b

1h b 1
* 1 1/h b b b 1

s y s 1s

1s s y s

| 1w s s * | 1w s s

| 1n s s * | 1n s s
1h X s s 1

*h X s s
1 |h M s s j s 1

* *1/ |h M s s j s

Most of these substitutions are straightforward, but a few call for comment.  For 

example,  appears in (6.13) without a pre-multiplying .  However, if 

one considers the product 

y s s

P s J s y s  in (6.13), one finds the term

, and the appropriate substitution from Table 6.1 can be made.s y s

The required filter for G  is produced below by making the necessary 

substitutions throughout Section 6.2.2.  Note that Table 6.1 is not required for 

the Bayesian revision 

*

|s s| 1s s , the algorithm for which is derived in

Section 5.5.3.  The table is used for transformations such as 

1 | 1 1 |E s Y s s s Y s
1

* *E h M1/ .  In the following,

the numbers of the corresponding equations from Section 6.2.2 are shown in 

square brackets.  The equation numbers from Section 5.5.3 are also shown in 

square brackets when used. 
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Estimation of 1 /
1

*
|h s s  and * |s s

In the following
1

* |h s s j1/  will denote

 and 
1

* *1/ | |E h M s s j s j Y s |s s*  will denote the 

corresponding variance.  Further 
1

* |h s s j  will denote the reciprocal of 

.
1

*1/ |h s s j

Define  and * | 1M s s * | 1sQ s  as the orthogonal and diagonal matrices

respectively satisfying

* * *| 1 | 1 | 1 | 1 6.3
T

Var s Y s M s s Q s s M s s  (6.44)

* * *| | 1 6.6M s s P s M s s  (6.45)

where *P s  is defined below. 

Define | 1s s  by the relation 

1 1
* * *1/ | 1 | 1 1/ | 1 | 1h M s s s s E h M s s s Y s

1
* *| 1 | 1 5.110  and 6.8N s s w s s

 (6.46)

Then

* 1 | 1 5.109  and 6.9G s DIAG b X s s s  (6.47)

* 1 *| | | 1 , 0,1 5.108  and 6.10B s s j DIAG b M s s j s s j
(6.48)

Define  and *P s *D s  as the orthogonal and diagonal matrices respectively 

satisfying:

* * * * * *

* *

| 1 | 1 | 1

| 1 5.106  and 6.11

T T

T

P s D s P s N s s B s s M s s X s
DIAG G s s y s X s M s s

 (6.49)

Then
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* * * *

* * * *

1
* *

|

| 1 | 1 | 1

| 1 | 1 6.12

T

T

T T

J s P s B s s P s

N s s B s s M s s X s DIAG G s s y s X s

M s s M s s X s s

 (6.50)

1 1
* * *

1
* * *

1

1/ | 1/ | | 1

| 1 1 6.13

h s s h M s s s s

P s J s H s s y s
 (6.51)

with

1
* *

1
| 1 | 1H s s DIAG h X s s s .     [(5.104)] (6.52)

Define

1

* 1 1b b            [(5.117)] (6.53)

1
* * *

1
* * * *

1/ | | 1 5.114

1/ | | 1 5.115  and 6.14

A s DIAG h M s s s s

A s DIAG h M s s s s

 (6.54)

1
* * *| | 5.105  and 6.15N s s D s B s s  (6.55)

1
* * * *| | . 5.113  and 6.16s s N s s A s A s  (6.56)

Estimation of 1 |E s Y s  and 1 |r s Y sVa

Taylor series expansions corresponding to (6.19) and (6.20) are required.  To 

obtain these, write 

* *

1
* *

1
|

1/ |

T
s M s s h

h M s s s

and expand , making use of the relations: *h

* 2 */ 1/ 1/d dx h x x h x  (6.57)
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2 2 * 3 * 4 */ 1/ 2 1/ 1/d dx h x x h x x h x .  (6.58)

Thus

1
* * * *1

2

3 4
* * * *

1 1

1 | 1 | | |

2 | | | | 1 6.22

T
E s Y s s M s s h h s s s s

H s s H s s H s s H s s

 (6.59)

2
* * * * *

1

2
* *

1

1 | 1 | | | | |

| | 1 1 6.23

T

T

Var s Y s s M s s H s s H s s s s H s s

H s s M s s s R s

 (6.60)

where
1

* *

1
|H s s DIAG h s s|  (6.61)

1
* * *

1
* * *

| |

| | . 6.21

H s s DIAG h h s s

H s s h h s s

,
 (6.62)

Estimation of * 1 |M s s

* 1|M s s  is the orthogonal matrix that diagonalises V s 1 |Y s :

* * *1 | 1| 1| 1| 6.24
T

Var s Y s M s s Q s s M s s  (6.63)

where * 1|Q s s  is diagonal. 

