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Abstract

We derive restrictions for Granger noncausality in Markov-switching vector autoregressive models
and also show under which conditions a variable does not affect the forecast of the hidden
Markov process. Based on Bayesian approach to evaluating the hypotheses, the computational
tools for posterior inference include a novel block Metropolis-Hastings sampling algorithm for
the estimation of the restricted models. We analyze a system of monthly US data on money and
income. The results of testing in MS-VARs contradict those in linear VARs: the money aggregate
M1 is useful for forecasting income and for predicting the next period’s state.
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1. Introduction

The concept of Granger causality was introduced by Granger (1969) and is based on the idea that
variable x which causes another variable y should precede it. This idea has been formalized such
that x is said not to Granger-cause y if past and current information about x does not improve the
forecast of y in a mean square error sense; see also Sims (1972). Knowledge of Granger causal
relations may allow a researcher to formulate an appropriate model and obtain a better forecast of
variables of interest. Note that this concept refers to the forecasting of variables, in contrast to, e.g.,
the causality concept attributed to Rubin (1974), based on ceteris paribus effects (for the comparison
of the two concepts used in econometrics, see e.g. Lechner, 2011). We also underline that in general
Granger causality does not relate to any causal relation implied by structural economic theories
either. Such correspondence has only been shown for linear Gaussian models by White & Lu
(2010).

Granger-causality has primarily been studied empirically in vector autoregressions (VARs)
with a focus on one-step-ahead forecasts; see, e.g., Lütkepohl (1993). In such a setting, x
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does not Granger-cause y if the coefficients on lags of x in the equation for y are jointly zero.
Among other parametric time series models that have been analyzed for Granger causality of
different types are: a family of Vector Autoregressive Moving Average (VARMA) models (see
Boudjellaba, Dufour & Roy, 1994, and references therein), the Logistic Smooth Transition Vector
Autoregressive (LST-VAR) model (Christopoulos & León-Ledesma, 2008), some models from the
family of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models (Comte
& Lieberman, 2000; Woźniak, 2012b; Woźniak, 2012a), as well as dynamic discrete-time bivariate
probit model (Mosconi & Seri, 2006). Note that all these works analyze one-step-ahead Granger
noncausality (see Lütkepohl, 1993; Lütkepohl & Burda, 1997; Dufour, Pelletier & Renault, 2006,
for analyses based on h-step-ahead forecasts in VAR models).

Psaradakis, Ravn & Sola (2005) use a Markov-switching (MS) VAR model to analyze temporary
Granger causality within the money-income system, i.e., causality which holds in some periods but
not in others. Technically, this means that they condition the causality analysis on realizations of
the hidden Markov process and therefore focus only on linear relations between variables. That is,
x does not Granger cause y temporarily if the coefficients on lags of x in the equation for y are zero
in some of the states. Since all parameters of an MS-VAR model may, in principle, vary with the
hidden Markov process, their analysis neglects the possibility that x may be useful for predicting
the states that affect the coefficients in the y equation.

The approach to Granger causality that we consider in this paper takes into account the two
sources of predictive relations between the variables of interest: first, the linear relations in the
VAR model conditional on the states, and second, the fact that all of the variables are used to
forecast the future probabilities of the states. The analysis of Granger causality is consequently
not conditioned on the realizations of the hidden Markov process, but only on observed variables.
Both of these properties make it difficult to conduct classical inference, where multiple sets of
restrictions complicates the determination of the overall test level and nonlinearities may affect
the asymptotic properties of test statistics.

As a second contribution, we suggest an approach for performing Bayesian inference that
allows us to test all of the restrictions of Granger noncausality jointly. The proposed framework
consists of Bayesian estimation of the unrestricted model, allowing for Granger causality, and of
the restricted models representing hypotheses of noncausality. For this purpose, we construct a
novel block Metropolis-Hastings sampling algorithm that allows for the estimation of the restricted
models. The hypotheses of Granger causality and noncausality can thereafter be evaluated with
standard Bayesian methods using posterior odds ratios and Bayes factors.

The main advantage of our approach is that we can test a hypothesis represented by several
restricted models jointly. Another feature of the posterior odds analysis is that all the hypotheses
are treated symmetrically. As a consequence, this method gives arguments in favor of a hypothesis.
Finally, since a mixture model is a special case of a Markov switching model, our analytical results
apply also to such models.

The remainder of the paper is organized as follows. In Section 2 we present the model and
the definitions for Granger noncausality and regime independence, while Section 3 provides the
restrictions for the considered relations between variables. Section 4 first discusses the use of
classical inference when testing for Granger noncausality in MS-VARs, before it considers the pros
and cons of instead using Bayesian inference. The block Metropolis-Hastings algorithm, required
for estimating the models consistent with Granger noncausality, is described in Section 5. Section 6
gives an empirical illustration of the methodology, using the bivariate money-income system for
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monthly US data. Section 7 concludes. All the proofs and technical details are presented in the
mathematical and statistical appendices.

2. Theoretical Framework for Granger Causality and Regime Inference

2.1. A Markov Switching VAR Model
Let yT = (y1, . . . , yT)

′

denote a time series of T observations, where each yt is a N-variate real-valued
vector for t ∈ {1, . . . ,T}. We consider a class of parametric Markov mixture distribution models in
which the stochastic process Yt depends on the realizations of a hidden discrete stochastic process
st with finite state space {1, . . . ,M}. Such a class of models has been introduced in time series
analysis by Hamilton (1989). Conditioned on the state, st, and time series up to time t − 1, yt−1,
yt follows an independent identical normal distribution. The conditional mean process is a VAR
model in which an intercept, µst , as well as lag polynomial matrices, A(i)

st
, for i = 1, . . . , p, and

covariance matrices, Σst , depend on the state st = 1, . . . ,M:

yt = µst + A(1)
st

yt−1 + · · · + A(p)
st

yt−p + εt, (1)

εt|st ∼ i.i.N(0,Σst), (2)

for t = 1, . . . ,T. We set the vector of initial values y0 = (yp−1, . . . , y0)′ to the first p observations of
the available data.

The variable st is assumed to be an irreducible aperiodic Markov chain with Pr(S0 = i|P) = πi,
where π = (π1, . . . , πM) is the ergodic distribution of the Markov Switching (MS) process. Its
properties are sufficiently described by the (M ×M) transition probabilities matrix:

P =


p11 p12 . . . p1M
p21 p22 . . . p2M
...

...
. . .

...
pM1 pM2 . . . pMM

 , (3)

in which an element, pi j, denotes the probability of transition from state i to state j, pi j = Pr(st+1 =

j|st = i). The elements of each row of matrix P sum to one,
∑M

j=1 pi j = 1. Equations (1)–(3) represent
a MS-VAR model with M states and p lags.

To establish the notation, let θ ∈ Θ ⊂ Rk be a vector of size k, collecting parameters of the
transition probabilities matrix P and all the state-dependent parameters of the VAR process, θst :
µst , A(i)

st
, Σst , for st = 1, . . . ,M and i = 1, . . . , p.

2.2. Some Useful Definitions for Analyses of Granger Causality and Regime Inference
Write yt = (y

′

1t, y
′

2t, y
′

3t, y
′

4t)
′

for t = 1, . . . ,T, where yit is a Ni × 1 vector with N1,N4 = 1,N2,N3 ≥ 0
and

∑4
i=1 Ni = N. The variables of interest are given by y1 and y4, between which we want to

study causal relations1. Vectors y2 and y3 (that for N2 = N3 = 0 are empty) may contain auxiliary
variables that are also used for forecasting and modeling purposes. Moreover, define two vectors:

1The proposed analysis holds for N1,N4 ≥ 1 with slight adjustments of the notation.
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the first is (N1 + N2)-dimensional, v1t = (y′1t, y
′

2t)
′, while the second is (N3 + N4)-dimensional,

v2t = (y′3t, y
′

4t)
′, such that:

yt =

[
v1t
v2t

]
,

with matrix vit collecting observations of vit up to period t for i = 1, 2.
Suppose that the conditional mean E[yt+1|yt;θ] is finite and that the conditional covariance

matrix E
[
(yt+1 − E[yt+1|yt;θ])(yt+1 − E[yt+1|yt;θ])′|yt;θ

]
is positive definite for all finite t. Further,

let ut+1 denote the one-step-ahead forecast error for y1.t+1, conditional on yt (and the parameters)
when the predictor is given by the conditional expectations, i.e.:

ut+1 = y1.t+1 − E[y1.t+1|yt;θ]. (4)

By construction, ut+1 has conditional mean zero and positive-definite conditional covariance
matrix. And let ũt+1 = y1.t+1 − E[y1.t+1|v1t,y3t;θ] be the one-step-ahead forecast error for y1.t+1,
conditional on v1t and y3t with analogous properties.

We focus on the Granger-causal relations between variables y1 and y4. The definition of Granger
causality, originally given by Granger (1969), states simply that y4 is not causal for y1 when the
past and current information about y4 cannot improve mean square forecast error of y1.t+1.

