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ABSTRACT 
 

In this paper we select various practically tractable copulas and demonstrate their use in 

practical circumstances under the current Australian regulatory framework. The copulas 

under discussion include Gaussian copula, t copula, Cook-Johnson copula, and a few 

Archimedean copulas. We also examine the feasibility of the simulation procedures of 

the copulas in practice. We set up two hypothetical examples, which are based on real life 

claims features. In particular, we propose the incorporation of a copula into the traditional 

collective risk model. We demonstrate that copulas are a set of flexible mathematical 

tools for modelling dependency, in which the extreme percentiles of the aggregate 

portfolio value vary considerably for different choices of model copulas. We also show 

that some measures of association have better properties than the correlation coefficient, 

which is a common measure in practice.  
 

Relevant legislation and preliminary information are introduced in Sections 1 and 2. The 

general definition of a copula is set out in Section 3. Some elementary measures of 

association between pairwise random variables, for computing the parameters of the 

copulas, are described in Section 4. Different types of copula and simulation techniques, 

with some examples for illustration, are introduced in Section 5. Examples of practical 

applications on assessing the uncertainty of some general insurance liabilities are 

provided in Sections 6 and 7. Final discussion is set forth in Section 8.  
 

Keyword: Copula, dependency, multivariate, simulation, line of business, liability, 

uncertainty, percentile, margin 

   



1. INTRODUCTION 

 

Australian Prudential Standard GPS 210 requires an allowance for diversification benefits, 

which arise from the underlying dependency structures between different lines of 

business for an insurer. The liabilities of different lines can be conceived as multivariate 

random variables. Furthermore, the Australian solvency benchmark for probability of 

ruin is 0.5% on a one-year time horizon. Appropriate dependency modelling is hence 

essential for determining the mandatory solvency level of reserves.  

 

Copulas have been known and studied for more than 45 years. These mathematical tools 

have remained largely in theoretical development and only until recently experimental 

applications have been tested in some practical financial areas. An example is the VaR 

(Value at Risk) calculation by Micocci and Masala (2004), in which the multinormal 

assumption is dropped and the dependency between the extreme returns of different 

stocks in a portfolio is more properly accommodated. The application in general 

insurance is still in its infancy, despite the general familiarity with DFA (Dynamic 

Financial Analysis) in dealing with risk concentration. As the types of copula are many 

and varied, this paper identifies expedient copulas and applicable simulation techniques 

for common general insurance practice under the current legislative environment in 

Australia. 

 

We broadly differentiate two sources of dependency between the liabilities of different 

lines of business (refer to Taylor and McGuire (2005) for a similar discussion): 

 

Inherent dependency – This component is inherent in the claims run-off process. Driven 

by similar factors such as inflation, interest rate, exchange rate, economic cycles, and 

weather patterns, the number of unreported claims or the claim sizes of different lines 

may move in the same direction to some extent. In practice, the volume of the past claims 

data is usually insufficient for quantifying this dependency with satisfactory statistical 

confidence. Due judgement is integral. 
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Other dependency – This component relates to the practices implemented by the insurer 

across its various lines of business. A few examples are: similar reserving methods and 

judgement are applied to different lines; the claims department adopts a particular 

mechanism of setting up the case estimates for all lines; the claims management 

procedures are similar for some lines; and there is a consistent data system in the 

company. This dependency cannot be readily quantified and again appropriate judgement 

is necessary. 

 

All the calculations were carried out through Excel spreadsheets with VBA (Visual Basic 

for Applications) coding and the software Mathematica. Some details regarding the use 

of Excel functions and Mathematica coding are provided in the appendices. 

 

The main references of the contents of this chapter are Joe (1997), Nelsen (1999), and 

Embrechts et al (2001), which provide elaborate descriptions and proofs about the 

dependency concepts.  
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2. NOTATION, TERMINOLOGY, AND PRELIMINARIES 
 

2.1 Notation 
 

For the notation used in this paper, the superscripts generally refer to the lines of business 

concerned, e.g. ,X Yρ  represents Pearson’s correlation coefficient between X  and , 

which are say the total outstanding claims liabilities of two different lines. The bracket in 

the subscript also indicates a particular line of business, e.g. 

Y

( )iX  may represent the total 

outstanding claims liability of line i.  
 

2.2 Terminology 
 

The terms ‘marginal univariate probability distribution’ and ‘marginal’ are used 

interchangeably. The terms ‘dependent’, ‘related’, ‘associated’, and ‘multivariate’ have 

the same meaning in general. The increasing dimensions are described as ‘univariate’, 

‘bivariate’ (or ‘pairwise’), and ‘multivariate’ (or ‘m-variate’ for m dimensions). The 

abbreviations ‘pdf’ and ‘cdf’ stand for ‘probability density function’ and ‘cumulative 

distribution function’ respectively. ‘Multinormal’ is the same as ‘multivariate normal’, so 

too ‘binormal’ and ‘bivariate normal’. 
 

2.3 Preliminary Information 
 

Suppose  and Y  are two associated random variables that are continuous. Their joint 

bivariate cdf is 

X

( ) ( )yYxXyxF YX ≤≤= ,Pr,, . Their marginal univariate cdfs are 

 and ( ) ( )xXxFX ≤= Pr ( ) ( )yYyFY ≤= Pr  respectively, in which ( ) ( )yxFxF YXyX ,lim ,∞→
= , 

, ( ) ( )yxFyF YXxY ,lim ,∞→
= ( ) 10 ≤≤ xFX , and ( ) 10 ≤≤ yFY . (Only strictly increasing 

univariate cdfs are considered in this chapter.) These properties can be extended similarly 

to the multivariate case with more than two dimensions. In addition, a sample of  can 

be generated by simulating a sample of 

X

( )~ U 0,1U , where ( )U 0,1  is standard uniform, 

and then using the inverse ( )1
XF U− .  
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3. DEFINITION OF COPULA 

 

A copula is a mathematical function that joins univariate probability distributions to form 

a multivariate probability distribution. Sklar (1959) proved that for a multivariate 

distribution of m dimensions with continuous marginals, there exists a unique copula 

function C  such that: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )1 2 1 2, ,..., 1 2 1 2, ,..., , ,...,
m mX X X X X Xm mF x x x C F x F x F x=  ,    

where ( )iX ’s are related random variables that are continuous,  is the joint 

multivariate cdf, 

( ) ( ) ( )1 2, ,..., mX X XF

( )iXF ’s are the marginal univariate cdfs, and C  is the unique copula 

function. 

 

From Sklar’s theorem above, for every set of continuous multivariate random variables 

with a particular dependency structure, there is a unique copula function that links the 

marginal univariate cdfs to form the joint multivariate cdf. This feature allows separate 

consideration between selecting the marginals and choosing the dependency structure, 

and so offers tremendous flexibility in modelling multivariate random variables. This 

flexibility contrasts with the traditional use of the multinormal distribution, in which the 

dependency structure is restricted as the linear correlation matrix and the marginals as 

normally distributed. 

 

There is a host of types of copula. They describe both the shape and strength of the 

relationships between dependent random variables. They possess varying characteristics, 

such as different tail dependence (refer to Subsection 4.4), and positive or negative 

association. The choice of copula can be tailored to a particular situation, e.g. if two lines 

of business are not related except for the right tails of their underlying liability 

distributions (say, for catastrophic events), some copulas with tail dependence can be 

used to model these two lines properly, while simple linear correlation cannot capture this 

feature. 
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4. MEASURES OF ASSOCIATION 
 

This section sets out several fundamental measures of association between pairwise 

random variables. These measures are required to compute certain parameters of the 

copulas discussed in the next section. For the m-variate case, a mm ×  matrix of pairwise 

measures can be constructed unless otherwise specified. Suppose X  and  are two 

associated random variables that are continuous, 

Y

( )xFu X= , ( )yFv Y= , and ( ),i iX Y  

represent the ith pair of (independent) observations of ( ),X Y . There are a total of n pairs 

of observations. Let C  be the copula between  and Y . Suppose C  is also the copula 

between two related random variables  and , in which 

X

A B ( )1,0U~A  and . ( )1,0U~B
 

4.1 Kendall’s Tau ( )τ  

 

According to Nelsen (1999), Kendall’s Tau between  and Y  is defined as: X

( )( )( ) ( )( )( ),
1 2 1 2 1 2 1 2Pr 0 Pr 0X Y X X Y Y X X Y Yτ = − − > − − − < ( )( ) 1,4 −Ε= BAC  ,  

which is estimated by ( )( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−∑

< 2
       sign

n
yyxx

ji
jiji  .     

 

Nelsen (1999) states that τ  ( 11 ≤≤− τ ) is invariant under strictly increasing linear or 

non-linear transformations of  and Y , i.e. X ( ) ( ), ,f X g Y X Yτ τ= , where f  and  are strictly 

increasing functions. As such, this measure is unaffected by changing the scale of the 

marginals. The overall association between  and Y  is positive if 

g

X 0τ >  and negative if 

0τ < . 
 

Nelsen (1999) also states that ( ),i iX Y  and ( ),j jX Y  (for i ≠ j) are described as concordant 

if  when  (or  when ) and as discordant if  when 

 (or  when ). Thus, 

iX X< j j j j j

j j j

iY Y< iX X> iY Y> iX X<

iY Y> iX X> iY Y< τ  is equal to the probability of concordance 

minus the probability of discordance for  ( ),i iX Y  and ( ),j jX Y . 
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Kendall and Gibbons (1990) state that when the number of pairs of observations exceeds 

30 (i.e. n > 30), the hypothesis 0H : 0τ =  can be tested by using the test statistic 

( ) ( )( ) ( )1,0~5221ˆ3 Ν+− nnnτ , where τ̂  is the estimator of τ  (a two-sided test). 

 

4.2  Spearman’s Rho ( )sρ  

 

According to Nelsen (1999), Spearman’s Rho between  and Y  is defined as: X

( )( )( ) ( )( )( )( ) ( ) ( ) (
( ) ( )

)
BA
BAABYYXXYYXXYX

s VarVar
0Pr0Pr3 31213121

, ΕΕ−Ε
=<−−−>−−=ρ  ,  

which is estimated by Pearson’s correlation coefficient (refer to Subsection 4.3) between 

 and . ( )ixRank ( )iyRank

 

Nelsen (1999) states that sρ  ( 11 ≤≤− sρ ) is invariant under strictly increasing linear or 

non-linear transformations of X  and , i.e. Y ( ) ( ) YX
s

YgXf
s

,, ρρ = , where f  and g  are 

strictly increasing functions. This measure is thus unaffected by changing the scale of the 

marginals. The overall association between  and Y  is positive if X 0sρ >  and negative if 

0sρ < . 

 

In effect, sρ  is equal to the probability of concordance minus the probability of 

discordance for ( ),i iX Y  and ( ),j kX Y  (for unequal i ,  j , and k). Furthermore, as stated in 

Nelsen (1999), some relationships between τ  and sρ  are 1231 ≤−≤− sρτ , 

, and ( )( ) ( sρτ +≤+ 121 2 ) ( )sρτ −≤− 121 2 . Kendall and Gibbons (1990) mention that in 

practice, when neither τ  nor sρ  is too close to unity, sρ  is about 50% greater than τ  

in magnitude. 
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Kendall and Gibbons (1990) also note that for n > 35, the hypothesis 0H : 0sρ =  can be 

tested by using the test statistic ( )1,0~1ˆ Ν−nsρ , where sρ̂  is the estimator of sρ  (a 

two-sided test). 

 

4.3 Pearson’s Correlation Coefficient ( )ρ  

 

Pearson’s correlation coefficient is a common statistical measure. Between  and Y , it 

is defined as: 

X

( )
( ) ( )

( ) ( ) ( )
( ) ( )

, Cov ,

Var Var Var Var
X Y X Y XY X Y

X Y X
ρ

Ε −Ε Ε
= =

Y
 , 

which is estimated by ( )( ) ( ) ( )∑∑∑
===

−−−−
n

i
i

n

i
i

n

i
ii yyxxyyxx

1

2

1

2

1

 ,  

where ∑
=

=
n

i
ix

n
x

1

1  and  ∑
=

=
n

i
iy

n
y

1

1 .         