Estimation of 1 /
1

*
1 |h s s  and * 1 |s s

1 1
* * *

* *1
2 1

1/ 1| 1/ 1| 1 |

1| 1| 1 6.27

h s s h E M s s s Y s

Q s s H s s
 (6.64)

* * * *

1 1
1| 1| 1| 1| 6.29s s H s s Q s s H s s  (6.65)

where the expectation in (6.64) may be calculated from (6.59), and 
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1
* * *

1
1| 1/ 1| 1 | . 6.30H s s DIAG h E M s s s Y s

 (6.66)

Calculation of * 1 |N s s  and * 1 |w s s

1
* *

* * *1
21 1

1| 1|

1| 1| 1| 6.35

N s s s s

H s s Q s s H s s
 (6.67)

1
* * *1| 1| 1/ 1| 6.36w s s N s s h s s  (6.68)

where

1
* *

1

*

1| 1/

1| 1 | 6.34

H s s DIAG h

E M s s s Y s
 (6.69)

Forecasts

Define

1
* * * *1| 1 1| 1/ 6.39

T
s s h X s M s s h  (6.70)

so that 

1
* * *1 | 1| 1/ 1| 1E y s Y s E s s h M s s s  (6.71)

It is possible to take the Taylor series expansion of this expression about

 and obtain results corresponding to (6.37) and (6.38). 

However, this is not done here as the general results are complicated and it will 

sometimes be simpler in practice to work directly from (6.71) for the specific 

under consideration.  This is illustrated in Example 6.2. 

1
*1/ 1|h s s

*h

6.4 Special cases

Example 6.1:  normal error, identity link 

In this case, with h = identity, h s  denotes 1 | s j

| |E M s s j s Y s j .

It will be convenient to begin the cycle of steps in the filter at a different point

from that commencing (6.8) – (6.41). 
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Estimation of | 1N s s  and | 1w s s

Note that all  matrices are identity matrices and all and  are null 

matrices.  Therefore 

H H H

1

1

| 1 | 1 6.35

| 1 | 1 | 1T

N s s s s
M s s Var s Y s M s s

 (6.72)

1

| 1 | 1 | 1 | 1 6.36

| 1 | 1 | 1 .

w s s N s s M s s E s Y s
M s s Var s Y s E s Y s

 (6.73)

Estimation of and1 |h s s |s s

The required estimation was carried for a single iteration of the filter in Example

5.2.  The results obtained there, adapted to the present context, are as follows. 

1| | | | 1

| 1 5.83

TM s s h s s E s Y s E s Y s
K s y s X s E s Y s

 (6.74)

where

1
1 5.84T TK s F s X s s X s F s X s  (6.75)

1| 1 | 1 | 1

| 1 ,

TF s M s s N s s M s s
Var s Y s

 (6.76)

by (6.72). 

Note that 1 |s Var Y s s  by (3.4) and (3.5) with p = 0. 

Now

| | | |

1 5.86

1 |

TM s s s s M s s Var s Y s
K s X s F s
K s X s Var s Y s 1 ,

 (6.77)

by (6.76). 

Estimation of 1 |E s Y s  and 1 |r s Y sVa

11 | 1 | | by 6.22

1 |

TE s Y s s M s s h s s
s E s Y s

 (6.78)
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1 | 1 | | | 1 1 by 6.23

1 | 1 1 .

T T

T

Var s Y s s M s s s s M s s s R s
s Var s Y s s R s

 (6.79)

The filter that maps | 1E s Y s  and Var  to

 and 

| 1s Y s

1 |E s Y s 1 |s Y sVar  finally comprises (6.74) – (6.79), 

which may be recognised as the Kalman filter (Kalman, 1960; Jazwinski, 

1970).

Example 6.2:  gamma error, log link.  This case was dealt with in Example

5.4, where it was identified as companion to the GLM with gamma error and 

canonical reciprocal link (5.121). 