Definition 1. y4 does not Granger-cause y1, denoted by y4
G
9 y1, if and only if:

E
[
u2

t+1;θ
]

= E
[
ũ2

t+1;θ
]
< ∞ ∀t = 1, . . . ,T. (5)

It is important to note that the definition involves conditioning on the parameters and under a
classical treatment the parameters would be set to their “true” values. For this reason, Granger
causality under a Bayesian approach concerns the validity of (5) for any θ ∈ Θ.

To model Granger noncausality, we make use of the decomposition of yt into yit for i = 1, . . . , 4.
The system in equation (1) is expressed as:


y1t
y2t
y3t
y4t

 =


m1.st

m2.st

m3.st

m4.st

 +

p∑
k=1


a(k)

11.st
a(k)

12.st
a(k)

13.st
a(k)

14.st

a(k)
21.st

a(k)
22.st

a(k)
23.st

a(k)
24.st

a(k)
31.st

a(k)
32.st

a(k)
33.st

a(k)
34.st

a(k)
41.st

a(k)
42.st

a(k)
43.st

a(k)
44.st



y1t−i
y2t−i
y3t−i
y4t−i

 +


ε1t
ε2t
ε3t
ε4t

 . (6)

The covariance matrix of the residuals conditional on the regime is given by:

Σst = Var



ε1t
ε2t
ε3t
ε4t


 =


Ω11.st Ω′21.st

Ω′31.st
Ω41.st

Ω21.st Ω22.st Ω′32.st
Ω′42.st

Ω31.st Ω32.st Ω33.st Ω′43.st

Ω41.st Ω42.st Ω43.st Ω44.st

 . (7)

For expositional purposes, let us first assume that all regimes are known. Next period’s
prediction of y1 conditional on st+1 and yt is then:

E
[
y1.t+1|st+1,yt, θ

]
= y1.t+1 − ε1.t+1. (8)
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Accordingly, the forecast error is given by ε1.t+1 and the conditional forecast error variance by
Ω11.st+1 . The necessary and sufficient condition for y4 not to Granger-cause y1 is that a(k)

14.st
in

equation (6) is equal to zero, for all k and t.
Let us now drop the assumption that the regimes are known. While the regime variable

st+1 conditional on st is independent of yt, it can be predicted using only past observations of y.
Let Pr[st+1|yt, θ] denote the probability of a particular state occurring at t + 1 conditional on the
information available at t. The prediction of next period’s value of y1 is then given by:

E
[
y1.t+1|yt, θ

]
=

∑
st+1

E
[
y1.t+1|st+1,yt, θ

]
Pr

[
st+1|yt, θ

]
. (9)

The role for y4 is different in (9) relative to (8) in that the history of y4 can now predict y1 by
containing information which helps predict next period’s state.

Since st+1 conditional on st is independent of yt it follows that:

Pr
[
st+1|yt, θ

]
=

∑
st

Pr [st+1|st, θ] Pr
[
st|yt, θ

]
. (10)

From this relationship we may conjecture that there are only two instances when there is no
additional information in the history of y4 for predicting next period’s state. The first is when
Pr[st+1|st, θ] = Pr[st+1;θ], i.e. the Markov process is serially uncorrelated. The second case occurs
when Pr[st|yt, θ] = Pr[st|v1t,y3t, θ].

This discussion presumes that the coefficients in the equation for y1 vary freely with the regime.
It is possible, however, that these coefficients vary with the hidden Markov process s1.t+1 but not
with the process s2.t+1, where s1.t+1 and s2.t+1 form the joint process st+1. Similarly, there may be
information in y4t for predicting s2.t+1, but not for predicting s1.t+1. In such situations, it may still
be the case that the prediction of y1 in (9) does not depend on the history of y4.

The regime inference question is in fact better addressed in terms of the sub-vectors v1 and v2.
Apart from decomposing the observed variables into the vit sub-vectors, the parameter vectors and
matrices are decomposed analogously. Furthermore, the hidden Markov process is decomposed
into two sub-processes, st = (s1t, s2t), where sit has Mi states for i = 1, 2, such that M = M1 ·M2. Such
a decomposition can always be performed without imposing any restrictions on the transitions
matrix P. For example, we may let

st = s1t + M1 (s2t − 1) ,

determines st uniquely from s1t and s2t without imposing any constraints on how these Markov
processes evolve over time. In case M is a prime number it follows that M1 or M2 is always equal
to unity. For non-prime integer values of M it is possible to consider sub-processes sit such that
M1 and M2 are both greater than unity. In fact, for the purpose of hypotheses testing one should
consider all the possible combinations of M1 and M2 given M (see also Sections 4.2 and 6).

The definitions of predictive state independence and predictive redundancy are now useful
for the discussion:

Definition 2. A system for yt+1 which depends on the hidden Markov process st+1 = (s1.t+1, s2.t+1)
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is said to be predictively state independent when

Pr
[
(s1.t+1, s2.t+1) = ( j1, j2)

∣∣∣yt, θ
]

= Pr
[
s1.t+1 = j1

∣∣∣yt, θ
]
· Pr

[
s2.t+1 = j2

∣∣∣yt, θ
]
, (11)

for all θ ∈ Θ, j1 = 1, . . . ,M1, j2 = 1, . . . ,M2 and t = 1, . . . ,T.

Definition 3. The vector v2t is said to be predictively redundant for s1.t+1 when

Pr
[
s1.t+1 = j1

∣∣∣yt, θ
]

= Pr
[
s1.t+1 = j1

∣∣∣v1t, θ
]
. (12)

for all θ ∈ Θ, j1 = 1, . . . ,M1, j2 = 1, . . . ,M2 and t = 1, . . . ,T.

Predictive state independence therefore means that the regime predictions of s1.t+1 and s2.t+1
conditional of yt are independent. Predictive redundancy, on the other hand, concerns the
possibility that there is no unique information in v2t for predicting s1.t+1 beyond the information
contained in v1t. These aspects can be seen from the decomposition of the joint probability into
the product of the the conditional probability and the marginal probability. That is,

Pr
[
(s1.t+1, s2.t+1) = ( j1, j2)

∣∣∣yt, θ
]

= Pr
[
s1.t+1 = j1

∣∣∣yt, θ
]
· Pr

[
s2.t+1 = j2

∣∣∣s1.t+1 = j1,yt, θ
]
.

Predictive redundancy can here be interpreted as a property of the first term on the right hand
side, i.e., of the marginal probability of s1.t+1, while predictive state independence is a feature
of the joint probability of (s1.t+1, s2.t+1) and can therefore be translated into the behavior of the
conditional probability of s2.t+1 in the second term on the right hand side. Predictive redundancy
does not imply predictive state indepepence or vice versa, and the two concepts therefore concern
different properties of a model subject to a hidden Markov process.

If a system for yt+1 satisfies the conditions for predictive state independence and v2t being
predictively redundant for s1.t+1, it follows that beyond the information in v1t there is no additional
information in v2t and s2.t+1 that can affect the probability of s1.t+1 = j1 for any j1. This opens up
for the possibility that v2 (y4) does not Granger cause v1 (y1) if the parameters of the v1 sub-system
only depend on s1. A restricted version of the system in equation (1) is therefore given by:[

v1t
v2t

]
=

[
µ1.s1t

µ2.s2t

]
+

p∑
k=1

A(k)
11.s1t

A(k)
12.s1t

A(k)
21.s2t

A(k)
22.s2t

 [v1t−i
v2t−i

]
+

[
ε1t
ε2t

]
. (13)

where the following linear restrictions have been imposed:

µi.st = µi.sit , A(k)
i j.st

= A(k)
i j.sit
, i, j = 1, 2, and k = 1, . . . , p. (14)

If the εit residuals are independent of the regime, equation (14) states that vit is only directly
affected by sit. Indirectly, it may be affected by (lags of) the other regime process s jt through lags
of v jt (i , j).

In a restricted version, we may also consider the possibility that the marginal distribution of
the εit|st is subject to linear restrictions given by:

Σii.st = Σii.sit , i = 1, 2. (15)
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The restrictions in (15) are necessary but not sufficient for p(εt|st) = p(ε1t|s1t)p(ε2t|s2t), i.e., for ε1t|s1t
and ε2t|s2t to be independent. The additional requirement is simply that Σ12.st = 0 for all regimes
such that the covariance matrix is block diagonal.

In the event that the restrictions in (14) and (15) are satisfied and the covariance matrix is block
diagonal for all regimes, then vit is only directly influenced by the sit regime process, i.e., through
the regime dependent µi.sit and Ai j.sit matrices. Nevertheless, vit may still be indirectly influenced
by lags of the s jt process through lags of v jt. In the next section we shall first consider which
restrictions are needed for the conditions in Definitions 2 and 3 to be satisfied by an MS-VAR
system. Second, we shall examine the situations when y4 does not Granger cause y1 in this setup.