    

The two associated random variables X  and Y  are said to be positively correlated if 

0>ρ , negatively correlated if 0<ρ , and uncorrelated if 0=ρ . It is well-known that 

independence implies zero correlation, but the reverse is not true unless the probability 

distribution is bivariate normal. As discussed in Watson (1983), the two hypotheses 

0H : 0ρ =  and 0H : kρ =  (for 11 <<− k  and 0≠k ) can be tested by computing the test 

statistics ( ) ( ) 2,1
22 F~ˆ1ˆ2 −−− nn ρρ  (a one-sided test) and ( ) ( )( ) 2ˆ1ˆ1ln ρρ −+  

( ) ( )( ) ( )(  31  ,  211ln ~ −−+Ν nkk )  (a two-sided test) respectively, where ρ̂  is the 

estimator of ρ . 

 

This linear correlation measure ( 11 ≤≤− ρ ) is the most popular and well-known measure 

between pairwise random variables. It is frequently adopted in assessing the relationships 

between different lines of business, such as the calculations in Bateup and Reed (2001) 

and in Collings and White (2001). Despite its simplicity and plain rationale, Embrechts et 

al (2001) note that ρ  is simply a measure of the dependency of elliptical distributions, 
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such as the binormal distribution (i.e. the marginals are normally distributed, linked by 

the Gaussian copula (refer to Subsection 5.3)). Only computing ρ  between related 

random variables and ignoring other aspects (e.g. tail dependence as discussed in 

Subsection 4.4) of the dependency structure are equivalent to implicitly assuming all the 

marginals are elliptically distributed and of the same type. It is proverbial that many lines 

of business have right-skewed liability distributions whereas elliptical distributions are 

symmetric. Different lines of an insurer would also tend to have different liability 

distributions. Moreover, ρ  measures a linear relationship itself and does not capture a 

non-linear one on its own, as noted in Priest (2003). Consider a hypothetical case where 

 and . In this example, even though  and Y  are perfectly associated, 

it can be shown that 

2Y X= ( 1,0~ ΝX ) X

( ) ( ) ( ) ( )3 2Cov , 0X Y X X X= Ε −Ε Ε =  and so , i.e. no 

correlation is detected. These properties constitute obvious limitations for modelling the 

dependency structure. 

, 0X Yρ =

 

In contrast to τ  and sρ , Melchiori (2003) comments that ρ  is invariant only under 

strictly increasing linear transformations of X  and , but is variant under non-linear 

transformations. Any non-linear change of the scale of the marginals thus impinges on 

this measure. This feature adds another layer of inflexibility.  

Y

 

Embrechts et al (2001) pinpoint that τ  and sρ  are more desirable than ρ  as a measure of 

association for non-elliptical distributions, in which ρ  is often misleading and 

inappropriate. Many general insurance liabilities have non-elliptical distributions that are 

right-skewed and so care is needed when ρ  is used due to simplicity in practice. 
 

4.4 Tail Dependence ( upperλ  and lowerλ ) 

 

As discussed in Joe (1997), upper tail dependence and lower tail dependence between  

and Y  are defined as follows: 

X

( )
u

uuCu
u −

+−
=

→ 1
,21lim

1upperλ  and ( )
u

uuC
u

,lim
0lower →

=λ  , 

in which upper0 1λ≤ ≤  and lower0 1λ≤ ≤  .  
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The variables X  and  have upper tail dependence if Y upper 0λ >  and have lower tail 

dependence if lower 0λ > . Upper tail dependence represents the association in the upper-

right-quadrant tail and lower tail dependence represents the association in the lower-left-

quadrant tail. There is no upper tail dependence if upper 0λ =  and there is no lower tail 

dependence if lower 0λ = . The two measures upperλ  and lowerλ  are computed from the 

selected copula function with its parameters estimated. 

 

4.5 Empirical Measurement  
 

In practice, there are often insufficient data for estimating the measures of association, e.g. 

computing τ  for inherent dependency between the outstanding claims liabilities of two 

lines of business. The assessment hence remains largely judgemental, and can become 

more feasible only when more data are collected in the future or when an insurer has a 

long history and keeps a good track of relevant claims data records. On the other hand, 

determination of other dependency is likely to continue to rely heavily on practical 

judgement.  
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5. TYPES OF COPULA 
 

This section presents our selection of a few types of serviceable copula that possess 

varying modelling flexibility and reasonable tractability in practical situations. These 

copulas include Gaussian copula, t copula, Cook-Johnson copula, and a group of flexible 

copulas called Archimedean copulas. Some general properties of a copula are explained 

at the outset. The definition, the copula fitting technique, and the simulation procedure of 

each type of copula are set forth, in which different inferences can be drawn from the 

simulated samples. Examples of application to two hypothetical lines of business are 

given as each type of copula is introduced. 
 

Suppose ’s are continuous m-variate random variables,  is the joint m-

variate cdf, ’s are the marginal univariate cdfs, and 

( )iX
( ) ( ) ( )mXXXF ,...,, 21

( )iXF ( ) ( ) ( )( )iXi xFu
i

= . Let C  be the 

underlying m-variate copula. There are in total ( ) 21−mm  pairs of bivariate random 

variables. Some further details regarding  and  are provided in 

Appendix I. 

( ) ( ) ( )mXXXF ,...,, 21 ( )iXF

 

5.1 General Properties 
 

The m-variate copula  can be expressed in the following forms: C

( ) ( )( )
( ) ( )( )

( ) ( )( )( )   ,  ...  ,    ,   21 21 mXXX xFxFxFC
m ( ) ( ) ( )( )   ,  ...  ,    ,   21 muuuC=  

( ) ( ) ( ) ( ) ( ) ( )( )   ,  ...  ,    ,   21,...,, 21 mXXX xxxF
m

= ( ) ( ) ( ) ( ) ( ) ( )( )   ,  ...  ,    ,   Pr 2211 mm xXxXxX ≤≤≤=  , 

where, as discussed in De Matteis (2001), ( ) ( ) ( )( )muuuC  , ... ,  , 21  is a strictly increasing 

function of each , with ( )iu ( ) ( ) ( )( ) 1 , ... ,  , 0 21 ≤≤ muuuC  and ( )( ) ( )ii uuC =1 , ... , 1 ,  , 1 , ... , 1 .  

 

Nelsen (1999) states that the copula becomes ( ) ( ) ( )( ) ( ) ( ) ( )mm uuuuuuC  ...   , ... ,  , 2121 =  if and 

only if the ’s are independent. De Matteis (2001) states that C  is invariant under 

strictly increasing transformations of ’s. For example, let ’s be strictly increasing 

( )iX

( )iX ( )if
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functions of ’s, then the copula between ’s is the same as the copula between ( )iX ( )iX

( ) ( )( )ii Xf ’s. 

 

Moreover, according to Nelsen (1999), upper and lower bounds for C  are derived as 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )mumm uuuuuCmuuu ,...,,min,...,,0 , 1...max 212121 ≤ ≤+−+++ . The bounds 

are called Fréchet-Hoeffding bounds. The bounds are copulas themselves, except for the 

lower bound when the dimension is greater than two. According to Embrechts et al 

(2001), for the bivariate case with two random variables  and , the copula 

between them is the upper bound 

( )1X ( )2X

( ) ( )( )21 ,min uu  if and only if . In 

this case,  and  are said to be comonotonic. On the other hand, the copula 

between them is the lower bound 

( ) ( ) ( ) ( ) 12121 ,, == XX
s

XX ρτ

( )1X ( )2X

( ) ( )( )0 , 1max 21 −+uu  if and only if 

, and  and  are then countermonotonic. Comonotonicity 

and countermonotonicity are extreme cases of concordance and discordance respectively. 

( ) ( ) ( ) ( ) 12121 ,, −== XX
s

XX ρτ ( )1X ( )2X

  
In addition, as noted in Clemen and Reilly (1999), the copula density function is defined 

as ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )m

m
m

m uuu
uuuC

uuuc
∂∂∂

∂
=

...
,...,,

,...,,
21

21
21 . The joint multivariate pdf is then derived as 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )mXXXmmXXX xfxfxfuuucxxxf
mm

 ...   ,...,,,...,, 212121,...,, 2121
= , in which 

( ) ( )( )iX if x ’s are the marginal univariate pdfs. 

 

5.2 Simulation 
 

Embrechts et al (2001) and De Matteis (2001) describe the general procedure of 

simulating multivariate random variables as follows, which is inefficient in many cases: 

(1) Define ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1,...,1,,...,,,...,, 2121 iii uuuCuuuC =  for i = 1, 2, … , m. 

(2) Derive ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( ) ( )(
( ) ( ) ( )

)
121

1211
1

121

21
1

121

...
,...,,

...
,...,,

,...,,

−

−−
−

−

−

−

∂∂∂
∂

∂∂∂
∂

=

i

ii
i

i

ii
i

iii

uuu
uuuC

uuu
uuuC

uuuuC  for i = 1, 2, … , m. 
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(3) Simulate . Take ( ) (1 ~ U 0,1Q ) ( ) ( )11 QV = . 

(4) Simulate ( ) ( )2 ~ U 0,1Q . Compute ( ) ( ) ( ) ( )( )12
1

22 VQCV −= , using  from the 

previous step. 

( )1V

(5) Simulate . Compute ( ) (3 ~ U 0,1Q ) ( ) ( ) ( ) ( ) ( )( )213
1

33 ,VVQCV −= , using  and  from 

the previous steps.  

( )1V ( )2V

(6) Effectively, the computation is ( ) ( ) ( ) ( ) ( ) ( )( )121
1 ,...,, −
−= iiii VVVQCV . 

(7) Repeat (6) until a set of ’s is generated for i = 1, 2, … , m. ( )iV

(8) Compute  for i = 1, 2, … , m. Go to (3) to repeat the simulation. ( ) ( ) ( )( iXi VFX
i

1−= )
 

If the function inverses do not have a closed form, numerical root finding is necessary. 

For some of the copulas introduced in the following subsections, the simulation 

procedures are simpler and more efficient. Excel and Mathematica can be used to carry 

out all the simulations (refer to Appendix II for details). 

 

5.3 Gaussian Copula 

 

The Gaussian copula is the copula embedded in the standard multinormal distribution. 

Instead of being mixed with some normally distributed marginals to come up naturally 

with a multinormal distribution, it can be amalgamated with other marginal distributions.  

 

As stated in Embrechts et al (2001), the Gaussian copula is of the following form: 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( )mmm uuuuuuC 1
2

1
1

1
21  , ... ,  , ,...,, −−− ΦΦΦΦ=  , 

where  is the m-variate standard normal cdf and mΦ Φ  is the univariate standard normal 

cdf with the inverse .  1−Φ

 

Embrechts et al (2001) describe the following copula fitting technique. To fit the 

Gaussian copula, τ  ( 11 ≤≤− τ ) is estimated for each pair of random variables (refer to 

Appendix II for computing the sample τ ). Then r ( 11 ≤≤− r ) is computed for each pair 
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of random variables as ( )2sin πτ=r , and all the r’s calculated are used as the 

components of the dispersion matrix of the Gaussian copula. In effect, this dispersion 

matrix contains the parameters for the underlying dependency. The correlation coefficient 

ρ  is not estimated directly between each pair of random variables and then used as r 

because it only measures the linear relationship and the marginals may be non-elliptical. 

This point is discussed in Subsection 4.3. Clemen and Reilly (1999) note that the 

dispersion matrix must be positive definite and symmetric and adjustment is needed if the 

estimated matrix is not positive definite. Clemen and Reilly (1999) also note that sρ  

( 11 ≤≤− sρ ) can also be used and r is then computed as ( )6sin2 sr πρ= . 