Estimation of 1 /
1

*
|h s s and * |s s

Here
1

*1/ |h s s  denotes *exp | |E M s s s Y s  and  the 

corresponding variance. 

* |s s

Define | 1s s  by the relation 

1
* *exp | 1 | 1 | 1 | 1 . 6.46M s s s s N s s w s s  (6.80)

Also define 

* exp | 1 , 5.122G s DIAG X s s s
* *| exp | | 1 , 0,1 6.48B s s j DIAG M s s j s s j . (6.81)

Matrices ,* *,P s D s *J s  and * ,M s s  are defined by (6.49), (6.50) and 

(6.45).

Then, using the form (5.128) that is specifically adapted to the present special 

case,

1
* *

x1

1/ | exp | | 1

ˆ1 | 1 5.128  and 6.51
q

h s s DIAG M s s s s

K s y s y s s
 (6.82)

with

ˆ | 1 exp | 1y s s X s s s  (6.83)

1
* * *| .K s B s s P s J s G*
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Also

1
* * *| | 6.55N s s D s B s s  (6.84)

1
* * *| | exp | | by 6.56 and 5.133s s N s s DIAG M s s s s

1
* 2 |D s B s s  (6.85)

by (6.81) and (6.84). 

Estimation of 1 |E s Y s  and 1 |r s Y sVa

Recall from (5.120) that * logh

|

2

1
.

, so that (6.61) and (6.62) yield 

1
* *

1
|H s s DIAG h s s  (6.86)

1
* * * *

1
| | , |H s s H s s H H s s  (6.87)

Then

1
* *

2
* *1

2 1

1 | 1 | log 1/ |

| | 1 6.59

T
E s Y s s M s s h s s

s s H s s
 (6.88)

* * *

1

* *

1

1 | 1 | | |

| | 1 1 . 6.6

T

T

Var s Y s s M s s H s s s s
H s s M s s s R s 0

 (6.89)

Estimation of * 1 |M s s

Define * 1|M s s and * 1|Q s s  as the orthogonal and diagonal matrices 

respectively that satisfy:

* * *1 | 1| 1| 1| . 6.63
T

Var s Y s M s s Q s s M s s

Estimation of 1 /
1

*
1 |h s s  and * 1 |s s

1
* * *1

2
1/ 1| 1 1| exp 1| 1 | 6.64h s s Q s s E M s s s Y s
 (6.90)

* * *1| 1| exp 2 1| 1 | 6.65s s Q s s DIAG E M s s s Y s
 (6.91)
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Calculation of * 1 |N s s  and * 1 |w s s

1
* * *1

2

*

1| 1| 1 1|

exp 1| 1 | . 6.67

N s s s s Q s s
DIAG E M s s s Y s

 (6.92)

1
* * *1| 1| 1/ 1| . 6.68w s s N s s h s s  (6.93)

6.5 Commentary 

Sections 6.2 and 6.3 extend the Kalman filter from dynamic general linear 

models to dynamic generalised linear models.  However, the static equation 

(6.4) remains linear.  This work is therefore distinct from non-linear extensions 

such as the extended Kalman filter (Jazwinski, 1970, pp.272-281; Harvey 

1989, pp.160-162) and others (eg Naik-Nimbalkar and Rajarshi, 1995). 

It is worthwhile summarising the logic of a single iteration of the DGLM filter

produced here.  It is as set out in Figure 6.1. 

Figure 6.1 

Single iteration of DGLM filter 

Prior likelihood (EDF 

natural conjugate) 

Data (EDF) 

Posterior likelihood (not 

EDF natural conjugate 

in general) 

Second order 

approximation

Approximate posterior 

likelihood (EDF natural 

conjugate)

The accuracy of the filter as an estimator will depend on the accuracy of the 

approximation step.  As noted at the end of Section 5.5.1, there are indications 

that such estimators are highly accurate in certain circumstances.  However, the 

author intends to carry out in the near future a program of numerical testing of

the filter presented here.
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Appendix A 
Taylor expansion of (5.9) 

 
A.1 Expansion of  ( )0

Tn b to
 
By (2.1), 
 

( ) ( ) ( )1 ,...,
T

qb t b t b t⎡= ⎣ ⎤⎦  (A.1) 

 
where t denotes ( )t β  and jt  denotes ( )jt β . 
 