3. Regime Inference and Granger Causality Analysis

3.1. Regime Inference
The first result in this paper concerns the restrictions that the MS-VAR system needs to satisfy
to guarantee that we can make optimal inference from the v1t sub-system about the regimes that
affect these variables.

Proposition 1. The MS-VAR system for yt+1 in (1)–(3) with st+1 = (s1.t+1, s2.t+1) is predictively state
independent and v2t is predictively redundant for s1.t+1 if and only if either:

(A1): (i) P = (P(1)
⊗ P(2)),

(ii) equations (14) and (15) are satisfied,

(iii) Σ12.st = 0, and

(iv) A(k)
12.s1t

= 0,

for all k = 1, . . . , p and sit = 1, . . . ,Mi, and i, j = 1, 2; or:

(A2): P = (ıM1π
(1)′
⊗ P(2)),

is satisfied for all θ ∈ Θ, where P(1) and P(2) are transition probabilities matrices associated with the Markov
processes s1t and s2t respectively (and of dimensions M1 ×M1 and M2 ×M2 respectively).

First, note that conditions (A1) and (A2) imply linear restrictions on parameters of the model.
Second, condition (A1)(i) is a result of forming the full transition probabilities matrix out of
the transition probabilities matrices of two independent hidden Markov processes (see Sims,
Waggoner & Zha, 2008). Condition (A2) states that the first out of the two decomposed hidden
Markov processes is serally uncorrelated and the marginal distribution of ε1t is therefore a mixed
normal. As a consequence, the system for yt+1 is predictively state independent also under (A2).
Predictive redundancy of v2t for s1.t+1 is obtained for the (A2) case since Pr[s1.t+1 = j1|yt, θ] = π(1)

j1
,

while condition (A1), excluding the block diagonality restrictions in (iii), is also sufficient for this
property to hold.

The intuition behind condition (A1) is, in fact, straightforward. Suppose p = 1, N = M = M1 =
2, while ε2t is i.i.d. The restrictions on Σst in (A1) are sufficient for the residual of the equation for
v2 to be i.i.d.. Now consider the experiment of drawing two v2t’s, one for each regime, when v1t−1
and v2t−1 are fixed. The difference between these two draws is:

v2t|st=2 − v2t|st=1 =
(
µ2,2 − µ2,1

)
+

(
A21,2 − A21,1

)
v1t−1 +

(
A22,2 − A22,1

)
v2t−1. (16)
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The right hand side of (16) is zero for all vectors (v1t−1, v2t−1) when the coefficients in the v2 equation
are constant across states. Accordingly, if these restrictions are satisfied, then Pr[st|v1t,v2t] =
Pr[st|v1t,v2t−1] and all information about st is found in the equation for v1. If the coefficient on
v2t−1 in that equation is zero for both states, then v2t−1 play no role for predicting regime switches
either.

To sum up, condition (A1) tells us exactly under which conditions we can disregard the
information in v2t when we are either only interested in the behavior of the variables in the v1t
vector or in the s1t regime process. Alternatively, if we are primarily interested in v2t (or in s2t )
and would like to treat v1t as being “exogenous”, then (A1) provides the set of restrictions that we
implicitly impose on the system describing both v2t and v1t.

3.2. Granger Noncausality Analysis
The restrictions for predictive state independence and predictive redundancy presented in the
previous section are either sufficient for Granger noncausality (A1) or insufficient (A2), but the
analysis has nevertheless established that there is an interesting connection between these concepts
and Granger noncausality. Furthermore, the discussion reveals that Granger noncausality in the
MS-VAR setting does generally not give rise to a single set of parameter restrictions that the system
should satisfy. In this section we shall therefore focus on the necessary and sufficient conditions
for this type of noncausal relations.

Additional notation is first required. Specifically, let:

m̄1t ≡ E
[
m1st+1 |yt, θ

]
, (17a)

ā(k)
1r.t ≡ E

[
a(k)

1r.st+1
|yt;θ

]
, (17b)

for all r ∈ {1, . . . , 4} and k ∈ {1, . . . , p}. The one-step-ahead forecast error for y1 is then given by
ut+1 = zt+1 + ε1.t+1, where:

zt+1 ≡
(
m1st+1 − m̄1t

)
+

p∑
k=1

(
a(k)

11.st+1
− ā(k)

11.t

)
y1.t+1−k

+

p∑
k=1

(
a(k)

12.st+1
− ā(k)

12.t

)
y2.t+1−k +

p∑
k=1

(
a(k)

13.st+1
− ā(k)

13.t

)
y3.t+1−k

+

p∑
k=1

(
a(k)

14.st+1
− ā(k)

14.t

)
y4.t+1−k,

is conditionally on yt uncorrelated with ε1.t+1.2 A sufficient, but not necessary, condition for zt+1
to be mean zero stationary is that yt is covariance stationary. Another possibility is that yt is
co-integrated. For the remainder of this section, we shall assume that ut+1 is mean zero stationary,
i.e. that its variance exists.

This assumption brings us to the main result about Granger noncausality.

Proposition 2. y4 does not Granger-cause y1 if and only if either:

2See (Krolzig, 1997, Chapter 4) . Blix (1997) derives a general formula for the expectation of yt+τ, τ ≥ 1, conditional
on yt and applies it to rational expectations hypotheses.
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(A1) or

(A3): (i)
∑M

j=1 m1. jpi j = m̄1,

(ii)
∑M

j=1 a(k)
1r. jpi j = ā(k)

1r ,

(iii) ā(k)
14 = 0,

for all i = 1, . . . ,M, r = 1, . . . , 4, and k = 1, . . . , p,

is satisfied for all θ ∈ Θ.

The nonlinear restrictions in condition (A3)(i) and (A3)(ii) state that the expected value of each
random coefficient in the equation for y1.t+1 is constant for all regimes st = i. Condition (A3)(iii)
sets each expected value of the coefficients on lags of y4 to zero.

Note that the restrictions of (A3) do not rely on a decomposition of the hidden Markov process.
This comes from the fact that these conditions refer solely to the expected value of the parameters
of the equation for y1. At the same time, they do not rule out that the transition matrix P has
reduced rank or that the Markov process can be decomposed into multiple processes. Hence, the
restrictions in (A3) are very general and it is not possible to determine the number of restrictions
without specifically referring to the properties of the transition matrix.

When the Markov processes s1.t+1 and s2.t+1 are independent the restrictions of Proposition 2
may be simplified.

Corollary 1. Suppose that condition (A2) is satisfied for all θ ∈ Θ, then condition (A3) is equivalent to:

(A4): (i)
∑M1

j1=1 m1.( j1, j2)π
(1)
j1

= m̄1,

(ii)
∑M1

j1=1 a(k)
1r.( j1, j2)π

(1)
j1

= ā(k)
1r ,

(iii) ā(k)
14 = 0,

for all j2 = 1, . . . ,M2, r = 1, . . . , 4, and k = 1, . . . , p.

Corollary 1 reintroduces the decomposition of the hidden Markov process. One benefit is that
the number of the restrictions to be imposed on the model is typically reduced.

This Corollary is of particular interest when M = 2. For such Markov processes, the rank of
P can be either one or two. If the rank of P is unity (M1 = 2,M2 = 1), then the two-state Markov
process is serially uncorrelated. For this case, (A4) reduces to A4(iii), where

∑2
j1=1 a(k)

14, j1
π(1)

j1
= 0 for

all k, while (A4)(i)-(ii) are satisfied by construction. Notice that all restrictions are nonlinear and
that the total number of restrictions is equal to p + 1, corresponding to the p restrictions on the lags
and one restriction on the Markov transition matrix (p11 + p22 = 1).

On the other hand, if the rank of P is two (M1 = 1,M2 = 2), then the Markov process is serially
correlated with P = P(2). Now, condition (A4) states that all coefficients in the equation for y1 are
constant across the regimes, and the coefficients on lags of y4 are zero, i.e., all restrictions are linear.
The total number of restrictions is now equal to p(3 + N2 + N3) + 1, where there is one restriction on
each lag of y1 (a(k)

11,1 = a(k)
11,2), N2 and N3 restrictions on each lag of y2 and y3, respectively, (a(k)

12,1 = a(k)
12,2

and a(k)
13,1 = a(k)

13,2), two restrictions on each lag of y4 (a(k)
14.1 = a(k)

14.2 = 0), and one restriction on the
constant term (m1.1 = m1.2).
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Another case when Corollary 1 is of special interest is for the mixture VAR model, i.e., when
P = ıMπ′. For such models it is straightforward to show that y4 does not Granger cause y1 if

M∑
j=1

a(k)
14, jπ j = 0, (18)

for all k = 1, . . . , p. In fact, the Granger noncausality restrictions are unique for the mixture VAR
model and the reason is that (A2) with M2 = 1 holds by assumption and, as a consequence, the
restrictions in (A1) imply that (A4) is true but the reverse is not true, i.e., (A4) is minimal in the
sense of Gabriel (1969), while (A1) is not and can therefore be discarded.3 This result is also
quite intuitive since for mixture models the optimal prediction of the regime in the next period is
the ergodic probability (π j) for each regime j, with the implication that y4 can only improve the
one-step-ahead forecasts of y1 when the ergodic mean of the coefficient on y4 is nonzero for some
lag in the y1 equation.