 

After forming the dispersion matrix as stated above, m-variate random variables with the 

Gaussian copula can be simulated by the following steps, as detailed in Embrechts et al 

(2001): 

(1) Sample ( ) , , … , and  from the m-variate standard normal distribution 

with the estimated dispersion matrix as the linear correlation matrix, via the 

Cholesky decomposition process (refer to Appendix II).  

1Z ( )2Z ( )mZ

(2) Compute ( ) ( )( )ii ZV Φ=  for i = 1, 2, … , m. 

(3) Compute  for i = 1, 2, … , m. ( ) ( ) ( )( iXi VFX
i

1−= )
 

In some practical situations, there is more concern about the relationship between severe 

events than between normal events. In this regard, the Gaussian copula does not have 

upper tail dependence or lower tail dependence, i.e. upper lower 0λ λ= = . To illustrate this 

property, we set up an example of two lines of business. Suppose bivariate  

represent the outstanding claims liabilities of two lines of business. Their probability 

distributions are known to be 

( ) ( )( )1 2,X X

( ) ( )1 ~ LN 15 ,  0.2X  ( ( )( ) 056,335,31 ≈Ε X ; coefficient of 

variation ≈ 20%) and ( ) ( )6
2 ~ 44 ,  7.3 10X γ −×  ( ( )( ) 397,027,62 ≈Ε X ; coefficient of 

variation ≈ 15%). Suppose the dependency structure is unknown and modelled arbitrarily 

by the Gaussian copula, with estimated . Figure 1 at the end of this section ( ) ( ) 35.021 , =XXτ
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shows a scatter plot of  with 30,000 samples. The relationship weakens when 

moving to the northeast direction. Table 3 shows the sample  in the upper-right-

quadrant tail. The sample  decreases as the percentile above which the figure is 

calculated increases, and is much smaller than 0.35 in general. Furthermore, Figure 1 also 

exhibits the bivariate pdf of , in which the upper-right-quadrant tail does not 

have a concentrated density. The corresponding contours are also shown.  

( ) ( )( 1 2,X X )

)

( ) ( )1 2,X Xτ

( ) ( )1 2,X Xτ

( ) ( )( 1 2,X X

 

Accordingly, the high-end percentiles of the total outstanding claims liabilities of the two 

lines and so the necessary safety margin allowance may be underestimated if the 

Gaussian copula is assumed and there is no allowance for potential upper tail dependence. 

Despite the tractable mathematics of the Gaussian copula, its upper tail independence 

imposes a serious constraint on modelling any dependent tail events. 

 

5.4 t copula 

 

The t copula is the copula embedded in the multivariate central t distribution (with zero 

mean vector). This copula can be combined with marginal distributions other than 

Student’s t. As stated in Embrechts et al (2001), the t copula has the following form: 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( )mvvvmvm utututtuuuC 1
2

1
1

1
:21  , ... ,  , ,...,, −−−=  , 

where  is the m-variate central t cdf and  is the univariate Student’s t cdf with the 

inverse  (v is the degrees of freedom). 

:v mt vt

1
vt
−

 

According to Embrechts et al (2001), fitting the t copula is similar to fitting the Gaussian 

copula since both the multivariate t and multinormal distributions are elliptical 

distributions. (As noted in Lindskog (2000), the t copula converges to the Gaussian 

copula as v increases to infinity.) Accordingly, τ  ( 11 ≤≤− τ ) is estimated for each pair 

of random variables and r ( 11 ≤≤− r ) is computed as ( )2sin πτ=r , which is used to 

construct the dispersion matrix of the t copula. Again, the dispersion matrix must be 

positive definite and symmetric. The parameter v is estimated by carrying out the formal 
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tests described in Appendix III on different trial values of v, or it is determined by general 

judgement on the tail dependence property.  

 

After forming the dispersion matrix and deciding the value of v, m-variate random 

variables with the t copula can be simulated by the following steps, as detailed in 

Embrechts et al (2001): 

(1) Sample ( ) , , … , and  from the m-variate standard normal distribution 

with the estimated dispersion matrix as the linear correlation matrix, via the 

Cholesky decomposition process (refer to Appendix II).  

1Z ( )2Z ( )mZ

(2) Sample , where v is the degrees of freedom. 2~ vS χ

(3) Compute ( ) ( )( )SvZtV ivi =  for i = 1, 2, … , m (the same  for all i). S

(4) Compute  for i = 1, 2, … , m. ( ) ( ) ( )( iXi VFX
i

1−= )
 

The t copula has the same upper and lower tail dependence for each pair of random 

variables, as derived in Embrechts et al (2001): 

( )( ) ( )( )rrvtv +−+−== + 11122 1lowerupper λλ  , 

which tends to zero when v goes to infinity. 

 

In contrast to the Gaussian copula, the t copula has upper tail dependence for modelling 

dependent severe events. Figures 2 to 8 exhibit some scatter plots of bivariate  

for the same marginal distributions and the same estimated  as in the previous 

example, but modelled with the t copula and various values of v. For small values of v, 

the relationship remains significant even when moving to the northeast direction. 

Moreover, Table 3 shows that for small values of v the sample , not much smaller 

than 0.35 in general, only decreases slightly as the percentile considered increases. As 

shown in Figures 2 to 8, the concentration of the density of 

( ) ( )( )1 2,X X

( ) ( )1 2,X Xτ

( ) ( )1 2,X Xτ

( ) ( )( )1 2,X X  at their common 

upper tails decreases from a higher level towards the extent of the Gaussian copula as v 

increases. Figures 2 to 8 also present the contours, which show declining tail association 
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as v increases. Accordingly, upper tail dependence can be accommodated by selecting an 

appropriate value of v, apart from setting the value of τ. 

 

Table 4 presents our calculation of upperλ  (and so lowerλ ) for different values of τ  and v. 

As v increases to infinity, the t copula converges to the Gaussian copula and so upperλ  

tends to zero. Furthermore, even for zero (or negative) τ , there is still upper tail 

dependence for small values of v. This property is suitable for the situation when only the 

most severe events, not normal events, of different lines are related.  

 

There are two drawbacks of applying the t copula in modelling general insurance 

liabilities. First, like the Gaussian copula, the t copula is symmetric – as noted in Demarta 

and McNeil (2004), for the multivariate case, tail dependence of any corner of the t 

copula is the same as that of the opposite corner – and so upper lowerλ λ=  for each pair of 

random variables. There are many situations where asymmetry is more likely, e.g. large 

claims are related to some extent but small claims are not related or not as equally related. 

If the focus is only on severe large claims, however, the symmetric tail dependence at the 

lower end can be ignored as an approximation. Second, the t copula involves only one 

parameter v for all pairs of random variables, despite its allowance for a particular r for 

each pair. As noted in Venter (2003), the parameter v is involved in determining tail 

dependence for all pairs of random variables, and thus there is less modelling flexibility. 

 

5.5 Cook-Johnson Copula 

 

Studied by Cook and Johnson (1981), the Cook-Johnson copula has the following form: 

( ) ( ) ( )( ) ( ) ( ) ( )( )( )0  , 1... max,...,, 1
2121

θθθθ −−−− +−+++= muuuuuuC mm  . 

 

The term θ  is the sole parameter of the Cook-Johnson copula. Since there is only one 

parameter, the same extent of association has to be assumed for all pairs of random 

variables. This property is very restrictive. The copula is only useful for certain lines of 

business that have very similar levels of association. Wang (1998) states that the 

   
Page 17 of 68



association between each pair of random variables has to be positive, i.e. 0>τ . Cook and 

Johnson (1981) note that negative association can be allowed for by replacing  with ( )iu

( )( )iu−1  for some (but not all) i.  

 

To fit the copula, τ  ( 0 1τ< ≤ ) is estimated for each pair of random variables. Assuming 

all the estimated τ ’s are close, an average value of τ  is determined and used to obtain θ  

( 0>θ ), using the formula ( )ττθ −= 12  as stated in Wang (1998).  
 

After obtaining θ  as above, m-variate random variables with the Cook-Johnson copula 

can be simulated by the following steps, as detailed in Cook and Johnson (1981): 

(1) Sample  for i = 1, 2, … , m. ( ) ( )1exp~iA

(2) Sample ( )1 , 1~ θγB .  

(3) Compute ( ) ( )( ) θ11 −+= BAV ii  for i = 1, 2, … , m (the same  for all i). B

(4) Compute  for i = 1, 2, … , m. ( ) ( ) ( )( iXi VFX
i

1−= )
 

We find that the Cook-Johnson copula does not have upper tail dependence as upper 0λ = , 

but it has lower tail dependence as θλ 1
lower 2−= . This upper tail independence is inflexible 

for modelling the relationship between severe events. Figure 9 corresponds to Figure 1 

with the Gaussian copula replaced by the Cook-Johnson copula, whose lower tail 

dependence and upper tail independence are clearly reflected in the graphs. From Table 3, 

the sample  is even lower than that of the Gaussian copula across different 

percentiles. 

( ) ( )1 2,X Xτ

 

For the bivariate case, the Cook-Johnson copula is equivalent to the so-called Clayton 

copula, which is a type of the Archimedean copulas described in the next subsection. For 

the multivariate case, the Cook-Johnson copula is equivalent to one possible multivariate 

extension of the Clayton copula. 
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5.6 Archimedean Copulas 

 

The Archimedean copulas are a group of copulas that possess a number of similar 

characteristics. Many of them are flexible and tractable and furnish numerous structures 

for modelling different dependency properties. Starting from the bivariate case, the 

Archimedean copulas have the following basic form, as stated in Nelsen (1999): 

( ) ( )( ) ( )( ) ( )( )( )21
1

21 , uuuuC ϕϕϕ += −  , 

where ϕ  is a function called generator and 1ϕ−  is the corresponding inverse. 

 

As noted in Nelsen (1999), each type of Archimedean copula has a unique form of ϕ . In 

general, ϕ  is continuous and strictly decreasing with ( )1 0ϕ = . For practicality, we only 

consider strict generators with ( )0ϕ = ∞ , and the copulas are then called strict 

Archimedean copulas. Moreover, only the one-parameter family (for pairwise random 

variables) is discussed here.  

 

To fit the copula,  is estimated between bivariate ( ) ( )1 2,X Xτ ( )1X  and ( )2X . The parameter θ  

of the selected copula is then computed by exploiting the formula ( ) ( )∫ ′+=
1 

0 
41 dttt ϕϕτ  

as derived in Nelsen (1999), where ( )tϕ′  is the first derivative of ( )tϕ  with respect to t. 

 

Using the formula ( ) ( ) ( )ttttKC ϕϕ ′−=  as derived in Nelsen (1999), bivariate random 

variables with the selected Archimedean copula can be simulated by the following 

procedure, as detailed in Embrechts et al (2001): 

(1) Sample  and (~ U 0,1S ) ( )~ U 0,1Q . 

(2) Compute , in which ( )1
CT K Q−= 1

CK −  is the inverse of CK . This step may require 

numerical root finding using ( )tK
dt
d

c   (refer to Appendix II). 

(3) Compute  and ( ) ( )( )TSV ϕϕ 1
1

−= ( ) ( ) ( )( )TSV ϕϕ −= − 11
2 . 
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(4) Compute  and ( ) ( ) ( )( 1
1

1 1
VFX X

−= ) ( ) ( ) ( )( )2
1

2 2
VFX X

−= . 

 

Furthermore, according to Embrechts et al (2001), upper and lower tail dependence are 

derived as: 

( )
( )

1

upper 10

2
2 2lim

s

s

s

ϕ
λ

ϕ

−

−→

′
= −

′
 and 

( )
( )

1

lower 1

2
2lim

s

s

s

ϕ
λ

ϕ

−

−→∞

′
=

′
 ,  

where  is the first derivative of ( )1 sϕ− ′ ( )1 sϕ−  with respect to s.  