Expand ( )jb t  to second order: 
 

( ) ( ) ( ) ( ) ( ) (2
1

0 0 0 02j j j j j j jb t b t t t b t t t b t′= + − + − )0j′′

0

 (A.2) 
 
where 
 

( )0j jt t= β  (A.3) 
 
for an arbitrarily selected q-vector 0β . 
 
Then 
 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
0 0

1
0 0 0 0 0 0 0 0 02

T
j j

j
T TT

n b t n b t

n b t t t N b t t t N DIAGb t t t

=

′ ′= + − + − −⎡ ⎤⎣ ⎦

∑
′

0

(A.4) 

 
where 
 

( )0 x x1q q q
t t= β  (A.5) 

 
0

x
.

q q
N DIAG n= 0

0

 (A.6) 

 
By (5.1) and (A.5), 
 

( ) ( )1
0 .b t h M−′ = β  (A.7) 

 
Substitution of (A.7) in (A.4) yields 
 

( ) ( ) ( ) ( ) ( ) (1 1
0 0 0 0 0 0 0 0 02

T TT Tn b t n b t t t N h M t t N B t t−= + − )0β + − −  (A.8) 
 
with 
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( ) ( ) ( )1 1
0 0 .B diag b t DIAG b b h M− −′′ ′′ ′= = 0βo o  (A.9) 

 
A.2 Expansion of  ( )Ty g tΛ o

 
Equation (5.4) defines g as an m x q transformation.  The Taylor expansion 
(2.12) may be used to express  in the form ( )g t
 

( ) ( ) ( )( ) ( ) ( )(21
0 0 0 0 02 x

1
T

m m
g t g t Dg t t t t t D g t t t⎡ ⎤= + − + − ⊗ −⎣ ⎦ )0  (A.10) 

 
where  and  are defined in Section 2, and  denotes the Kronecker 
product defined there. 

Dg 2D g ⊗

 
Then 
 

( ) ( ) ( ) ( )
( ) ( ) ( )( )

0 0

21
0 02 x

1 .

T TT T

T
T

q q

y g t y g t t t Dg y

t t y D g t t

Λ = Λ + − Λ

⎡ ⎤+ − Λ ⊗ −⎢ ⎥⎣ ⎦

 (A.11) 

 
A.3 Expansion of  ( )1T b g tΛ o o

 
The algebra proceeds largely as in Appendix A.2, but with  replaced by 

.  In parallel with (A.11) 
( )g t

( )(b g t )
 

( )( ) ( )( ) ( ) ( )
( ) ( ) ( )

0 0

21
0 02 x1 x

1 1

1 1

TTT T

T
T

m q q

b g t b g t t t D b g

t t D b g t t

Λ = Λ + − Λ⎡ ⎤⎣ ⎦
⎡ ⎤ ⎡ ⎤+ − Λ ⊗ −⎣ ⎦⎢ ⎥⎣ ⎦

o

o

1

.

)
0

)0

 (A.12) 

 
Now, evaluated at , 0t
 

( ) ( )( ) ( )
( ) (

0x xm m m q
D b g D b g t Dg t

DIAG b g Dg

⎡ ⎤= ⎣ ⎦
′= ⎡ ⎤⎣ ⎦

o

o
 (A.13) 

 
where both members are evaluated at . 0t
 
By (5.1), (5.4) and (A.5), 
 
( )( ) (1

0b g t h X−′ = βo  [compare (A.7)] (A.14) 
 
and so (A.13) may be written 
 

( ) ( ) (1D b g H Dg−=o )  (A.15) 
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with 
 

( ) (1
01 .H DIAG h X−

− = )β  (A.16) 
 
Moreover, 
 

( )
( )

( )

2
1

2

2xmq q
m

D b g
D b g

D b g

⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

o
o M

o

⎥
⎥

)

 (A.17) 

 
and (2

iD b go  has (j,k) element 
 

( ) ( )
( ) ( )( )( )

2 2

2

/

/ /
i i j kjk

i i j k i i j i k

D b g b g t t

b g g t t b g g t g t

⎡ ⎤ = ∂ ∂ ∂⎣ ⎦
′ ′′= ∂ ∂ ∂ + ∂ ∂ ∂ ∂

o o

o o /
 (A.18) 

 
with all evaluations at . 0t t=
 

Then the (j,k) element of [ ] ( )21 1 T D b gΛ ⊗ o  is  
 

[ ] ( ){ } ( )
( )( )( )

2 21 1 /

/ /

T
ii i i j k

jk i

ii i i j i k
i

D b g b g g t t

b g g t g t

′Λ ⊗ = Λ ∂ ∂ ∂

′′+ Λ ∂ ∂ ∂ ∂

∑
∑

o o

o .