4. Bayesian Testing

Restrictions (A1)–(A4) can be tested using either classical or Bayesian inference. Below, we briefly
discuss classical tests and point out some important obstacles in the current setting and then
present the Bayesian testing procedure.

4.1. Classical Inference
Apart from more general problems related to classical inference, such as those related to size
and power, two specific obstacles that we need to take into account when attempting to draw
inferences from classical tests in an MS-VAR setting are:

• Granger noncausality results in multiple sets of restrictions on the parameters. Consequently,
one hypothesis may be represented by several restricted models;

• Some of the restrictions are in the form of nonlinear functions of the parameters.

These problems may potentially be difficult to handle in a classical setting, especially when
taken together. Issues related to multiple testing—a subfield of multiple inference or simultaneous
inference—are well-known in statistics; see, e.g., Schaffer (1995) for a review on this topic, and
Holm (1979) for details on the so called Holm-Bonferroni method which may be applied to the
Granger noncausality restrictions in Proposition 2. The particular procedure suggested by Holm
may be used as long as the asymptotic distribution of each individual test statistic is known, and
improves upon the so called Bonferroni correction (at least in large samples), but nevertheless
remains conservative.

Standard classical tests of nonlinear restrictions on parameters typically rely on computing the
matrix of partial derivatives of the restrictions with respect to the parameters. If this matrix has
rank less than the number of restrictions, the asymptotic distribution of the test statistic is generally
not known, but depends on the rank of this matrix. If this is the case, then the Holm-Bonferroni

3A hypothesis is said to be minimal if it does not imply the truth of any other hypothesis in a set containing multiple
hypotheses.
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method cannot be applied as it relies on the distribution of the tests for each individual hypothesis
being known.

However, this problem does not plague the nonlinear Granger noncausality restrictions in
(A3) or (A4). The intuitive reason for this result is that the VAR parameter themselves never
appear nonlinearly, but only as products with the Markov transition probabilities. As a results
the transition probabilities appear in the matrix with partial derivatives individually and not
multiplied by any VAR parameter.

To see why this observation is important, let us consider the Granger noncausality restrictions
for the mixture VAR model in equation (18) and assume for simplicity that p = 2. The matrix
with partial derivatives of the two restrictions with respect to only the parameters involved in the
restrictions is then

∂ f
(
θ(r)

)
∂θ′(r)

=

a(1)
14,1 · · · a(1)

14,M π1 · · · πM 0 · · · 0

a(2)
14,1 · · · a(2)

14,M 0 · · · 0 π1 · · · πM

 ,
where

θ(r) =
[
π1 · · · πM a(1)

14,1 · · · a(1)
14,M a(2)

14,1 · · · a(2)
14,M

]′
.

The rank of the matrix of partial derivatives of the restrictions is always two since the π j
probabilities are positive.

It should be emphasized that for each possible rank of P, the exact form of the Granger
noncausality restrictions in MS-VARs is affected, also in terms of the number of restrictions, and
the restrictions become linear when P has full rank M. For each possible rank of P, the matrix of
partial derivatives of the restrictions in (A3) or (A4) has full row rank, due to the assumptions
on the behavior of the transition probabilities pi j. However, this also suggests that for nonlinear
restrictions where the VAR parameters appear in terms of, say, products or have exponents different
from one, then the matrix with partial derivatives can have reduced row rank.4

4.2. Bayesian Inference
In this study we make use of Bayesian inference when testing the parameter restrictions. The
approach we suggest can deal with both multiple sets of restrictions and nonlinearities; see also
Woźniak (2012b, 2012a), where Granger noncausality is studied within the Extended CCC-GARCH
model of Jeantheau (1998).5

Suppose that a hypothesis is represented by several models. LetHi denote the set of indicators
of the models that represent this hypothesis, Hi = { j :M j represents ith hypothesis}. The models
that are included in this set are assumed to be minimal. Furthermore, suppose that we are
interested in comparing the posterior probability of this hypothesis to hypothesisH0, represented
by the unrestricted modelM0. The credibility of the hypothesis Hi compared to the hypothesis

4One such case is if we are interested in restrictions on the conditional prediction variances of the MS-VAR model;
see, e.g., Warne (2000) for Granger noncausality in mean-variance. Another case is if we are concerned with restrictions
on the h-step-ahead forecasts for h ≥ 2.

5Two other works use the Bayesian approach to make inference about concepts somehow related to Granger
noncausality. Jarociński & Maćkowiak (2013) sample from the space of models in order to determine
Granger-causal-priority in the VAR model, while Pajor (2011) uses Bayes factors to assess conditional exogeneity
conditions for models with latent variables, and in particular in multivariate stochastic volatility models.
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H0 may then be assessed with the posterior odds ratio given by:

POR =
Pr

(
Hi

∣∣∣yT
)

Pr
(
H0

∣∣∣yT
) =

∑
j∈Hi

Pr
(
M j

∣∣∣yT
)

Pr
(
M0

∣∣∣yT
) =

Pr
(
Hi

)
Pr

(
H0

) · p
(
yT

∣∣∣Hi

)
p
(
yT

∣∣∣H0

) . (19)

If we set equal prior probabilities for all the hypotheses, then the posterior odds ratio is equal to
the Bayes factor and is given by the ratio of marginal data densities (MDDs) when conditioning
onHi andH0, respectively.

The MDD is typically calculated for a given model M j rather than for a hypothesis Hi. To
determine the MDD for the hypothesisHi using the MDDs for the models that are consistent with
it, we can utilize the following:

p
(
yT

∣∣∣Hi

)
=

∑
j∈Hi

p
(
yT

∣∣∣M j

)
Pr

(
M j

∣∣∣Hi

)
.

If we assume that all models M j are equally likely apriori given that the hypothesis Hi is true,
then the MDD given the hypothesis is equal to the average of the MDDs for the models.

The restrictions in (A1) and (A3) depend on auxiliary values and can therefore result in multiple
models that are consistent with each one of these two conditions, respectively. Condition (A1)
depends on the number of states of the hidden Markov process, M, through the decomposition of
process st into (s1t, s2t) such that M1 ·M2 = M. In our empirical example we find support for M = 3
in the bivariate money-income model for monthly US data. For this case, two decompositions are
possible: M1 = 1 and M3 = 3, or M1 = 3 and M3 = 1. In order to compute the MDD of condition
(A1) we integrate out the possible decompositions by applying:

p
(
yT

∣∣∣(A1)
)

= p
(
yT

∣∣∣(A1) ∧M1 = 1,M2 = 3
)

Pr
(
M1 = 1,M2 = 3

∣∣∣(A1)
)
+

+ p
(
yT

∣∣∣(A1) ∧M1 = 3,M2 = 1
)

Pr
(
M1 = 3,M2 = 1

∣∣∣(A1)
)
, (20)

where p(yT|(A1) ∧M1 = 1,M2 = 3) and p(yT|(A1) ∧M1 = 3,M2 = 1) are estimated by an available
MDD estimator (see below), and the conditional prior probabilities may be selected as Pr(M1 =
1,M2 = 3|(A1)) = Pr(M1 = 3,M2 = 1|(A1)) = 1/2.

Similarly, condition (A3) depends on the rank of P and this value is not of interest from the
point of view of the Granger causality testing, but nevertheless affects the restrictions. In this case,
we can integrate out the rank of P from the testing problem by computing:

p
(
yT

∣∣∣(A3)
)

=

M∑
i=1

p
(
yT

∣∣∣(A3) ∧ rank(P) = i
)

Pr
(
rank(P) = i

∣∣∣(A3)
)
, (21)

where p(yT|(A3) ∧ rank(P) = i) are estimated by a MDD estimator, whereas Pr(rank(P) = i|(A3)) =
1/M, for i = 1, . . . ,M, is a possible choice for the conditional prior probabilities.

4.3. Testing Noncausality Restrictions in MS-VARs
The crucial element of using the posterior odds ratio in (19) to assess the hypotheses of interest
is the computation of MDDs, p(yT|M j), for the unrestricted and the restricted models. There are
several available methods of computing this value. In this paper we use the modified harmonic
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mean (MHM) method of Geweke (1999, 2005). Amongst other methods of computing the MDD
is the one suggested by Sims et al. (2008) based on an elliptical truncation rather than a normal,
and which also belongs to a class of the modified harmonic mean estimators. The difficulty in
employing other estimators, such as the bridge sampling estimator by Frühwirth-Schnatter (2004)
or the one by Chib & Jeliazkov (2001) would require further studies and adjustments and is left
for future research.6

Using the posterior odds ratio when testing a noncausality hypothesis represented by a couple
of restricted models makes the testing possible. Moreover, as emphasized in Hoogerheide, van
Dijk & van Oest (2009), the Bayesian posterior odds ratio procedure gives arguments in favour of
hypotheses. Therefore, the procedure gives positive arguments supporting particular solutions.