 

Tables 1 and 2 in the following present the characteristics of four one-parameter strict 

Archimedean copulas, including the Clayton copula, the Gumbel-Hougaard copula, the 

Frank copula, and the Archimedean copula no. 12 in Nelsen (1999) (referred to as Nelsen 

no. 12 copula here). The contents in the tables emanate from Joe (1997), Nelsen (1999), 

Embrechts et al (2001), Melchiori (2003), and our derivation ( ( )tϕ ′  and  of the 

Clayton copula, 

( )s1−ϕ

( )tϕ ′ ,  and its first derivative, and tail dependence of the Nelsen 

no. 12 copula, and  of the four copulas). This information is required for 

simulating multivariate random variables, computing tail dependence, and understanding 

the possible ranges of association. 

( )tKC

( )1 sϕ− ′

 

These four copulas demonstrate some of the flexibility of the Archimedean copulas. The 

Clayton copula, proposed by Clayton (1978), allows for lower tail dependence and 

positive association (negative association is excluded here, but is indeed possible with the 

result that the copula is then not strict). The Gumbel-Hougaard copula, proposed by 

Gumbel (1960) and discussed by Hougaard (1986), accommodates upper tail dependence 

and non-negative association. While the Frank copula, first studied by Frank (1979), has 

no tail dependence behaviour, it allows for negative association readily (but only positive 

association is feasible if C  is extended to more than two dimensions and then 1ϕ−  needs 

to be completely monotonic, as discussed later). In addition, the Debye function 

( ) ( )( ) θθ
θ

∫ −=
 

0 1 1exp dtttD  for the Frank copula can be solved by using a Riemann sum 
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or Mathematica (refer to Appendix II). The last copula involves both upper and lower tail 

dependence and accommodates positive association only in the range of 131 ≤≤τ . 

 

Table 1 Clayton Copula and Gumbel-Hougaard Copula 

 

 Clayton Copula Gumbel-Hougaard Copula 

( ) ( )( )21 ,uuC  ( ) ( )( ) ⎟
⎠

⎞
⎜
⎝

⎛
−+

−−− 0,1max
1

21
θθθ uu  ( )( ) ( )( )( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−− θθθ

1

21 lnlnexp uu

θ  
2

1
τ
τ−

 ( 0 ;  0 1θ τ> < ≤ ) 1
1 τ−

 ( 1 ; 0 1θ τ≥ ≤ ≤ ) 

( )tϕ  1t θ

θ

− −  ( )ln t θ−  

( )d t
dt
ϕ  1t θ− −−  ( ) 1ln t

t

θθ −−
−  

( )1 sϕ−  ( )
1

1 s θθ −+  
1

exp sθ
⎛ ⎞
−⎜ ⎟
⎝ ⎠

 

( )1d s
ds
ϕ−  ( )

1 11 s θθ − −− +  
1 1 11 exp s sθ θ

θ
−⎛ ⎞

− −⎜ ⎟
⎝ ⎠

 

( )CK t  
1t tt

θ

θ

+ −
−  

lnt tt
θ

−  

( )C
d K t
dt

 ( )1 1
1

tθθ
θ

+ −
−  

1 ln1 t
θ
+

−  

upperλ  0 
1

2 2θ−  

lowerλ  1

2 θ
−

 0 
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Table 2 Frank Copula and Nelsen No. 12 Copula 

 

 Frank Copula Nelsen No. 12 Copula 

( ) ( )( )21 ,uuC  ( )( )( ) ( )( )( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

−−−−
+

−
1exp

1 exp1 exp
1ln1 21

θ
θθ

θ
uu

( )( ) ( )( )( )
11

1
2

1
1 111

−

−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−+ θθθ uu  

θ  ( )( )
θ

θ
τ 114

1
D−

−=
0 ; 0 ;

1 1
θ τ

τ
≠ ≠⎛ ⎞

⎜ ⎟− ≤ ≤⎝ ⎠ ( )
2

3 1 τ−
 ( 11 ; 1

3
θ τ≥ ≤ ≤ ) 

( )tϕ  ( )
( )

exp 1
ln

exp 1
tθ
θ

⎛ ⎞− −
− ⎜ ⎟⎜ ⎟− −⎝ ⎠

 1 1
t

θ
⎛ ⎞−⎜ ⎟
⎝ ⎠

 

( )d t
dt
ϕ  

( )1 exp t
θ

θ−
 

1

2

1 1
t t

θθ −
⎛ ⎞− −⎜ ⎟
⎝ ⎠

 

( )1 sϕ−  ( )( ) ( )( )1 ln 1 exp 1 exp sθ
θ

− + − − −
11

1 sθ
−

⎛ ⎞
+⎜ ⎟

⎝ ⎠
 

( )1d s
ds
ϕ−  ( )( ) ( )

( )( ) ( )( )
exp 1 exp

1 exp 1 exp

s

s

θ

θ θ

− − −

+ − − −
 

21 111 1s sθ θ

θ

−
− ⎛ ⎞

− +⎜ ⎟
⎝ ⎠

 

( )CK t  ( )( ) ( )
( )

exp 11 exp 1 ln
exp 1

t
t t

θ
θ

θ θ
⎛ ⎞− −

− − ⎜ ⎟⎜ ⎟− −⎝ ⎠

( )1t t
t

θ
−

−  

( )C
d K t
dt

 ( ) ( )
( )

exp 1
exp ln

exp 1
t

t
θ

θ
θ

⎛ ⎞− −
− ⎜ ⎟⎜ ⎟− −⎝ ⎠

 
2 11 t
θ
−

−  

upperλ  0 
1

2 2θ−  

lowerλ  0 
1

2 θ
−

 

 

For more than two dimensions with all pairs of random variables having the same ϕ  and 

the same θ  (i.e. exactly the same type of Archimedean copula with the same parameter), 

 can be extended as follows, as detailed in Embrechts et al (2001): C

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( )mm uuuuuuC ϕϕϕϕ +++= − ...,...,, 21
1

21  , 

provided that 1ϕ−  is completely monotonic, i.e. 1ϕ−  belongs to the class of Laplace 

transforms L  (refer to Appendix IV). ∞
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According to Joe (1997) and Embrechts et al (2001), 1ϕ−  of each of the four copulas 

described previously is completely monotonic and so the multivariate extension above is 

feasible. For other Archimedean copulas with 1ϕ−  not being completely monotonic, 

however, this extension does not provide a multivariate copula. 

 

We derive an example of the extension of the m-variate Clayton copula as follows, which 

is equivalent to the m-variate Cook-Johnson copula: 

( ) ( ) ( )( ) ( ) ( ) ( )( )( )0  , 1... max,...,, 1
2121

θθθθ −−−− +−+++= muuuuuuC mm  , 

and the simulation (as described in Subsection 5.2) involves the following formulae: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

11

121

21
121 2...

1...
,...,,

+−−

−
−

−−

−−−

− ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−+++
+−+++

=
i

i

i
iii iuuu

iuuu
uuuuC

θ

θθθ

θθθ

 , and 

( ) ( )
( )( ) ( ) ( ) ( )( )( ) θθθθθ 1 

121
111  1  2... 1 −−

−
−−+−− ++−+++−= iVVVQV i

i
ii  . 

 

On the other hand, if ϕ  is the same but θ  varies for different pairs of random variables 

(i.e. the same type of Archimedean copula but with different parameters), Joe (1997) 

states that there are several ways to extend C  to more than two dimensions. As noted in 

Embrechts et al (2001), one possible extension is shown in the following, say m = 5:  

( ) ( )( ) ( )( ) ( )( )( )2414
1

421 , uuuuC ϕϕϕ += −  , 

( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )( )33213
1

3321 ,,, uuuCuuuC ϕϕϕ += −  , 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( ) ( )( )( )423212
1

24321 ,,,,, uuuuCuuuuC ϕϕϕ += −  , and 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( ) ( )( )( )5143211
1

154321 ,,,,,,, uuuuuCuuuuuC ϕϕϕ += −  ,  

provided that  (for i = 1 to 4 in which some or all 1−
iϕ iθ ’s are different) is completely 

monotonic and  (for i = 1 to 3) belongs to the class L1
1

−
+ii ϕϕ o ∗

∞  (refer to Appendix IV). 

 

According to Joe (1997) and Embrechts et al (2001),  of the four types of copula 

discussed belong to the class L ∗

1
1

−
+ii ϕϕ o

∞  if 4321 θθθθ <<< . 
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Effectively, the relationship between  and  is determined by ( )1X ( )2X 4θ , the relationship 

between  (or ) and  is determined by ( )1X ( )2X ( )3X 3θ , the relationship between  (or 

 or ) and  is determined by 

( )1X

( )2X ( )3X ( )4X 2θ , and the relationship between  (or  

or  or ) and  is determined by 

( )1X ( )2X

( )3X ( )4X ( )5X 1θ . Hence there are only m – 1 (= 4) distinct 

parameters for m (= 5) random variables, compared to ( ) 21−mm  (= 10) distinct 

parameters if the copula was Gaussian. This property is called partial exchangeability and 

it imposes a constraint on setting the parameters.  

 

This means of extension can be applied to other dimensions similarly. Accordingly, the 

procedure in Subsection 5.2 is required to simulate m-variate random variables. Some 

information of exploiting Excel or Mathematica to carry out the simulation is provided in 

Appendix II. Other means of extension are set forth in Joe (1997). 

 

Figures 10 to 13 correspond to Figure 1 with the Gaussian copula replaced by the four 

Archimedean copulas (the Clayton copula is just the Cook-Johnson copula in this 

bivariate example). The Gumbel-Hougaard copula shows very strong upper tail 

dependence with upper 0.4308λ =  (larger than that of the t copula with v = 3). The Clayton 

copula and the Nelsen no. 12 copula have very strong lower tail dependence with 

lower 0.5254λ =  and lower 0.5087λ =  respectively. The Nelsen no. 12 copula does not show 

obvious upper tail dependence in the graphs because its upperλ  is only equal to 0.0344. 

The graphs of the Frank copula look quite similar to those of the Gaussian copula. 

 

Table 3 exhibits the sample  in the upper-right-quadrant tail. For the Gumbel-

Hougaard copula, the sample  remains at about 0.3 for all percentiles. For the 

other three copulas, the sample  is very low. In addition, the results of the Clayton 

copula are very similar to those of the Cook-Johnson copula, as the two copulas are 

identical in this bivariate example. 

( ) ( )1 2,X Xτ

( ) ( )1 2,X Xτ

( ) ( )1 2,X Xτ
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5.7 Copula Selection 

 

As discussed in the previous subsections, r or θ  is computed from the estimated τ  once 

the type of copula is chosen. Some formal tests to justify the selection of copula, based on 

the observations of two bivariate random variables, are provided in Appendix III. These 

tests include goodness of fit test, cdf test, ( )tKC  test, and binomial test. They can also be 

used to warrant the estimated value of r or θ  (or v for the t copula). 

 

In many practical circumstances, appropriate judgement regarding the suitability of the 

selected copula and the reasonableness of the estimated values of the parameters is vital. 

A judgemental approach is of particular importance if the data are scarce, which is 

common in general insurance practice. Assumptions have to be set up carefully via 

thorough investigation of the portfolios. Experience analysis is essential for responding to 

the possibility of setting erroneous assumptions in the first instance and to any changes of 

the dependency structures over time. 
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Figure 2    Scatter Plot, PDF, and Contours – t3 Copula Figure 3    Scatter Plot, PDF, and Contours – t5 Copula

Figure 4    Scatter Plot, PDF, and Contours – t8 Copula Figure 5    Scatter Plot, PDF, and Contours – t10 Copula
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Figure 6    Scatter Plot, PDF, and Contours – t50 Copula Figure 7    Scatter Plot, PDF, and Contours – t100 Copula

Figure 8    Scatter Plot, PDF, and Contours – t200 Copula Figure 9 Scatter Plot, PDF, and Contours – Cook-Johnson Copula
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Figure 10    Scatter Plot, PDF, and Contours – Clayton Copula Figure 11 Scatter Plot, PDF, and Contours – Gumbel-Hougaard Copula

Figure 12    Scatter Plot, PDF, and Contours – Frank Copula Figure 13  Scatter Plot, PDF, and Contours – Nelsen No. 12 Copula
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6. PRACTICAL APPLICATION 

 

In the following, we set up a hypothetical example of practical application of some 

copulas on measuring the uncertainty of outstanding claims liabilities. The assumptions 

are set out at the start and the simulation results are presented thereafter. We exploit the 

simulation procedures of the copulas as discussed in the previous section.  