)

)

 (A.19) 

 
Hence 
 

[ ] ( ) ( )( ) ( ) ( ) (2 2
1 x

1 1 1 1
T

T T

q q
D b g H D g Dg G Dg−⎡ ⎤Λ ⊗ = Λ ⊗ + Λ⎣ ⎦o  (A.20) 

 
where use has been made of (A.14), 
 

( ) ( ) (1 1
0G DIAG b g DIAG b b h X− −⎡ ⎤′′ ′′ ′= = β⎣ ⎦o o o  (A.21) 

 
and all quantities are evaluated at . 0t t=
 
Substitution of (A.15) and (A.20) into (A.12) yields 
 

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )
0 0 1

21
0 02 1 x

1 1 1

1 1

T TT T

T
T T

q q

b g t b g t t t Dg H

t t H D g Dg G Dg t t

−

−

Λ = Λ + − Λ
⎧ ⎫+ − Λ ⊗ + Λ −⎨ ⎬
⎩ ⎭

o o

 (A.22) 
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Appendix B 
Evaluation of ( )jE b tβ

⎡ ⎤′⎣ ⎦  and  ( )jVar b tβ
⎡ ⎤′⎣ ⎦

 
Recall the log-likelihood of β  (5.6), which is seen to be the sum of q independent log-
likelihoods.  The j-th of these is the log-likelihood of ( )jt β , and is 
 

( ) ( )0 0j j j jw t n b tβ − βo  (B.1) 
 
Denote this by ( )( jtπ )β .  Then, with ( )jt β  written as just jt , 
 

( )exp , normalising constant.j jt dt Kπ =∫  (B.2) 
 
It will be convenient to suppress the subscript j temporarily.  Then consider the 
quantity 
 

( ) ( ) ( ) ( ) ( )
( ){ }

0 0

0 0

/ exp exp

.

d dt t d t w n b t t dt

K w n E b tβ

′π = − π⎡ ⎤⎣ ⎦
′= − ⎡ ⎤⎣ ⎦

∫ ∫  (B.3) 

 
Now integration of the left side by parts gives 
 

( ) ( ) ( )/ exp exp |t Td dt t dt t ∈π = π∫  (B.4) 
 
where T is the boundary of the range of integration.  If the likelihood of ( )jt β  is zero 
on the boundary of its support, then (B.4) reduces to zero, and (B.3) yields (with 
subscript j reinstated) 
 

( ) 0 0/j jE b t w nβ
⎡ ⎤′ =⎣ ⎦ .j  (B.5) 

 
Now repeat this reasoning with (B.3) replaced by the following: 
 

( ) ( ) ( ) ( ){ } ( )
( ) ( )

22 2 2
0 0 0

0

/ exp / / exp

/ .

n d dt t dt w n b t b t n t

V b t E b t n

−

β β

′ ′′π = − − π⎡ ⎤⎣ ⎦
′ ′′= −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∫ ∫ 0  (B.6) 

 
If the first derivative of the likelihood of ( )jt β  is zero on the boundary of its support, 
then (B.6) reduces to zero, and so 
 

( ) ( ) 0/j jVar b t E b t nβ β
⎡ ⎤ ⎡ ⎤′ ′′=⎣ ⎦ ⎣ ⎦ .j  (B.7) 
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Companion GLM 
 
The prior (5.97) associated with the companion GLM  discussed in Section 5.5.3 
contains the following member in place of (B.1) from the prior of G:   

*G

 
( ) ( )* * 1

0 0 .j j j jw t n b t−− β + βo  (B.8) 
 
The reasoning from (B.2) to (B.7) may be repeated with (B.1) replaced by (B.8), 
yielding the following results: 
 

( ) ( )1 *
0 0/j j

*
jE b t w n−

β
⎡ ⎤′ =⎢ ⎥⎣ ⎦

 (B.9) 

 

( ) ( ) ( ) ( )1 1
0/jVar b t E b t n− −

β β
⎡ ⎤ ⎡ ⎤′ ′′= −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

* .j j  (B.10) 
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Appendix C 
Bayesian revision of mean and covariance 

 
This appendix computes quantities required in Section 5.5.2. 
 