However, the approach also has its costs. First of all, in order to specify the complete model
and thereby avoid Bartlett’s paradox, prior distributions for the parameters of the model and the
prior probabilities of models need to be specified.7 Moreover, the time required for simulating
all the models can be costly, first in the model selection procedure, and second in testing the
restrictions of the parameters.

5. Block Metropolis-Hastings Sampler for MS-VAR Models

This section describes the likelihood function, prior distributions and the algorithm for the
estimation of the unrestricted and restricted models; the details of the algorithm are given in the
Statistical Appendix. Our parametrization allows for the estimation of the restricted models, where
the restrictions on the parameters are given by the regime inference restrictions in Proposition 1
or Granger noncausality restrictions in Proposition 2.

The complete-data likelihood function is equal to the joint sampling distribution p(ST,yT|θ)
for the complete data (ST,yT) given θ = (θ1, . . . , θM,P), where ST = (s0, s1, . . . , sT)′; see, e.g.,
Frühwirth-Schnatter (2006). This distribution is further decomposed into a product of a conditional
distribution of yT given ST and θ, and a conditional distribution of ST given θ, and by taking into
account a convenient partitioning of the vector of parameters into state-specific vectors of the
VAR, θi, and the matrix with transition probabilities, P:

p
(
ST,yT

∣∣∣θ) = p
(
yT

∣∣∣ST, θ
)

Pr
(
ST

∣∣∣P)
. (22)

The two components on the right hand side of equation (22) are the same as in Frühwirth-Schnatter (2006,
Section 11.3.1).

We assume that the prior distribution of the state-specific parameters for each state and the

6Frühwirth-Schnatter (2004) raises the problem that the MDD estimator can be biased due to the invariance of the
likelihood function and the prior distribution of the parameters, with respect to permutations of the regimes’ labels.
The identification of the model can be insured by ordering restrictions on parameters, and can also be implemented
within the Gibbs sampler. In essence, it is sufficient that the values taken by one of the parameters of the model in
different regimes can be ordered, and that the ordering holds for all the draws from the Gibbs algorithm to assure
global identification (see Frühwirth-Schnatter, 2004). The MS-VAR models considered for causality inference below are
globally identified via the ordering imposed on one of the state-specific parameters. In our empirical example we did
not encounter any difficulties in finding such restrictions that would effectively not constrain posterior distributions.

7See, e.g., Strachan & Van Dijk (2014) for analyses about using improper priors without being exposed to Bartlett’s
paradox.
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transition probabilities matrix are independent:

p
(
θ
)

=

M∏
i=1

p
(
θi

)
p
(
P
)
. (23)

This introduces the possibility to incorporate prior knowledge of the researcher about the state-specific
parameters of the model, θst , separately for each state.

For the unrestricted MS-VAR model, we assume the following prior specification. Each row
of the transition probabilities matrix, P, a priori follows an M variate Dirichlet distribution, with
parameters set to 1 for all the transition probabilities except the diagonal elements pii, for i =
1, . . . ,M, for which it is set to the hyper-parameter λP. If λP > 1, the regimes are persistent over
time (see e.g. Kim & Nelson, 1999).

Furthermore, the state-dependent parameters of the VAR process are collected in vectors:

βst =
(
µ′st
,vec

(
A(1)

st

)′
, . . . ,vec

(
A(p)

st

)′)′
,

for st = 1, . . . ,M. These parameters follow a (N + pN2)-variate normal distribution, with mean
equal to a vector of zeros and a diagonal covariance matrix, Vβ. Note that the means of the prior
distribution for the off-diagonal elements of matrices Ast are set to zero. In more general terms,
the means of the prior distributions assumed in this work imply Granger noncausality.

Our prior distribution nests many popular in empirical macroeconomics research prior specifications,
including the class of shrinkage prior specifications, and can be easily extended to hierarchical
prior structures. Therefore, prior distributions proposed e.g. by Doan, Litterman & Sims (1983),
Ni & Sun (2003) or Bańbura, Giannone & Reichlin (2010) could also be used. Furthermore, the
mean vector of the normal prior distribution of parameters βst is set to a vector of zeros, since in
the empirical example in Section 6 we use logarithmic rates of returns of the original variables. If
logarithms of the levels of the variables are modeled, then the mean vector of this prior distribution
could be set such that it contained ones for the diagonal elements of matrices A(1)

st
, for st ∈ {1, . . . ,M}

(see Doan et al., 1983).
We model the state-dependent covariance matrices of the error term, decomposing each one

to a N × 1 vector of standard deviations, σst , and a N ×N correlation matrix, Rst , according to the
decomposition:

Σst = diag
(
σst

)
Rstdiag

(
σst

)
. (24)

Modeling covariance matrices using a decomposition into standard deviations and a correlation
matrix, as in equation (24), was proposed in Bayesian inference by Barnard, McCulloch & Meng
(2000). We adapt this approach to Markov-switching models, since the algorithm easily enables the
imposing of restrictions on the covariance matrix. We model the unrestricted model in the same
manner, because we want to keep the prior distributions for the unrestricted and the restricted
models comparable. Thus, each standard deviation σst. j for st = 1, . . . ,M and j = 1, . . . ,N, follows
a log-normal distribution, with a mean parameter equal to 0 and the standard deviation parameter
set toλσ > 0. Finally, we assume that the prior distribution for each of the element of the correlation
matrix Rst is a uniform distribution on the interval (a, b). For each of the correlation parameter,
the values of a and b depend on all the remaining elements of the correlation matrix. a and b are
chosen such that while a single correlation parameter is sampled the resulting correlation matrix
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is positive-definite.8 We collect all the standard deviations in one vector, σ = (σ′1, . . . , σ
′

M)′, and
all the unknown correlation coefficients into a vector, R = (vecl(R1)′, . . . ,vecl(RM)′)′, where the
operator, vecl, stacks all the lower-diagonal elements of the correlation matrix into a vector.

To summarize, the prior specification (23) now takes the detailed form of:

p(θ) =

M∏
i=1

p(Pi)p(βi)p(Ri)

 N∏
j=1

p(σi. j)

 , (25)

where each of the prior distributions is as assumed:

Pi· ∼ DM(ı′M + (λp − 1)IM.i·)
βi ∼ N(0,Vβ)

σi. j ∼ logN(0, λσ)
Ri. jk ∼ U(a, b)

for i = 1, . . . ,M and j, k = 1, . . . ,N, and j , k, where ıM is a M × 1 vector of ones and IM.i· is ith row
of an identity matrix IM, while a and b are as in Algorithm 3 in the Statistical Appendix.

In the block Metropolis-Hastings algorithm, parameters of the model are split into sub-vectors,
the full conditional densities of which are of convenient form. Symbols, l and l − 1, refer to the
iteration of the MCMC sampler. For the first iteration of a MCMC sampler, l = 1, initial parameter
values come from an EM algorithm, and are denoted by θ(0).

1. Draw a vector of the states of the economy, ST. Using the filter and smoother (see, e.g.,
Frühwirth-Schnatter, 2006, and references therein), we obtain the probabilities Pr(st =

i|yT, θ(l−1)), for t = 1, . . . ,T and i = 1, . . . ,M, and then draw S(l)
T , for lth iteration of the

algorithm.
2. Draw from the posterior distribution of the transition probabilities matrix conditioning on

the states drawn in the previous step of the current iteration, P(l)
∼ p(P|S(l)

T ). Assuming
the Dirichlet prior distribution and that the hidden Markov process starts from its ergodic
distribution, π, makes the posterior distribution not of standard form. In this step of the
MCMC sampler, we use the Metropolis-Hastings algorithm as described in the Statistical
Appendix.

3. Draw from the full conditional densities of σ and R, denoted by p(σ|yT,S
(l)
T ,P

(l), β(l−1),R(l−1))
and p(R|yT,S

(l)
T ,P

(l), β(l−1), σ(l)), respectively, with the Griddy-Gibbs sampling algorithm of
Ritter & Tanner (1992), and described by Barnard et al. (2000).

4. Draw the state-dependent parameters of the VAR process collected in one vector, β =
(β′1, . . . , β

′

M)′. Due to the form of the likelihood function and normal prior distribution, the
full conditional distribution is also normal f (β|yT,S

(l)
T ,P

(l), σ(l),R(l)) = N
(
β̄∗, V̄β∗

)
, from which

we draw β(l). β̄∗ and V̄β∗ are the parameters of the full conditional distribution specified in
the Statistical Appendix.