 

6.1 Assumptions and Parameter Estimation 

 

Table 5 states our assumptions of the probability distributions (refer to Appendix I) of the 

total outstanding claims liabilities of eight lines of business. We assume all the lines have 

the same expected total outstanding claims liability of 80 million but with different 

variability levels (including parameter error and process error as noted in Li (2006)). The 

value of the expected total outstanding claims liabilities of the whole portfolio is then 640 

million. We compute the parameters for each line to ensure the magnitude of one half of 

the coefficient of variation corresponds to the industry levels as stated in Bateup and 

Reed (2001) and Collings and White (2001). According to Wang (1998), the gamma, 

Weibull, inverse Gaussian, and lognormal distributions have an increasing order of right-

tail heaviness. Since the last three lines in the table are generally regarded as having high 

uncertainty and heavy right tails in their liability distributions, we arbitrarily make use of 

the lognormal distribution for these three lines. In practice, the lognormal distribution is 

popular for modelling general insurance liabilities conceived to possess heavy tails. We 

assume the other lines have liability distributions with lighter tails. 

 

In reality, the mean and the standard deviation can be estimated by say the Mack model 

(refer to Mack (1993)) and the form of liability distribution can be determined by prior 

knowledge regarding the nature of the business or by analysis of the past claims data. 
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Table 5 Assumptions of Probability Distributions 
 

Line Probability Distribution Mean 
Standard 

Deviation 
2
1  Coefficient 

of Variation 

Motor ( 725 ,  3.1250 10γ −× )  80,000,000 16,000,000 10% 

Home ( 725 ,  3.1250 10γ −× )  80,000,000 16,000,000 10% 

Fire ( )30W 4.1782 10  ,  3.6965−×  80,000,000 24,000,000 15% 

Marine ( )22W 3.4402 10  ,  2.6984−× 80,000,000 32,000,000 20% 

Other ( )5IG 80,000,000 , 3.3541 10−×  80,000,000 24,000,000 15% 

Workers’ 

Compensation 
(LN 18.1233 ,  0.3853)  80,000,000 32,000,000 20% 

Liability (LN 18.1233 ,  0.3853)  80,000,000 32,000,000 20% 

Professional 

Indemnity 
(LN 18.0860 ,  0.4724)  80,000,000 40,000,000 25% 

 

Table 6 states our assumptions of an 88×  matrix of pairwise τ  between the total 

outstanding claims liabilities of the eight lines, referring to the linear correlation matrices 

as shown in Bateup and Reed (2001) and Collings and White (2001). We assume the two 

sources of dependency (refer to Section 1) are approximately accommodated in the 

assumptions. Since the Institute of Actuaries of Australia (IAAust) Guidance Note GN 

353 states that caution should be taken when low correlation is assumed, negative τ  is 

not considered here. The first five lines of short-tailed business (with a relatively short 

period of time to settle all claims) are assumed to be independent of the rest that are long-

tailed (with a relatively long period of time to settle all claims). Thus, τ  is zero between 

a short-tailed line and a long-tailed line. In effect, there are two independent sets of 

multivariate random variables, in which one has five dimensions and the other has three. 

In practice, pairwise measures of association can be estimated as discussed in Section 4 

or determined by judgement. Moreover, we assume the underlying copula is unknown 

and we attempt to model the liabilities with different copulas. 
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Table 6 Assumptions of Kendall’s Tau 
 

τ  Motor Home Fire Marine Other WC Liab PI 

Motor 1 0.15 0.1 0.05 0.15 0 0 0 

Home 0.15 1 0.15 0.05 0.1 0 0 0 

Fire 0.1 0.15 1 0.05 0.1 0 0 0 

Marine 0.05 0.05 0.05 1 0.05 0 0 0 

Other 0.15 0.1 0.1 0.05 1 0 0 0 

WC 0 0 0 0 0 1 0.2 0.15 

Liab 0 0 0 0 0 0.2 1 0.2 

PI 0 0 0 0 0 0.15 0.2 1 

 

Several copulas discussed previously are applied in this example. Based on the assumed 

matrix of τ , pairwise r is computed for the Gaussian copula and the t copula referring to 

Subsections 5.3 and 5.4. Pairwise θ  is also computed for the Cook-Johnson copula and 

the Archimedean copulas with regard to Subsections 5.5 and 5.6. These figures are shown 

in Tables 7 and 8. For the Gaussian copula and the t copula, pairwise r is computed by 

using ( 2sin )πτ=r . The dispersion matrix computed is positive definite and symmetric. 

 

Table 7 r of Gaussian Copula and t Copula 
 

r  Motor Home Fire Marine Other WC Liab PI 

Motor 1 0.23 0.16 0.08 0.23 0 0 0 

Home 0.23 1 0.23 0.08 0.16 0 0 0 

Fire 0.16 0.23 1 0.08 0.16 0 0 0 

Marine 0.08 0.08 0.08 1 0.08 0 0 0 

Other 0.23 0.16 0.16 0.08 1 0 0 0 

WC 0 0 0 0 0 1 0.31 0.23 

Liab 0 0 0 0 0 0.31 1 0.31 

PI 0 0 0 0 0 0.23 0.31 1 
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Table 8 θ  of Archimedean Copulas 
 

Short-Tailed 1θ  2θ  3θ  4θ  

Clayton 0.1053 0.2642 0.2857 0.3529 
Gumbel-Hougaard 1.0526 1.1321 1.1429 1.1765 

Frank 0.4509 1.0617 1.1395 1.3752 
 

Long-Tailed 1θ  2θ  

Clayton 0.4242 0.5000 
Gumbel-Hougaard 1.2121 1.2500 

Frank 1.6154 1.8609 
 

For the Cook-Johnson copula, the average τ  of the short-tailed lines is computed as 

0.0950 and the average τ  of the long-tailed lines is about 0.1833. These are used as 

approximations since there is only one parameter for either the short-tailed lines or long-

tailed lines. Making use of ( )ττθ −= 12 , pairwise θ  is computed as 0.2099 for the 

short-tailed lines and as 0.4490 for the long-tailed lines.  

 

For the Archimedean copulas, the five-dimension extension example given in Subsection 

5.6 is used here for the short-tailed lines. The order of extension from  to  is 

selected as Motor, Home, Fire, Other, and Marine, since Marine has the same value of 

( )1X ( )5X

τ  

with all the other short-tailed lines and this value of τ  (and so the corresponding θ ) is 

the smallest. When τ  is not the same, an average value of τ  is computed, e.g. 

, , and average Motor,Fire 0.1τ = Home,Fire = 0.15τ τ = 0.125. This approximation is required 

due to partial exchangeability. The way θ  is computed from τ  depends on whether the 

copula is Clayton, Gumbel-Hougaard, or Frank, as described in Subsection 5.6. The 

Nelsen no. 12 copula is not examined in this example as the copula does not allow τ  

lower than one-third. For the long-tailed lines, a similar three-dimension extension is 

made with the selected order Workers’ Compensation, Liability, and Professional 

Indemnity. 
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6.2 Results 

 

Based on the assumptions in the previous subsection, 10,000 samples of the total 

outstanding claims liability are simulated for each line of business, and are then summed 

across the eight lines to obtain 10,000 samples of the aggregate portfolio value. The 

simulation process is carried out by using the selected copula to link the marginals to 

form a joint multivariate distribution. This process is repeated for each copula in turn. 

 

The outstanding claims liabilities must be assessed at the 75th percentile (the risk margin, 

when expressed as a percentage of the mean, is subject to a minimum of one half of the 

coefficient of variation) according to GPS 210. Moreover, the Australian solvency 

benchmark for probability of ruin is 0.5% on a one-year time horizon. Accordingly, the 

following figures are estimated from the 10,000 simulated samples of the aggregate 

portfolio value: one half of the coefficient of variation, the difference (as a percentage of 

the mean) between the 75th percentile and the mean, and the difference (as a percentage 

of the mean) between the 99.5th percentile and the mean. Table 10 at the end of this 

section presents these figures.  

 
Overall, one-half the coefficient of variation and the 75th percentile margin are more or 

less the same across different copula selections. The main disparities lie in the 99.5th 

percentile margin. This phenomenon reflects that the effect of exploiting a particular 

copula becomes obvious when the tail dependence behaviour is concerned. 

 

The analysis of the results regarding the 99.5th percentile margin of the aggregate 

portfolio value is as follows. The Gumbel-Hougaard copula and the  copula lead to the 

highest margins (54% and 52%). These two copulas have very strong upper tail 

dependence, which explains the results. (For the short-tailed lines only, the  copula 

produces a higher margin than the Gumbel-Hougaard copula, and vice versa for the long-

tailed lines.) As v increases from 3 to 200, the results of the t copula converge to those of 

the Gaussian copula. The Cook-Johnson copula and the Clayton copula are not equivalent 

for more than two dimensions in this case, but they still produce similarly low margins 

3t

3t

  
Page 35 of 68



(43% and 42%) due to some similarity between their structures. Having no upper tail 

dependence, the Frank copula and the Gaussian copula lead to similar results (both 

around 47%). (Their results are very similar for the short-tailed lines.) The largest 

difference is around 12% between the Gumbel-Hougaard copula and the Clayton copula. 

 

Figures 14 to 18 at the end of this section show the extreme percentiles of the aggregate 

portfolio value for different copula selections. The lighter lines in these figures are for the 

Gaussian copula and the heavier lines are for the other copulas. In all the figures, the cdf 

graph of the Gaussian copula is plotted against those of the other copulas as a comparison. 

As shown in the figures, the  copula and the Gumbel-Hougaard copula lead to larger 

percentiles (above around the 93rd percentile) than the Gaussian copula. On the contrary, 

the Cook-Johnson copula and the Clayton copula lead to smaller percentiles than the 

Gaussian copula. The cdf graphs of the Gaussian copula and the Frank copula are close to 

each other. All these features correspond to the previous analysis of the 99.5th percentile 

margin of the aggregate portfolio value. 

3t

 

These varying results highlight the importance of choosing an appropriate copula when 

an assessment, such as probability of ruin, involves the computation of an extreme 

percentile. An understatement of the underlying upper tail dependence due to an 

unsuitable copula choice would lead to an underestimation of the high-percentile margins. 

 

6.3 Further Results 

 

To stress-test the copulas in the last example, we now enhance each pairwise τ  by 100%. 

The following figures are computed after the increase in τ . 