C.1 Variance of ( )1h M− β  

 
By (5.1), 
 

( ) ( )
( )

1

1
0 ,

Var h M Var b t
N DIAG E b t

−
β β

−
β

′⎡ ⎤β = ⎡ ⎤⎣ ⎦⎣ ⎦
′′= ⎡ ⎤⎣ ⎦

 (C.1) 

 
by (B.7). 
 
Express this in the form: 
 

( ) ( )1 1
0Var h M N DIAG E− −

β ⎡ ⎤ ββ = α ν⎡ ⎤⎣ ⎦⎣ ⎦  (C.2) 
 
with 
 

( ) 1b b −′′ ′α = o  (C.3) 
 

( ) ( )1b t h M−′ν = = β . (C.4) 
 
Now take the Taylor series expansion (2.14) of  about ( )E α ν⎡⎣ ⎤⎦

( )1
0 ,E h M−⎡ ⎤ν = ν = β⎣ ⎦  as defined by (5.46): 

 
( ) ( ) ( ) (

( )
)

( ) ( )

11
0 2

11
0 0 02

E PRINVar h M

N DIAG E

−

−

⎡ ⎤ ′′⎡ ⎤α ν = α ν + 0β α ν⎡ ⎤⎣ ⎦ ⎣ ⎦⎣
⎡ ⎤ ′′= α ν + α ν α ν⎡ ⎤⎣ ⎦⎣ ⎦

⎦

0

 (C.5) 

 
by (C.2). 
 
Thus 
 

( ) ( ) ( )11
01E N A

−− ′′α ν = − α ν⎡ ⎤⎣ ⎦  (C.6) 
 
where 
 

( )0 .A DIAG′′ ′′= α ν  (C.7) 
 
Substitution of (C.6) in (C.2) gives 
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( ) ( ) 11
0Var h M N A A−−

β ′′⎡ ⎤β = −⎣ ⎦  (C.8) 
 
where 
 

( )0 .A DIAG= α ν  (C.9) 
 

C.2 Mean of ( )1h X− β  
 
By (3.2), (4.1) and the fact that ( ) ( )b′µ θ = θ ,  
 

[ ] (
( )
1|E Y h X− )β = β

= ϕ ν
 (C.10) 

 
with 
 

1 1 .h XM h− −ϕ = o o  (C.11) 
 
The unconditional mean of Y is then given by 
 

[ ] [ ] ( )|E Y E Y Eβ β= .β = ϕ ν  (C.12) 
 
Taking the Taylor series expansion (2.13) of [ ]iE Y  gives 
 

[ ] ( ) [ ] ( )
( ) ( )

21
0 2

21
0 02 /

i i i

i j i
j

E Y Tr Var D
Var

⎡ ⎤= ϕ ν + ν ϕ ν⎣ ⎦
⎡ ⎤=

0
2.jϕ ν + ν ∂ ϕ ν ∂ν⎣ ⎦∑  (C.13) 

 
The second derivative is evaluated in Appendix D, and the variance in 
Appendix C.1.  Substitution of (C.8) and (D.3) into (C.13) gives 
 

[ ] ( ) ( ){ } ( )

( ){ } ( ) {
1
2

111
0 02 1

111
02 1

1

...

i i i

T

i
i

}

E Y H XM H N A

H XM H N A A

−−
−

−−
−

′ ′′ ′′= ϕ ν + −

⎡ ⎤′′ ′ ′′+ −⎣ ⎦

A

ν

ν

η

η

 (C.14) 

 
where 
 

( )0H DIAG h′ ′=  (C.15) 
 

( )0H DIAG h′′ ′′=  (C.16) 
 

( ) ( ) ( )1
01H DIAG h−

−
′′ =  (C.17) 

( ) ( ) ( )1
01H DIAG h−

−
′′′′ =  (C.18) 
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Xη = β , as defined in Appendix D, and 0 0Xη = β , { }...

i
 denotes the i-th row 

of the matrix argument and { }  denotes the transpose of that row. ... T

i

 
C.3 Covariance of ( )1h X− β  

 
By (C.10), 
 

( ) ( )
( ) [ ] ( )