8Barnard et al. (2000) discusses the implications of such a prior specification and the algorithm of choosing a and b.
In addition, this paper mentions alternative prior distributions that could be used as well.
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6. Granger Noncausality Analysis of US Money and Income

In the studies on Granger causality using MS-VAR models, Warne (2000) and Psaradakis et al.
(2005),9 the focus is the causality relationship between U.S. money and income. At the heart of
this issue is the empirical analysis conducted in Friedman & Schwartz (1971) asserting that money
changes lead income changes. The methodology was rejected by Tobin (1970) as a post hoc ergo
propter hoc fallacy, arguing that the timing implications from money to income could be generated
not only by monetarists’ macroeconomic models but also by Keynesian models. Sims (1972)
initiated the econometric analysis of the causal relationship from the Granger causality perspective.
While a Granger causality study concentrates on forecasting outcomes, macroeconomic theoretical
modeling tries to remove the question mark over the neutrality of monetary policy for the business
cycle. The causal relationship between money and income is, however, of particular interest to
the debate, since economists have not reached a consensus on this topic.

This historical debate is well narrated by Psaradakis et al. (2005), and the interested reader is
advised to consult this paper for a depiction of events. Without detailing the references of the
aforementioned paper, there is a problem in the instability of the empirical results found for the
causality between money and output. Depending on the samples considered, the existence and
intensity of the causal effect of money on output are subject to different conclusions. Hence, the
strategy of Psaradakis et al. (2005): to set up a Markov-switching VAR model that assumes four
states of the economy: 1. both variables cause each other; 2. money does not cause output; 3.
output does not cause money; 4. none of the variables causes another.

As outlined in the introduction, with the approach of Warne (2000) which we follow, the
MS-VAR models are ’standard‘ – unrestricted – ones, and we perform Bayesian model selection
through the comparison of their marginal densities of data to determine the number of states
as well as the number of autoregressive lags. Moreover, we perform an analysis with precisely
stated definitions of Granger causality for Markov-switching models. In this section, we use the
Bayesian testing apparatus to investigate this relationship once again.

6.1. Data
The data are similar to those estimated by Christiano & Ljungqvist (1988) and Warne (2000), but
the sample is longer and spans a period of 53 years. Two monthly series are included, the M1
money stock and the industrial production index for the US, both containing 646 observations
covering the period from 1959:1 to 2012:11 and taken from the Citibase database. The data are
seasonally adjusted, transformed into log-returns, and multiplied by 1200.

Figure 1 plots the transformed series. Observation indicates that at least some heteroskedasticity
is present, as can be seen with the money series, where a period of higher volatility starts around
1980. The period of the global financial crisis is also characterised by increased volatility in both
series, especially after August 2008. Summary statistics and series observations all seem to indicate
the possibility of different states in the series, in which case MS-VAR models can provide a useful
framework for analysis. We, however, start our analysis with Granger causality testing in the
context of linear VAR models.

The summary statistics of both series are presented in Table 1. Income grows yearly by around
2.7% on average, with a standard deviation of approximately 10%. Money has a stronger growth
rate of nearly 5.3% on average, with a slightly lower standard deviation than income, around 8.3%.

9Warne (2000) uses monthly industrial production data as a proxy for income, whereas Psaradakis et al. (2005) use
quarterly real GDP data.
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6.2. Granger Noncausality Analysis with VAR Models
To study if a nonlinear approach brings added value to the Granger causality analysis we begin by
examing a standard VAR model, i.e., the case of M = 1. The block Metropolis-Hastings sampler of
Section 5 can be simplied to the single regime case and, thus, be used for standard Bayesian VAR
models. This makes it possible to compare the VAR models to more complex MS-VAR ones with
MDDs and also to examine if the Granger causal analysis suggests similar conclusions in VARs
and MS-VARs.

The prior distributions are as follow:

β ∼ N(0, λβIN+pN2)

σ j ∼ logN(0, 2)
R jk ∼ U(a, b)

for j, k = 1, . . . ,N and a and b as in Algorithm 3. The value of hyper-parameter λβ has been
determined by a grid search and is set to 0.3.

To estimate VAR models for different lag lengths (p = 0, . . . , 17) using the Metropolis-Hastings
algorithm the parameters are initialized by the OLS estimates of the VAR coefficients. Then
follows a 10,000-iteration burn-in and, after convergence of the sampler, 50,000 final draws from
the posterior.

Table 2 displays the MDDs for each model, computed with the modified harmonic mean
(MHM) estimator by Geweke (1999, 2005). As in Christiano & Ljungqvist (1988) and Warne
(2000), models with long lags are preferred, and the VAR(14) model yields the highest MDD,
denoted by ln pMHM(yT|p), and equal to -4544.68, and is therefore the model we choose for the
Granger causality analysis.

Table 3 summarizes the results for the unrestricted and restricted VAR(14) models. Estimation
of the restricted VAR model, where the coefficients on lags of money in the income equation are
equal to zero, yields an MDD of -4518.43. Expressed in logarithms of base 10 rather than natural
logarithms, the posterior odds ratio of the null hypothesis of Granger noncausality from money
to income is therefore equal to 11.4. Hence, Bayesian testing provides strong evidence in favor
of the hypothesis that money does not Granger cause income within the VAR framework for
log-differences.10

6.3. Granger Noncausality Analysis with MS-VAR Models
To estimate the number of regimes, M, and the number of lags, p, we consider MS-VAR models
with a maximum of four regimes and seven lags. The prior distributions are as defined in Section
5 with a diagonal prior covariance matrix of βi given by Vβ = λβIN+pN2 , with λβ = 0.3 as in the
VAR model analysed before, and λσ = 2. The value of the hyper-parameter λP = 10 implies that
the states are persistent over time. The expected duration of the states implied by such prior
assumptions depends on the number of states, M. For instance, for the models with two states,
M = 2, the prior distribution implies the duration of the states of around eleven periods, whereas

10This result is in line with Christiano & Ljungqvist (1988), where Granger noncausality from money to output is
established for the VAR model with log-differences with US data. Christiano & Ljungqvist (1988), however, contest this
result and argue for a specification error for models with first differences. Warne (2000) also finds that money does not
Granger cause income in the bivariate VAR model for log-differences, but that it does in the log-levels specification.
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for the model with three states, M = 3, the duration of the states is around six periods. The
block Metropolis-Hastings algorithm for each model is initialized with the estimates from the EM
algorithm of the corresponding model. Then follows a 10,000-iteration burn-in period and, after
convergence of the sampler, we sample 100,000 final draws from the posteriors11.

Table 4 reports the estimated MDDs for the MS-VAR models with 2 and 3 regimes. The case
of M = 4 is not provided since the computations suggest that MS-VAR models with more than 3
regimes are not supported by the data.12 The number of lags for the autoregressive coefficients
is limited to 7—less than the 17 lags for VAR models—also due to insufficient state occurrences
when the number of lags increases. The model preferred by the data is the MS-VAR with 3 regimes
and a lag order equal to 3.

Figure 2 plots the regime probabilities from the selected model. State 1 has the highest
probabilities of occurrence in the period before 1978, and is characterised by moderate average
growth (represented by the µ parameter) and volatility (represented by σ) of the series; see Table 5
for the posterior estimates for the unrestricted MS-VAR model with 3 states and 3 lags. The second
state has the highest probabilities of occurrence in the period starting from 1984, and this state is the
one with the highest average growth of industrial production and its lowest standard deviation.
The second state is also a state of the highest average growth rate of M1 with a moderate level
of volatility. The third state has probabilities close to one for the whole year starting in August
2008. This state is also highly likely after July 2011, as well as in the early 1980’s and in year 1959.
This state has the largest standard deviations, 2.5 times higher than in any other state for income,
and 3 times higher than in any other state for money. Moreover, this is the only state in which the
average growth of income is negative as measured by the posterior mean of the intercept term of
the VAR equation.

Note that comparing the best unrestricted MS-VAR model from Table 4 to the best VAR model
of Table 3 (that is to the restricted model) yields a logarithm of base 10 of the posterior odds ratio
of over 69 in favour of the MS-VAR model when the models are given equal prior probability,
thereby strongly supporting the specification of the model where parameters change over time
based on a hidden Markov process.

We proceed with the analysis of Granger noncausality for the selected MS(3)-VAR(3) model.
The Bayesian testing strategy we employ renders the process straightforward: each type of
causality implies different restrictions on the model parameters; we impose them, estimate the
models and compute all marginal densities of data. Table 6 gives the restrictions in (A1)–(A3)
for MS-VAR models with three regimes and provides an accounting of the number of restrictions
imposed on the parameters.

It can be seen from Table 6 that condition (A1) imposes the largest number of restrictions, and
condition (A2) the smallest. The (A1) condition is divided into two models,M1 andM2, where the
former model mainly covers restrictions on the parameters of the income equation, and the latter
mainly on the money equation. The fact that the number of restrictions is greater forM2 than for

11The number of Gibbs algorithm iterations is increased for models that require the simulation of the latent Markov
process due to a slightly lower efficiency of simulations for these models.