 

Table 9 Parameters after τ  Increase 

 

Cook-Johnson θ  Short-Tailed : 0.4691 Long-Tailed : 1.1579 
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τ  Motor Home Fire Marine Other WC Liab PI 

Motor 1 0.3 0.2 0.1 0.3 0 0 0 

Home 0.3 1 0.3 0.1 0.2 0 0 0 

Fire 0.2 0.3 1 0.1 0.2 0 0 0 

Marine 0.1 0.1 0.1 1 0.1 0 0 0 

Other 0.3 0.2 0.2 0.1 1 0 0 0 

WC 0 0 0 0 0 1 0.4 0.3 

Liab 0 0 0 0 0 0.4 1 0.4 

PI 0 0 0 0 0 0.3 0.4 1 

 

r  Motor Home Fire Marine Other WC Liab PI 

Motor 1 0.45 0.31 0.16 0.45 0 0 0 

Home 0.45 1 0.45 0.16 0.31 0 0 0 

Fire 0.31 0.45 1 0.16 0.31 0 0 0 

Marine 0.16 0.16 0.16 1 0.16 0 0 0 

Other 0.45 0.31 0.31 0.16 1 0 0 0 

WC 0 0 0 0 0 1 0.59 0.45 

Liab 0 0 0 0 0 0.59 1 0.59 

PI 0 0 0 0 0 0.45 0.59 1 

 

Short-Tailed 1θ  2θ  3θ  4θ  

Clayton 0.2222 0.6087 0.6667 0.8571 
Gumbel-Hougaard 1.1111 1.3043 1.3333 1.4286 

Frank 0.9074 2.1982 2.3719 2.9174 
 

Long-Tailed 1θ  2θ  

Clayton 1.0769 1.3333 
Gumbel-Hougaard 1.5385 1.6667 

Frank 3.5088 4.1611 
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Table 11 shows the margins after the increase in τ . These margins are generally higher 

than those in Table 10, as the association between each pair of lines of business is 100% 

higher in terms of τ . The increase in the 99.5th percentile margin of the aggregate 

portfolio value ranges from 3% for the Clayton copula to around 8% for the Gaussian 

copula and the t copula. The effect of the increase in τ  is more prominent for the long-

tailed lines, in which the increase in the 99.5th percentile margin ranges from 9% for the 

Cook-Johnson copula to around 19% for the t copula. It can be seen that the margin 

levels are fairly sensitive to the τ  assumptions, particularly for the long-tailed lines with 

the copulas that possess upper tail dependence. As such, apart from choosing a suitable 

copula structure, proper measurement of τ  (and also proper determination of v for the t 

copula) is also essential in computing the extreme percentiles. 

 

Furthermore, the patterns across different copula selections are similar to those before the 

increase in τ . The  copula and the Gumbel-Hougaard copula lead to the highest 99.5th 

percentile margins of the aggregate portfolio value, the Cook-Johnson copula and the 

Clayton copula lead to the lowest margins, and the Gaussian copula and the Frank copula 

have their margins in between. In particular, it appears that the Gumbel-Hougaard copula 

leads to a very skewed aggregate liability distribution for the long-tailed lines. 

3t

 

Figures 19 to 23 show the extreme percentiles of the aggregate portfolio value for 

different copula selections after the increase in τ . As shown in the figures, the  copula 

and the Gumbel-Hougaard copula lead to larger percentiles (above around the 95th 

percentile) than the Gaussian copula. On the contrary, the Cook-Johnson copula, the 

Clayton copula, and the Frank copula lead to smaller percentiles than the Gaussian copula. 

All these features correspond to the results presented in Table 11. 

3t
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Figure 14 CDF – Gaussian Copula vs t3 Copula
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Figure 15 CDF – Gaussian Copula vs Cook-Johnson Copula
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Figure 16 CDF – Gaussian Copula vs Clayton Copula
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Figure 17 CDF – Gaussian Copula vs Gumbel-Hougaard Copula
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Figure 18 CDF – Gaussian Copula vs Frank Copula
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Figure 19 CDF after  Increase – Gaussian Copula vs t3 Copula
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Figure 20 CDF after  Increase – Gaussian Copula vs Cook-Johnson Copula
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Figure 21 CDF after  Increase – Gaussian Copula vs Clayton Copula
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Figure 22  CDF after  Increase – Gaussian Copula vs Gumbel-Hougaard Copula
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Figure 23 CDF after  Increase – Gaussian Copula vs Frank Copula
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7. FURTHER APPLICAITON 
 

Copulas can also be used to model smaller components of general insurance liabilities. In 

this section, we propose a few such examples regarding the number of claims and the 

claim amounts. We consider the total liability of line i (a total of n lines) as 

, where  is the number of claims and  is the amount of the jth 

claim. 

( ) ( )

( )

,
1

iN

i
j

TL X
=

= ∑ i j ( )iN ( ) jiX ,

 

This model is the traditional collective risk model, which is useful for short-term 

contracts and is discussed in Dickson and Waters (1992). The number of claims  can 

be assumed to follow a distribution of Poisson, binomial, or negative binomial, and  

can be assumed to follow a distribution of exponential, gamma, Weibull, inverse 

Gaussian, lognormal, or Pareto (refer to Appendix I).  

( )iN

( ) jiX ,

 

7.1 Linking Claim Counts 
 

Traditionally, the association between ’s of different lines is modelled by 

incorporating a common parameter. The following is an example given by Wang (1998):  

( )iN

( ) ( )( )~ Pni iN λ θ  , ( )βαγθ ,~  ,  and  are independent for any given i, and 

’s are independent. 

( )iN ( ) jiX ,

( ) jiX ,

 

In this example, ( )iλ  is unique for each line of business, while θ  represents a common 

driving force for ’s of different lines. When ( )iN θ  is large, there is a higher chance of a 

larger number of claims for all lines of business, e.g. a windstorm affects the number of 

claims for both motor and home insurance. 

 

Alternatively, the relationship between ’s of different lines can be modelled by fitting 

a copula. The advantage of copula fitting is its flexibility in dealing with various levels 

( )iN
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and shapes of association between multivariate random variables. To exemplify, instead 

of employing a common parameter θ  as described above, ( )iθ ’s of different lines can be 

modelled to be associated by a particular copula structure, in which ( ) ( ) ( )( )~ Pni iN iλ θ  

and ( ) ( ) ( )( )~ ,i i iθ γ α β , with ( )iλ , ( )iθ , ( )iα , and ( )iβ  being unique for each line of business. 

 

7.2 Linking Claim Counts and Claim Amounts 
 

Sometimes,  and  are linked by a common parameter for a line of business, as 

shown in the example below: 

( )iN ( ) jiX ,

( ) ( ) ( )( )~ Pni i iN λ θ ( ) ( ) ( ) ( ) , ( ) ( )( ), ~ LN ,  ,  i j i i i iX g θ σ  , and ( ) ( ) ( )( )iii βαγθ ,~  . μ

 

In this example, ( )iλ , ( )iθ , ( )iμ , ( )iσ , , ( )ig ( )iα , and ( )iβ  are unique for each line of 

business and  is an increasing function of ( )ig ( )iμ  and ( )iθ . As such, ( )iθ  represents a 

common driving force between  and . When ( )iN ( ) jiX , ( )iθ  is large, both  and  

have a higher chance to become large, e.g. a cyclone impinges on both the number of 

claims and the claim amounts for crop insurance. 

( )iN ( ) jiX ,

 

Again, the relationship between ( )iθ ’s of different lines can be modelled by a selected 

copula structure. In this way, ’s and ’s of different lines are linked via the 

chosen copula between 

( )iN ( ) jiX ,

( )iθ ’s. 

 

7.3 Application Example 
 

We set up a hypothetical example of two lines of business, using the structure mentioned 

in the previous subsection. The following assumptions are made arbitrarily: 

( ) ( )1,50~1 γθ  , ( ) ( )1,50~2 γθ  , ( ) ( )( )11 Pn~ θN  , ( ) ( )( )22 2.1Pn~ θN  ,  

( ) ( )( )2.0,02.06LN~ 1,1 θ+jX  , and ( ) ( )( )2.0,026.06LN~ 2,2 θ+jX  . 
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Suppose the underlying copula is unknown. We associate ( )1θ  and ( )2θ  with different 

copulas including the Gaussian copula, the  copula, and the four Archimedean copulas 

discussed. Accordingly, 30,000 samples of 

3t

( ) ( )21 TLTL +   are 

simulated for each type of copula considered and for 

( )

( )

( )

( )

∑∑
==

+=
21

1
,2

1
,1

N

j
j

N

j
j XX

τ  equal to 0, 0.2, 0.4, 0.6, 0.8, and 1. 

For those copulas becoming intractable when τ  is equal to 0 or 1, approximation is made 

as τ  equal to say 0.01 or 0.99. The coefficient of variation, margins of various 

percentiles, and coefficient of skewness are sampled from the simulated figures. The 

results are shown in Tables 12 to 18 at the end of this section. 

 

Overall, as shown in Tables 12 to 17, one-half the coefficient of variation and those 

margins below the 99th percentile are more or less the same across different copula 

selections for different values of τ . The main differences are shown in the 99th percentile 

margin and the 99.5th percentile margin. In general, the  copula and the Gumbel-

Hougaard copula lead to the highest 99th percentile margins and the highest 99.5th 

percentile margins, as these two copulas possess upper tail dependence. The largest 

difference is around 19% between the 99.5th percentile margin of the Gumbel-Hougaard 

copula and that of the Clayton copula at 

3t

τ  equal to 0.4.  

 

In addition, at τ  equal to 1, there is not much disparity between the figures of different 

copulas. As ( )1θ  and ( )2θ  become comonotonic at this value of τ , no matter which copula 

is chosen, the overall structure is reduced to the following, which is effectively the 

traditional way of using a common parameter as mentioned in Subsection 7.1: 

( )1,50~ γθ  , ( ) ( )θPn~1N  , ( ) ( )θ2.1Pn~2N  ,  

( ) ( )2.0,02.06LN~,1 θ+jX  , and ( ) ( )2.0,026.06LN~,2 θ+jX  . 

 

Table 18 shows that the  copula and the Gumbel-Hougaard copula lead to a larger 

coefficient of skewness than the other copulas in general. Again, this skewness 

corresponds to the tail dependence property. Moreover, Figures 24 to 29 exhibit the pdfs 

3t
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of . For all copulas, as ( ) ( )21 TLTL + τ  increases, the association between ( )1θ  and ( )2θ  

increases, and the pdf has a heavier right tail.   

 

Table 12 One Half of Coefficient of Variation and Various Margins ( 0=τ ) 

 

0=τ  Gaussian 3t  Clayton 
Gumbel-

Hougaard 
Frank 

Nelsen 

No. 12 

0.5CV 13% 13% 13% 13% 13% – 

75% Margin 14% 14% 15% 14% 15% – 

80% Margin 20% 18% 20% 19% 20% – 

85% Margin 26% 24% 26% 26% 26% – 

90% Margin 34% 33% 34% 34% 34% – 

95% Margin 47% 47% 47% 47% 48% – 

99% Margin 77% 82% 77% 77% 78% – 

99.5% Margin 91% 97% 90% 90% 91% – 

 

Table 13 One Half of Coefficient of Variation and Various Margins ( 2.0=τ ) 

 

2.0=τ  Gaussian 3t  Clayton 
Gumbel-

Hougaard 
Frank 

Nelsen 

No. 12 

0.5CV 14% 14% 14% 14% 14% – 

75% Margin 16% 15% 16% 15% 16% – 

80% Margin 21% 20% 21% 21% 22% – 

85% Margin 28% 27% 28% 28% 28% – 

90% Margin 38% 36% 37% 37% 38% – 

95% Margin 53% 52% 50% 53% 52% – 

99% Margin 87% 92% 80% 91% 82% – 

99.5% Margin 102% 109% 94% 108% 97% – 
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Table 14 One Half of Coefficient of Variation and Various Margins ( 4.0=τ ) 

 

4.0=τ  Gaussian 3t  Clayton 
Gumbel-

Hougaard 
Frank 

Nelsen 

No. 12 

0.5CV 15% 15% 15% 16% 15% 15% 

75% Margin 17% 16% 18% 16% 18% 17% 

80% Margin 23% 22% 23% 22% 24% 23% 

85% Margin 30% 29% 30% 30% 31% 30% 

90% Margin 40% 39% 39% 40% 41% 39% 

95% Margin 57% 57% 53% 58% 56% 54% 

99% Margin 95% 98% 84% 100% 87% 88% 

99.5% Margin 111% 115% 98% 117% 102% 104% 

 

Table 15 One Half of Coefficient of Variation and Various Margins ( 6.0=τ ) 

 