1

0 0
T

Var h X Var

D Var D

−⎡ ⎤β = ϕ ν⎡ ⎤⎣ ⎦⎣ ⎦
= ϕ ν ν ϕ ν⎡ ⎤⎣ ⎦

 (C.19) 

 
to first approximation, where Dϕ  denotes the Jacobian matrix of ϕ .  By 
(D.2), 
 

( ) ( )
1

0 1D H XM −
−′ϕ ν = H ′

1− ′

. (C.20) 
 
Substitution of (C.8) and (C.20) into (C.19) gives  
 

( ) ( ) ( ) ( ) ( )
11 1

01 1

T
Var h X H XM H N A AH XM H−− −

− −′ ′ ′′ ′⎡ ⎤β = −⎣ ⎦  (C.21) 
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Appendix D 
Derivatives of ϕ  

 
This appendix calculates the first and second derivatives of the function ϕ  introduced 
in (C.11).  The i-th component of ( )ϕ ν  is 
 

( ) ( )1
i ik

k

h r h− ⎛
k
⎞ϕ ν = ν⎜

⎝ ⎠
∑ ⎟  (D.1) 

 
where  is the (i,k) element of ikr 1R XM −= . 
 
Then 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

/

by C.10

i j ik k ij j
k

i ij j

h r h r h

h r h

−

−

⎛ ⎞′ ′∂ϕ ν ∂ν = ν ν⎜ ⎟
⎝ ⎠

′ ′= η ν ⎡ ⎤⎣ ⎦

∑
   (D.2) 

 
with η  denoting the linear predictor Xβ . 
 
A second differentiation gives 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 22 2 1 1/ .i j i ij j i ij jh r h h r h− −′ ′′ ⎡ ⎤′′ ′∂ ϕ ν ∂ν = η ν + η ν⎣ ⎦  (D.3) 
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Appendix E 
Bayesian revision of companion GLM 

 
In the revision of G, Appendix A was used to convert (5.9) into the form (5.25).  The 
present appendix will parallel Appendix A, but subject to the replacements (5.98), in 
order to obtain a Taylor expansion of (5.99). 
 
E.1 Expansion of  ( )* 1−T

on b to
 
Note that 
 

( ) ( ) ( )( )
( )( )( ) ( )

1 1
0 0

11 1
0

1/

1/ by 5.1

b t b b t

b b b h M

− −

−− −

′ ′= β

′ ′= β ⎡ ⎤⎣ ⎦

o o

o o o
 

( ) (1*
01/ h M

−
= )β  (E.1) 

 
by (4.8). 
 
Also 
 

( ) ( ) ( ) ( ) ( )11 1 1
0 .b t b b h M−− − −⎛ ⎞′′ ′′ ′= 0β⎜ ⎟

⎝ ⎠
o o  (E.2) 

 
Therefore, (A.8) is replaced by: 
 

( ) ( ) ( ) ( ) ( )
( ) ( )

1* 1 * 1 * *
0 0 0 0 0

* *1
0 0 0 02

1/TT T

T

n b t n b t t t N h M

t t N B t t

−− −
0

⎡ ⎤= + − β⎢ ⎥⎣ ⎦
+ − −

 (E.3) 

 
with 
 

( ) ( ) ( )1* 1 1
0

* *
0 0.

B DIAG b b h M
N DIAG n

−− −′′ ′= 0β
=

o o  (E.4) 

 
E.2 Expansion of  ( )1 ΛT g to

 
This is just as in Appendix A.2 but with y replaced by 1. 
 

E.3 Expansion of  ( )1−ΛTy b g to o
 
Relation (A.13) is replaced by: 
 

( ) ( ) (1 1D b g DIAG b g Dg− −⎡ ′= ⎢⎣ ⎦
o o )⎤

⎥  (E.5) 
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Now 
 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

-1 1 1

11 1 1 *

b 1/

1/ 1/

g t b b b

b b b h X h X

− −

−− − −

⎛ ⎞′ ′ ′= θ = θ⎜ ⎟
⎝ ⎠

⎛ ⎞′′= β = β⎜ ⎟
⎝ ⎠

o o

o o o
 (E.6) 

 
where the successive equations make use of (5.3), (4.3) and (4.8).   Therefore 
 

( ) ( ) ( ) (1-1 *
0b 1/g t h X

−⎛ ⎞′ = )0β⎜ ⎟
⎝ ⎠

o  (E.7) 