12The computations encountered difficulties for MS-VAR models with 4 regimes that are due to insufficient occurrence
of one regime. We assume that the hidden Markov process is stationary which implies nonzero ergodic state
probabilities. A situation in which at some Gibbs iteration one of the states has zero occurrences violates this assumption
and is not allowed in our algorithms. This restriction made sampling from the posterior distribution of parameters
of many of the considered models with 4 states practically impossible. This indicates that the data does not support
MS-VAR models with 4 or more regimes, and explains why we only present results with at most 3 regimes.
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M1 is explained by the fact that the former models also includes zero restrictions on parameters in
the income equation. The restrictions satisfied by these two models allow the regime process to be
serially correlated, while condition (A2) with modelM3 implies that it is not. As can be seen from
the Table, these three models are minimal and from Proposition 1 it follows that if one of them is
true, then there is not any information in the history of money for improving the predictions of
next periods state of the parameters which can affect income.13

ModelsM4–M6 jointly imply that condition (A3) holds and are based on the different values
for the rank of the matrix with Markov transition probabilities. The first two of these (A3) models
have nonlinear restrictions, while the last model has only linear restrictions. It is interesting to
note that the number of restrictions for these models is increasing with the rank of the P matrix.

Table 7 reports natural logarithms of the MDDs given the model and logarithms of the Bayes
factors, log10B j0 for j = 0, . . . , 6. A positive logarithm of the Bayes factor is to be interpreted as
evidence in favour of the restricted model. In a symmetric way, negative logarithm of the Bayes
factor indicates that the unrestricted model is preferred by the data.

The results in Table 7 show that model M6 has the highest MDD among the six restricted
models and is comparable to the MDD of the unrestricted model,M0. The other models (M1–M5),
however, are much less probable than the unrestricted model, as represented by the large negative
values of the logarithms of the Bayes factors. Moreover, the MDDs and Bayes factors of conditions
(A1)–(A3) are reported. Due to the inclusion of model M6, only condition (A3) is given some
posterior support.

Table 8 presents a summary of the assessment of the considered hypotheses. The hypothesis
that the history of money does not imporve the forecast of the regime in the next period (see
Proposition 1) is covered by the three minimal individual hypotheses represented by models
M1–M3. The logarithm of the Bayes factor is here close to -17 when compared with the unrestricted
MS-VAR model and, hence, the empirical evidence for US money and income is strongly in favor
of the model where the history of money is useful to improving the predictions of the regimes of
the parameters which can affect income.

Turning to the Granger noncausality hypothesis, it should be noted that we here represent it
by the four models M2,M4,M5,M6. Model M1 also implies that money is Granger noncausal
for income, but has been excluded from the joint hypothesis. The reason is that M1 is not
minimal since, when true, it implies that the hypothesisM6 is also true. Classical inference on a
multiple hypothesis using, e.g., the Holm-Bonferroni method (see, e.g., Holm, 1979), is based on
the condition that all of the individual hypotheses in a multiple hypothesis are minimal. For this
reason we also opt to excludeM1 from the multiple hypothesisH2 when using Bayesian inference.
Since the MDD of M1 is low compared with some of the models included in H2, the results in
Table 8 are barely affected by this requirement.

From Table 8 it can be seen that the MDD of the joint noncausality hypothesis is lower than the
MDD of the unrestricted model by roughly 8.7 natural logarithm units. Translated to logarithms of
the base 10 scale, this yields a Bayes factor of roughly -3.8, suggesting that the empirical evidence
of Granger noncausality from money to income on monthly US data is, at best, very weak when
we condition on MS-VAR models. In other words, the Bayes factor of these two hypotheses is
equal to 103.8 in favor of Granger causality from money to income.

13ModelM1 is trivial in the sense that the regime process s1t, which is allowed to affect the parameters in the income
equation, has a unit dimension and is therefore observed. Consequently, the history of money cannot improve the
predictions of s1.t+1.
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A byproduct of the analysis for Markov-switching model is Granger noncausality for micture
VARs. As already discussed in Section 3, the mixture-VARs are nested within the MS-VARs by
setting the rank of the transition probabilities matrix, P, to unity. Table 9 reports the results of
testing for Granger noncausality in mixture VARs with the number of mixture components set to
3 and the number of lags of VAR equal to 3.14 The results are qualitatively similar to those for
MS-VARs, with a Bayes factor equal to 103.6 in favor of Granger causality over noncausality.

7. Conclusions

In this paper we derive sets of restrictions on the parameters of MS-VAR models that can be used
to test for Granger noncausality and for examining which observed variables have information
relevant for improving the predictions of the underlying and unobserved Markov process that
determines the regimes.

It is shown that both the Granger noncausality and the regime inference hypotheses imply
multiple sets of restrictions on the parameters of the MS-VAR. The number of such sets depends
not only on the lag order of the VAR but also on the dimension of the observable variable vector
and on the number of regimes. Granger noncausality results in some of the sets containing
nonlinear restrictions, with the nonlinearity being dependent on the rank of the matrix with
Markov transition probabilities. Moreover, the number of restrictions actually being tested
depends on the rank of this matrix.

In this paper we have proposed a method of testing the restrictions for the hypotheses of
Granger noncausality and for conducting regime inference. The employed Bayes factors and
posterior odds ratios overcome the limitations of the classical approach to multiple testing. It
requires, however, an algorithm for the estimation of the unrestricted model and of the restricted
models, representing the hypotheses of interest. The algorithm we have suggested allows for
restrictions on all groups of parameters of the model, i.e., parameters on the constant term, lagged
variables, variances and covariances of the innovations, and the transition probabilities of the
hidden Markov process. It combines several existing algorithms in order to maintain the desired
properties of the model and the efficiency of estimation.

In the empirical investigation we found that Granger noncausality from monthly US money to
income established for linear (single regime) VARs is contradicted by the evidence from nonlinear
models. The causality analysis of MS-VARs suggest that money is essential for the forecasting
of the probabilities of the states which influence the behavior of income. Although Granger
noncausality is given a non-zero posterior probability, the posterior probability of the Granger
causality hypothesis is several 1000s times larger for MS-VARs.

Since mixture VAR models are nested in MS-VAR models, our analytical results on Granger
noncausality can also be applied to such models. In the empirical example for US money and
income, we also find strong support in favor of the hypothesis that money Granger causes income
in a mixture VAR. Moreover, we find that MS-VARs dominate mixture VARs, with a Bayes factor
of about 1016.4, while mixture VARs strongly dominate the linear VAR specification, with a Bayes
factor of about 1041.8.

One limitation of the analysis on Granger causality in MS-VAR models is that we only consider
one-step-ahead forecasts. The conditions for Granger noncausality using multi-steps-ahead forecast

14Notice that three regimes and three lags may not be the preferred choice of these parameters if we were to allow
only for mixture VARs when estimating them.
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could be further explored. It is notable that the conditions we have provided on regime inference
applies to multi-steps-ahead forecast of the regime process and can therefore be made use of for
such noncausality analysis. Still, establishing conditions for the noncausality h-steps-ahead for
the autoregressive parameters, including covariances, would potentially require tedious algebra.

The Granger noncausality analysis that we have presented in this paper focuses on the
properties of the mean squared errors of the forecasts. It is possible that, e.g., money does
not Granger cause income from this perspective, but may nevertheless incorporate important
information which is valuable for determining higher moments than the mean of the predictive
distribution of income. Warne (2000) provides additional noncausality concepts, namely the
second order Granger causality and the Granger causality in distribution. These two forms being
more restrictive than the one we consider, a refined analysis on the causal nature between economic
variables could be proposed.
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Mathematical Appendix: Proofs

Proof of Proposition 1
It is straightforward to show that (A2) implies that there is no information in v2t for predicting
s1,t+1 since it implies that Pr[s1,t+1|yt] = Pr[s1,t+1]. Let us therefore focus on the only remaining
possibility, i.e. that Pr[s1,t|yt] = Pr[s1,t|v1,t]. To prove that condition (A1) is necessary and sufficient
for this to hold, we shall proceed in two steps. The first step involves finding a general condition
for predictions of s1,t (and s2,t) to be invariant with respect to alternative information sets. In
the second step we show that when εt|st is Gaussian, then the parameter restrictions in (A1) are
necessary and sufficient for the invariance condition in the first step to be satisfied under the two
information sets of interest.

Let ξt|τ( j) = Pr[st = j|yτ,Wτ], for j = 1, . . . ,M, where yt is a vector of variables and Wτ

is the history of an observable vector wt up to and including period τ. The vector wt can, for
example, be defined such that it contains yt−1 and various exogenous variables observable at time
t. Furthermore, let ηt( j) = fy j(yt|st = j,Wt) be the density function for yt conditional on the state
and the history of wt. We stack these functions into M × 1 vectors ξt|τ and ηt, respectively. From
e.g. Hamilton (1994) we have that ξt|t, ξt|t−1, and ηt are related according to:

ξt|t =

(
ξt|t−1 � ηt

)
ı′q
(
ξt|t−1 � ηt

) , t = 1, 2, . . . , (A.1)

while
ξt|t−1 = P′ξt−1|t−1, t = 2, 3, . . . , (A.2)

and ξ1|0 = ρ, a M×1 vector of positive constants summing to unity. Here, � denotes the Hadamard
(element-by-element) product and ıM the M × 1 unit vector.