6.0=τ  Gaussian 3t  Clayton 
Gumbel-

Hougaard 
Frank 

Nelsen 

No. 12 

0.5CV 16% 16% 16% 16% 16% 16% 

75% Margin 17% 17% 19% 17% 18% 17% 

80% Margin 24% 24% 25% 23% 25% 23% 

85% Margin 32% 31% 32% 31% 33% 31% 

90% Margin 43% 42% 42% 43% 43% 42% 

95% Margin 60% 60% 57% 60% 59% 59% 

99% Margin 101% 102% 89% 103% 92% 99% 

99.5% Margin 118% 120% 103% 120% 107% 117% 
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Table 16 One Half of Coefficient of Variation and Various Margins ( 8.0=τ ) 

 

8.0=τ  Gaussian 3t  Clayton 
Gumbel-

Hougaard 
Frank 

Nelsen 

No. 12 

0.5CV 17% 17% 16% 17% 16% 17% 

75% Margin 18% 18% 19% 17% 18% 17% 

80% Margin 24% 24% 25% 24% 25% 24% 

85% Margin 33% 32% 34% 33% 33% 32% 

90% Margin 44% 44% 44% 44% 45% 44% 

95% Margin 63% 63% 60% 62% 62% 61% 

99% Margin 105% 105% 94% 105% 98% 104% 

99.5% Margin 122% 122% 108% 122% 112% 121% 

 

Table 17 One Half of Coefficient of Variation and Various Margins ( 1=τ ) 

 

1=τ  Gaussian 3t  Clayton 
Gumbel-

Hougaard 
Frank 

Nelsen 

No. 12 

0.5CV 17% 17% 17% 17% 17% 17% 

75% Margin 18% 18% 18% 18% 18% 18% 

80% Margin 25% 25% 24% 24% 24% 24% 

85% Margin 33% 33% 33% 33% 33% 33% 

90% Margin 44% 44% 44% 44% 45% 44% 

95% Margin 63% 63% 63% 62% 63% 62% 

99% Margin 106% 105% 104% 105% 103% 105% 

99.5% Margin 125% 124% 119% 122% 120% 122% 
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Table 18  Coefficient of Skewness 

 

τ  Gaussian 3t  Clayton 
Gumbel- 

Hougaard 
Frank 

Nelsen 

No. 12 

0.0 0.90 1.04 0.88 0.89 0.89 – 

0.2 0.94 1.07 0.74 1.16 0.87 – 

0.4 1.00 1.09 0.70 1.21 0.87 0.84 

0.6 1.06 1.10 0.73 1.17 0.89 1.06 

0.8 1.10 1.11 0.85 1.13 0.95 1.11 

1.0 1.11 1.10 1.04 1.11 1.04 1.11 
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Figure 24 PDF – Gaussian Copula
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Figure 25 PDF – t3 Copula
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Figure 26 PDF – Clayton Copula
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Figure 27 PDF – Gumbel-Hougaard Copula
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Figure 28 PDF – Frank Copula
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8. DISCUSSION 

 

From the previous sections, we can see that the concept of copula offers a clear view of 

multivariate distributions. For each set of continuous multivariate random variables, there 

is a unique copula function that represents a particular dependency structure between the 

random variables and links the marginal univariate distributions to form a joint 

multivariate distribution. With the ability to separate the consideration of the marginals 

and the dependency structure, an actuary can readily blend any right-skewed distributions 

with the various forms of copula, based on analysis of the past claims data and on 

subjective judgement. As it is widely accepted that most general insurance liabilities have 

right-skewed distributions, we find that copula modelling is a versatile mathematical tool 

to link the liabilities of varying characteristics to form a picture of the aggregate portfolio 

for an insurer. 

 

Several useful pairwise measures of association such as Kendall’s Tau and Spearman’s 

Rho, which have more desirable properties than Pearson’s correlation coefficient, can be 

readily estimated with the help of Excel spreadsheets and VBA coding. Moreover, the 

Gaussian copula, the t copula, and the Cook-Johnson copula (and some Archimedean 

copulas with a small number of dimensions) can be readily implemented on the Excel 

platform. Copula modelling is hence highly feasible in practice, especially for DFA and 

assessment of risk concentration. While only the extreme percentiles of the aggregate 

portfolio value are affected in an apparent way by the choice of copula, as demonstrated 

in the hypothetical examples in Sections 6 and 7, it is often a good starting point to model 

the marginals and the dependency structure separately and appropriately, from which 

more proper inferences can be drawn.  

 

In addition, the copula modelling techniques discussed in this chapter can be extended to 

much broader applications. For example, the relationships between the premium 

liabilities of different lines, the association between the premium liabilities and the 

outstanding claims liabilities, the dependency structure between individual claim sizes of 

different lines, and the co-movements between and within the assets and the liabilities 
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can be modelled with the variety of copula functions available. Copulas are particularly 

useful for modelling dependent severe events in reinsurance. 

 

Nevertheless, there are three problems of using a copula in general insurance practice. 

First, claims data of an insurer are usually insufficient for computing statistically 

significant estimates of association measures. Certain industry reports or professional 

judgement is often required to determine the levels of association. Second, other 

dependency cannot be readily quantified and its assessment remains largely judgemental 

and subjective. Finally, the algorithm for simulating multivariate random variables linked 

by an Archimedean copula (when the dimension is greater than two) is extremely tedious 

and software such as Mathematica is needed to carry out the simulation. This problem 

hinders the use of Archimedean copulas, though being versatile and flexible, from 

becoming more popular amongst practitioners.  
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APPENDIX I 

 

This appendix lists some common univariate and multivariate probability distributions for 

modelling general insurance liabilities. Suppose  is a continuous random variable and X

X
r

 is a vector of continuous multivariate random variables. Let ( )xf X  be the pdf of  

and 

X

( )Xf xr
r  be the multivariate pdf of X

r
. 

 

The following univariate probability distributions are common for modelling individual 

claim amounts or the total liability of a line of business. Wang (1998) suggests that the 

order of increasing heaviness of the right tail is gamma, Weibull, inverse Gaussian, 

lognormal, and Pareto. Currie (1993) depicts some useful distribution fitting techniques 

including moment matching, percentile matching, and maximum likelihood. Further 

references include Watson (1983) and Seshadri (1999). 

 

Exponential ( )λexp~X  : ( ) ( )xxf X λλ −= exp  

Gamma ( )λαγ ,~X  : ( ) ( ) ( )αλλ αα Γ−= − xxxfX exp1  

Weibull ( )~ W ,X c γ  : ( ) ( )1 expXf x c x cxγ γγ −= −   

Inverse Gaussian ( )~ IG ,X μ σ  : ( ) ( ) ( ) ( )( )222231
2exp2 σμμπσ xxxxf X −−= −−

  

Lognormal ( )~ LN ,X μ σ  : ( ) ( ) ( )( )221
2lnexp2 σμπσ −−=

−
xxxf X   

Pareto ( )~ Pa ,X α λ  : ( ) ( ) 1++= αα λαλ xxf X   

 

The following are two multivariate probability distributions. Relevant references include 

Kotz et al (2000) and Kotz and Nadarajah (2004).  

 

Multinormal  : ( )m~ ,X DμΝ
uur ur u

( )
( )

r
( ) ( )1

2

1 1exp
22

mXf x x D x
D

μ μ
π

−⎛ ⎞′= − − −⎜ ⎟
⎝ ⎠

r
rr r r r r

r  
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Multivariate t  : ( ):~ ,v mX t Rμ
uur rr ( )

( )
( ) ( )

21

2

12 1

2

v m

X m

v m

f x x R x
v vv R

μ μ
π

+
−

−

+⎛ ⎞Γ⎜ ⎟ ⎛ ⎞⎝ ⎠ ′= + −⎜ ⎟⎛ ⎞ ⎝ ⎠Γ⎜ ⎟
⎝ ⎠

r
rr r r

r −
r r  

 

Now suppose  is a discrete random variable and X ( )xf X  represents the pmf (probability 

mass function) of . The following three distributions are common for modelling the 

number of claims, which are discussed in Dickson and Waters (1992), Wang (1998), and 

Dickson (2005). 

X

 

Poisson ( )~ PnX λ  : ( ) ( ) !exp xxf x
X λλ−=  

Binomial  : ( )pnX ,Bi~ ( ) ( ) xnx
X pp

x
n

xf −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 1  

Negative Binomial ( )~ NB ,X pα  : ( ) ( )
1

1 x
X

x
f x p

x
αα + −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

p   
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APPENDIX II 

 

This appendix sets out some basic means of exploiting Excel and Mathematica to carry 

out simulation with the selected copula and probability distributions. In general, the 

notation used here has the same meanings as stated previously. 

 

Excel Functions 

 

Given the function RAND( ) generates a random variable ( )~ U 0,1U , the following 

table demonstrates some expedient use of spreadsheet functions. 

 

Table A1 Excel Functions 

 

Excel Function Use 

NORMSINV(U ) Generate a random variable . ( )~ 0,1X Ν

r * +SQRT(1–( )1X 2r )*  ( )2X

Generate a random variable  

that is correlated with , in which  

and  are independent  random 

variables and 

( )~ 0,1X Ν

( )1X ( )1X

( )2X (0,1Ν )
r  is the correlation 

coefficient. 

NORMSDIST(x) Compute ( )xΦ . 

CHIINV(1–U , v ) Generate a random variable . 2~ vX χ

IF(x < 0,TDIST(–x , v ,1),1–TDIST(x , ,1))v Compute ( )xtv . 

–LN(1–U )/λ  Generate a random variable ( )λexp~X . 

GAMMAINV(U ,α , 1)/λ  Generate a random variable ( )λαγ ,~X . 

(–LN(1–U )/ )^(1/c γ ) Generate a random variable ( )~ W ,X c γ . 
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NORMSDIST(1/σ /SQRT( )*( /X X μ –

1))+EXP(2/μ / )*NORMSDIST(–

1/

2σ

σ /SQRT( )*( /X X μ +1))–U  

Generate a random variable ( )~ IG ,X μ σ  

by using Goal Seek to change  to set the 

function to zero. 

X

LOGINV(U ,μ ,σ ) Generate a random variable ( )~ LN ,X μ σ .

λ /(1–U )^(1/α )–λ  Generate a random variable ( )~ Pa ,X α λ .

2*TDIST(SQRT(( +1)*(1–v

r )/(1+ r )), +1,1) v
Compute upperλ  of the t copula. 

FINV(1–probability, , )  1d 2d
Compute the inverse of the cdf of  

based on the probability provided. 

21 ,F dd

EXP(GAMMALN(α )) Compute ( )αΓ . 

MDETERM(matrix) ; MINVERSE(matrix) Compute the determinant and the inverse 

of a square matrix. 
FACT( ) k Compute . !k

 

For generating a univariate random variable from one of the continuous probability 

distributions listed in the previous appendix, U  is simply sampled from using RAND( ). 

For generating bivariate or multivariate random variables linked by a particular copula, as 

described in Subsections 5.2 to 5.6, the ’s required are sampled in a specific way 

according to the type of copula selected. 

( )iV

 

Simulation of Bivariate or Multivariate Random Variables 

 

For generating bivariate random variables with an Archimedean copula,  (the inverse 

of ) can be obtained by numerical root finding if it cannot be solved analytically. To 

cite the Clayton copula as an example, the following VBA code can be used. 

1−
CK

CK

 

t = 0 

diff = t – (t ^ (p + 1) – t) / p – u 

Do Until Abs(diff) < 0.000000000000001 And t > 0 And t < 1 

s = 1 – ((p + 1) * t ^ p – 1) / p 

t = t – diff / s 
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diff = t – (t ^ (p + 1) – t) / p – u 

Loop 

 

In the coding above, u is a sample of a random variable ( )~ U 0,1U , p is θ , diff is the 

difference between  and u, and s is ( )tKC ( )tK
dt
d

C . The initial value of t is set to zero, 

and it is updated repeatedly in the loop until the magnitude of diff is less than . The 

final value of t is close to . Alternatively, Goal Seek can be used to find 

1510−

( )UKC
1− ( )UKC

1−  

by setting diff to zero. 