 
Substitution of this into (E.5) gives the following result corresponding to 
(A.15): 
 

( ) ( ) (
1

1 *
1D b g H Dg

−
−

−
⎛ ⎞′ ⎡ ⎤=⎜ ⎟ ⎣ ⎦⎝ ⎠

o )

)

 (E.8) 

 
where 
 

( ) ( ) (1* *
01H DIAG h X

−

− = β  [compare (A.16)] (E.9) 
 
The reasoning from (A.17) to (A.22) holds in the companion case except that 
G is replaced by 
 

( ) ( ) ( ) ( ) ( )1* 1 1 1
0 0G DIAG b g t DIAG b b h X−− −⎡ ⎤⎛ ⎞ ⎡′′ ′′ ′= = − ⎤β⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣⎣ ⎦

o o o
⎦

 (E.10) 

 
This then yields the following in place of (A.22): 
 

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( )}( )

1
1 1 *

0 0 1

1
* 21

02 1 x

*
0

1

.

T TT T

T
T

q q

T

y b g t y b g t t t Dg H

t t H y D g

Dg DIAG G y Dg t t

−
− −

−

−

−

Λ = Λ + −

⎧⎛ ⎞+ − Λ ⊗⎜ ⎟⎨⎝ ⎠⎩
⎡ ⎤+ Λ −⎣ ⎦

o o yΛ

 (E.11) 

 
E.4 Counterpart to Section 5.5.1 

 
The current appendix develops for the companion GLM  the reasoning 
given in Section 5.5.1 for G.   

*G

 
Corresponding to (5.25) and (5.26): 
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[ ] ( ) ( ) ( ) ( ){
( )( ) ( ) ( )

* * * * *1
0 0 0 02

1
* 2

01

| ,

1 1

T T T

T

L y t t a t t N B Dg DIAG G y Dg

H y D g t t
−

−

⎡ ⎤β Λ = − + − + Λ⎣ ⎦
⎫⎪⎡ ⎤⎡ ⎤+ Λ − ⊗ −⎬⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎪⎭

 (E.12) 

where 
 

( ) ( ){ } ( ) ( )( ) 11* * * * *
0 0 0 11/ 1Ta N h M w Dg H y

−−

−
⎡ ⎤⎡ ⎤= β − + Λ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. (E.13) 

 
Now fix the arbitrary parameter 0β  by setting  
 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1* *
0

1

1/ 1/

by E.1

h M E h M

E b t

− −

β

−
β

⎡ ⎤β = β⎢ ⎥⎣ ⎦
⎡ ⎤′= ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

 

( ) ( )1* *
0 0 by B.9 .N w

−
= ⎡ ⎤⎣ ⎦  (E.14) 

 
This reduces (E.13) to: 
 

( ) ( )( ) 1
* *

1 1 .Ta Dg H y
−

−
⎡= Λ −⎢⎣ ⎦

⎤
⎥

2

1 *

 (E.15) 

 
Now diagonalise the matrix within the braces in (E.12): 
 

( ) ( )

( )( ) ( )

* * * * * *
0 0

1
*

1 1 1

TT

T

P D P N B Dg DIAG G y Dg

H y D g
−

−

⎡ ⎤= + Λ⎣ ⎦
⎡ ⎤⎡ ⎤+ Λ − ⊗⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 (E.16) 

 
with  diagonal and orthogonal. *D *P
 
Then applying to (E.12) the same reasoning as led from (5.25) to (5.36), one 
obtains 
 

( ) ( )* * * *
1 1| , T TL y w u n b−β Λ = − + u

0

 (E.17) 
 
where 
 

( ) ( )( ) ( )( )
1

* * * * 1
1 11 1 1/Tw P Dg H y N b b u

−
−

−
⎡ ⎤ ⎡ ⎤′= − Λ − + ⎣ ⎦⎢ ⎥⎣ ⎦

o  (E.18) 

( ) ( )
1

* * 1
1N D DIAG b u

−
−⎡ ′′= ⎢⎣ ⎦

0
⎤
⎥

*
1

 (E.19) 

*
1n VEC N=  (E.20) 

 
* * .u P t=  (E.21) 
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