 

Numerical root finding can also be done on the Mathematica platform, as shown in the 

code below, in which k represents ( )tKC . 

 

u = Random[ ] ; k = t – (t ^ (p + 1) – t) / p ; FindRoot[k = = u , {t , 0}] 

 

These numerical methods can be applied similarly to the other Archimedean copulas. 

 

The means of extension to more than two dimensions for the Archimedean copulas 

discussed in Subsection 5.6 can be implemented with Mathematica. The code below is an 

example of the Clayton copula extended to three dimensions. 
 

Array[q , 3] ; Array[p , 3] ; Array[c , 3] ; Array[d , 3] ; Array[u , 3] ; s = “ ” ; 

c[1] = u[1] ; c[2] = (c[1] ^ (–p[2]) + u[2] ^ (–p[2]) – 1) ^ (–1 / p[2]) ; 

c[3] = (c[2] ^ (–p[1]) + u[3] ^ (–p[1]) – 1) ^ (–1 / p[1]) ; 

d[1] = c[1] ; d[2] = D[c[2] , u[1]] / D[c[1] , u[1]] ; 

d[3] = D[c[3] , u[1] , u[2]] / D[c[2] , u[1] , u[2]] ; 

Do[(q[1] = Random[ ] ; q[2] = Random[ ] ; q[3] = Random[ ] ; u[1] = q[1] ; 

temp = u[2] /. FindRoot[d[2] = = q[2] , {u[2] , 0.5}] ; u[2] = temp ; 

temp = u[3] /. FindRoot[d[3] = = q[3] , {u[3] , 0.5}] ; u[3] = temp ; 

Print[u[1] , s , u[2] , s , u[3]] ; u[1] = . ; u[2] = . ; u[3] = . ;) , {1000}] 
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In the coding above, q[i] is a random variable ( ) ( )1,0U~iQ , p[i] represents iθ , c[i] and d[i] 

are ( ) ( ) ( ) ( )( )ii uuuC ,...,, 21  and ( ) ( ) ( ) ( ) ( )( )121 ,...,, −iii uuuuC  respectively, and u[i] is a sample of 

. With the Do function, the simulation is repeated for 1,000 times. This code can be 

applied in a similar way for different dimensions and for the other Archimedean copulas. 

( )iV

 

Sample τ  

 

The sample τ  between two related random variables  and Y  can be computed by the 

following VBA code. 

X

 

tau = 0 

h = 0 

For i = 1 To n – 1 

For j = i + 1 To n 

temp = (x(i) – x(j)) * (y(i) – y(j)) 

If temp > 0 Then 

tau = tau + 1 

ElseIf temp < 0 Then 

tau = tau – 1 

End If 

h = h + 1 

Next j 

Next i 

tau = tau / h 

 

In the coding above, x(i) and y(i) are the ith pair of observations of  and Y , and n is the 

total number of pairs of observations. 

X
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Debye Function 

 

For the Frank copula, the Debye function ( ) ( )( ) θθ
θ

∫ −=
 

0 1 1exp dtttD  can be solved by 

using a Riemann sum. The following VBA code makes use of a Riemann sum to compute 

the Debye function, where p is θ . Then, θ  can be estimated from the sample τ . 

 

Debye = 0 

For i = 0.0000001 To p Step 0.0000001 

Debye = Debye + i / (Exp(i) – 1) * 0.0000001 

Next i 

Debye = Debye / p 

 

Alternatively, θ  can be estimated for the Frank copula by using Mathematica as shown 

below, with say the sample τ  being equal to 0.35. 

 

tau = 1 – 4 / p * (1 – 1 / p * Integrate[t / (Exp[t] – 1) , {t , 0 , p}]) ; 

FindRoot[tau = = 0.35 , {p , 1}] 

 

Values of  θ  for Archimedean Copulas 

 

Table A2 below shows the values of θ  we generate for different values of τ  for the four 

Archimedean copulas discussed. 
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Table A2 θ  of Archimedean Copulas 

 

τ  Clayton Gumbel-Hougaard Frank Nelsen No. 12 

0.05 0.1053 1.0526 0.4509 – 

0.10 0.2222 1.1111 0.9074 – 

0.15 0.3529 1.1765 1.3752 – 

0.20 0.5000 1.2500 1.8609 – 

0.25 0.6667 1.3333 2.3719 – 

0.30 0.8571 1.4286 2.9174 – 

0.35 1.0769 1.5385 3.5088 1.0256 

0.40 1.3333 1.6667 4.1611 1.1111 

0.45 1.6364 1.8182 4.8942 1.2121 

0.50 2.0000 2.0000 5.7363 1.3333 

0.55 2.4444 2.2222 6.7278 1.4815 

0.60 3.0000 2.5000 7.9296 1.6667 

0.65 3.7143 2.8571 9.4376 1.9048 

0.70 4.6667 3.3333 11.4115 2.2222 

0.75 6.0000 4.0000 14.1385 2.6667 

0.80 8.0000 5.0000 18.1915 3.3333 

0.85 11.3333 6.6667 24.9054 4.4444 

0.90 18.0000 10.0000 38.2812 6.6667 

0.95 38.0000 20.0000 78.3198 13.3333 

 
Cholesky Decomposition 

 

The Cholesky decomposition process is a convenient way to turn independently drawn 

normal random variables into multinormal random variables for a particular correlation 

matrix. The crucial step is to form a Cholesky matrix from the correlation matrix. Golan 

(2004) demonstrates the algorithm. Suppose ’s are independently drawn standard 

normal random variables, samples of m-variate standard normal random variables 

( )iN

( )iZ ’s 

are then generated by CholeskyZ L N=
r r

N (
r

 is a vector of ’s, ( )iN Z
r

 is a vector of ( )iZ ’s, and 
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CholeskyL  is the Cholesky matrix). The following VBA code can be used to carry out the 

Cholesky decomposition process, where m is the number of dimensions, LT represents 

 (the transpose of ), and the correlation matrix is input into LT before 

running the code. 

CholeskyL′ CholeskyL

 

For k = 1 To m – 1 

For i = k + 1 To m 

g = LT(i , k) / LT(k , k) 

For j = k To m 

If j = k Then 

LT(i , j) = 0 

Else 

LT(i , j) = LT(i , j) – g * LT(k , j) 

End If 

Next j 

Next i 

Next k 

 

For i = 1 To m 

h = LT(i , i) ^ 0.5 

For j = i To m 

LT(i , j) = LT(i , j) / h 

Next j 

Next i 

 

Alternatively, the Cholesky decomposition routines implemented in many mathematical 

software packages can be used. 
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APPENDIX III 

 

Four formal tests are set forth in this appendix for justifying copula selection between 

two bivariate random variables. Suppose  and Y  are two associated random variables 

that are continuous, (
X

),i iX Y  are the ith pair (a total of n pairs) of observations of ( ),X Y , 

, and .  Suppose  is the underlying unknown copula between  

and Y  and  is the selected copula between X  and Y  with its r or 

( )iXi xFu = ( )iYi yFv = C X

∗C θ  estimated from 

the sample τ . 

 

Goodness of Fit Test 

 

The observations of ( ),i iX Y  are recorded on a scatter plot. The plot is then subdivided 

into regions. For each region, the actual number of observations is counted, and the 

expected number of observations is computed from using , where  represents the 

estimated probability of having X  and  lying in that region. For each region,  is 

calculated from , which is the selected joint bivariate cdf.  

∗np ∗p

Y ∗p
∗C

 

The hypothesis that  represents  between  and  is tested by using the test 

statistic 

∗C C X Y

( ) 2
1

1

2 ~expectedexpectedobserved −
=
∑ − k

k

i
iii χ . This statistic is actually the sum of 

the weighted square difference between the actual and expected number of observations 

of each region, and k is the number of regions. The hypothesis is rejected if the test 

statistic is larger than the selected critical value (one-sided). 

 

Different types of copula are selected and tested, and the one with the lowest value of the 

test statistic is preferred over the others. According to Watson (1983), this test works 

properly when n is large,  is not too small for each region,  for each region, 

and k is large. 

∗p 5np∗ >
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CDF Test 

 

This test is proposed by Guégan and Ladoucette (2004). For each pair of observations, 

 is estimated by directly counting the observations. The corresponding 

 is also computed. The following numerical criterion is then calculated: 

( ii yYxX << ,Pr )

)

)

)

( ii vuC ,∗

( ) (( )∑
=

∗−<<
n

i
iiii vuCyYxX

1

2,,Pr  , 

which is effectively the sum of the square difference between the sample cdf and the 

selected cdf. 

 

Different types of copula are selected and the one with the lowest value of the numerical 

criterion is preferred over the others. 

 

( )tKC  Test 

 

This test is suggested by Frees and Valdez (1998) for Archimedean copulas. For each 

pair of observations, ( ii yYxX << ,Pr  is estimated by directly counting the observations. 

This estimate forms a sample of ( )BAC , , which is a random variable, where ( )1,0U~A  

and . Over all the observations, all samples of ( 1,0U~B ) ( )BAC ,  constitute the sample 

, which is the sample cdf of ( )tKC ( )BAC , . The following integral is then computed: 

( ) ( )( ) ( ) ( ) ( )( ) ( )
( )

∑∫
∈

Δ−≈− ∗∗

BACt
CCCCCC tKtKtKtdKtKtK

, of samples  

2 1 

0 

2   sample      , 

in which the summation is carried over increasing values of t, ( )tKC∗  is computed from 

the selected copula, and   represents the increase in the sample  for 

successive pairs of t. 

( )CK tΔ ( )CK t

 

Different types of Archimedean copula are selected and the one with the lowest value of 

the integral is preferred over the others. 
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A Q-Q plot between the sample ( )tKC  and the computed ( )tK
C∗  can also be used. A 

particular Archimedean copula fitting is better than the other if the line in its Q-Q plot is 

straighter and has a slope closer to one. 

 

Binomial Test 

 

Proposed by Kupiec (1995), this test can be exploited to check whether the upper-right-

quadrant tail is fitted properly. Consider the upper-right-quadrant at the 99.5th percentile 

for  and . The probability X Y ( ) ( )( )995.0 , 995.0Pr 11 −− >> YX FYFX  is computed both 

from directly counting the observations and from . The former estimate is noted as  

and the latter as . The parameter  is the true underlying probability, which is 

unknown. 

∗C p̂

∗p p

 

Suppose  is a random variable representing the number of observations lying in the 

99.5th percentile quadrant, with 

B

( )~ Bi ,B n p  and nBp =ˆ . The hypotheses 0H : p p∗=  

and 1H : p p∗≠  are tested by the test statistic: 

( )( ) ( )( )( ) 2
1~1lnˆ1ˆln2 χBnBBnB pppp −∗∗− −−−  , 

in which  is rejected if the test statistic is larger than the selected critical 

value (one-sided). 

∗= ppH :0

 

In addition, n has to be very large to ensure the functionality of this test.  

 

Parameter Selection 

 

All the four tests described above can also be applied in a way to identify the optimal 

values of the parameters. With a particular copula selected, the optimality of different 

values of r, θ , or v can be examined (by trial and error) with the four tests. 
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APPENDIX IV 

 

The class of Laplace transforms L ∞  and the class L ∗
∞  are defined in Joe (1997). 

 

L ∞  = [ ) [ ] ( ) ( ) ( ) ( ){ }: 0, 0,1   0 1 ,  0 ,  1 0 ,   1, 2,...,j j jφ φ φ φ∞ → = ∞ = − ≥ = ∞  .  

Any function pertaining to L  has derivatives that alternate in sign. ∞

 

L ∗
∞  = [ ) [ ) ( ) ( ) ( ) ( ){ }∞=≥−∞=∞=∞→∞ − ,...,2,1  , 01  ,   , 00    ,0,0: 1 jjj ωωωω  . 

Any function pertaining to L  has derivatives that alternate in sign. ∗
∞
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