Let st be represented by two Markov processes, s1,t and s2,t, which are not necessarily independent.
Define j such that j ≡ j2 + M2( j1 − 1) when (s1,t, s2,t) = ( j1, j2), for j1 = 1, . . . ,M1 and j2 = 1, . . . ,M2,
where M1,M2 ≥ 1 and M = M1M2 ≥ 2. Then ξt|τ( j) = ξt|τ( j1, j2) = Pr[s1,t = j1, s2,t = j2|yτ,Wτ],
while ξ(1)

t|τ ( j1) =
∑M2

j2=1 ξt|τ( j1, j2) and similarly for ξ(2)
t|τ ( j2). More compactly, this means that

ξ(1)
t|τ = [IM1 ⊗ ı

′

M2
]ξt|τ and ξ(2)

t|τ = [ı′M1
⊗ IM2]ξt|τ. The following result about Hadamard and Kronecker

products will prove useful below:

Lemma 1. If and only if ηt = (η(1)
t ⊗ η

(2)
t ) with η(l)

t being Ml × 1 for l = 1, 2, then(
IM1 ⊗ ı

′

M2

)(
ξt|t−1 � ηt

)
=

([
IM1 ⊗ η

(2)′
t

]
ξt|t−1

)
� η(1)

t , (A.3)

while (
ı′M1
⊗ IM2

)(
ξt|t−1 � ηt

)
=

([
η(1)′

t ⊗ IM2

]
ξt|t−1

)
� η(2)

t . (A.4)

Proof. The j:th element of (ξt|t−1 � ηt) is given by ξt|t−1( j1, j2)η(1)
t ( j1)η(2)

t ( j2). Premultiplying this
M × 1 vector by [IM1 ⊗ ı

′

M2
] we obtain a M1 × 1 vector whose j1:th element is

η(1)
t ( j1)

M2∑
j2=1

ξt|t−1( j1, j2)η(2)
t ( j2).
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Now define

γt|t−1( j1) ≡


ξt|t−1( j1, 1)

...
ξt|t−1( j1,M2)

 , j1 = 1, . . . ,M1. (A.5)

Then

γt|t−1( j1)′η(2)
t =

M2∑
j2=1

ξt|t−1( j1, j2)η(2)
t ( j2).

Collecting these results we find that

[
IM1 ⊗ ı

′

M2

][
ξt|t−1 �

(
η(1)

t ⊗ η
(2)
t

)]
=


γt|t−1(1)′η(2)

t
...

γt|t−1(M1)′η(2)
t

 � η(1)
t . (A.6)

Define the M2 ×M1 matrix γt|t−1 according to γt|t−1 ≡ [γt|t−1(1) · · · γt|t−1(M1)]. It then follows that

γ′t|t−1η
(2)
t =


γt|t−1(1)′η(2)

t
...

γt|t−1(M1)′η(2)
t

 . (A.7)

Moreover, ξt|t−1 = vec(γt|t−1), with vec being the column stacking operator. Next,

γ′t|t−1η
(2)
t =

[
η(2)′

t ⊗ IM1

]
vec

(
γ′t|t−1

)
=

[
η(2)′

t ⊗ IM1

]
KM2,M1vec

(
γt|t−1

)
= KM1,1

[
IM1 ⊗ η

(2)′
t

]
ξt|t−1

=
[
IM1 ⊗ η

(2)′
t

]
ξt|t−1,

(A.8)

where Km,n is the mn × mn commutation matrix, Km,1 = Im, and the third equality follows by
Theorem 3.9 in Magnus & Neudecker (1988). Collecting these last results we have established
(A.3). The result (A.4) follows by similar arguments. �

If s1,t and s2,t are independent, it follows that

ξ(1)
t|t−1 =

[
IM1 ⊗ ı

′

M2

][
P(1)′
⊗ P(2)′

]
ξt−1|t−1

= P(1)′ξ(1)
t−1|t−1,

(A.9)

since P(2)ıM2 = ıM2 . Similarly, ξ(2)
t|t−1 = P(2)′ξ(2)

t−1|t−1. However, this does not mean that ξ(1)
t|t−1 and ξ(2)

t|t−1

are independent since ξ(1)
t−1|t−1 and ξ(2)

t−1|t−1 need not be independent.

Lemma 2. If and only if (i) ηt = ϕt(η
(1)
t ⊗ η

(2)
t ) where ϕt is a scalar and η(l)

t a Ml × 1 vector, (ii) η(1)
t and

η(2)
t are vectors of density functions for independent random variables, and (iii) s1,t and s2,t are independent,
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then for all t = 1, . . . ,T

ξ(l)
t|t =

(
ξ(l)

t|t−1 � η
(l)
t

)
ı′Ml

(
ξ(l)

t|t−1 � η
(l)
t

) , l = 1, 2, (A.10)

with ξt|τ = (ξ(1)
t|τ ⊗ ξ

(2)
t|τ ), where ξ(1)

t|τ and ξ(2)
t|τ are independent for τ = t, t − 1.

Proof. Note first that ı′M = ı′M1
(IM1⊗ ı

′

M2
) = ı′M2

(ı′M1
⊗IM2). For l = 1 we know that ξ(1)

t|t = [IM1⊗ ı
′

M2
]ξt|t.

From equation (A.1) we thus have that

ξ(1)
t|t =

[
IM1 ⊗ ı

′

M2

][
ξt|t−1 � ηt

][
ı′M1

(
IM1 ⊗ ı

′

M2

)(
ξt|t−1 � ηt

)]−1

=
[([

IM1 ⊗ η
(2)′
t

]
ξt|t−1

)
� η(1)

t

][
ı′M1

([(
IM1 ⊗ η

(2)′
t

)
ξt|t−1

]
� η(1)

t

)]−1
,

(A.11)

by Lemma 1 and since the scalar ϕt cancels. A similar expression is obtained for ξ(2)
t|t . Let

ρ = (ρ(1)
⊗ ρ(2)) where the elements of ρ(l) are positive and sum to unity. Then

ξ(1)
1|1 =

[(
ρ(1)
⊗ η(2)′

1 ρ(2)
)
� η(1)

1

][
ı′M1

([
ρ(1)
⊗ η(2)′

1 ρ(2)
]
� η(1)

1

)]−1

=
[
ρ(1)
� η(1)

1

][
ı′M1

(
ρ(1)
� η(1)

1

)]−1
,

(A.12)

and similarly for ξ(2)
1|1. By (ii) it follows that ξ(1)

1|1 and ξ(2)
1|1 are independent. Thus, ξ1|1 = (ξ(1)

1|1 ⊗ ξ
(2)
1|1).

Moreover, by (iii) we have that ξ(l)
2|1 = P(l)′ξ(l)

1|1, which are also independent for l = 1, 2. Thus,

ξ2|1 = (ξ(1)
2|1 ⊗ ξ

(2)
2|1) and so on for t = 2, 3, . . . ,T, thereby establishing sufficiency.

To prove necessity, suppose (i) is not true, i.e., Mi ≥ 2 for i = 1, 2. Let ηt = (η(1)
t ⊗ η

(2)
t ) � ψt,

where ψt , (ψ(1)
t ⊗ ψ

(2)
t ) for Ml × 1 vectors ψ(l)

t . Then, for example

ξ(1)
t|t =

[(
IM1 ⊗ η

(2)′
t

)(
ξt|t−1 � ψt

)
� η(1)

t

][
ı′M1

([
IM1 ⊗ η

(2)′
t

][
ξt|t−1 � ψt

]
� η(1)

t

)]−1

,
[([

IM1 ⊗ η
(2)′
t

]
ξt|t−1

)
� η(1)

t

][
ı′M1

([(
IM1 ⊗ η

(2)′
t

)
ξt|t−1

]
� η(1)

t

)]−1
.

(A.13)

The only case when the inequality can be replaced with an equality is if ψt = (ψ(1)
t ⊗ ψ

(2)
t ). Next,

if (ii) does not hold, then for instance ξ(1)
1|1 and ξ(2)

1|1 cannot be independent. Finally, if (iii) does

not hold, then ξ(1)
t|t−1 , P(1)′ξ(1)

t−1|t−1 and depends on ξ(2)
t−1|t−1 as well. Thus, ξ(1)

2|1 and ξ(2)
2|1 cannot be

independent even if ξ(1)
1|1 and ξ(2)

1|1 are. �

Assumptions (i) and (ii) in Lemma 2 are useful for the above proof, but can in practise be more
conveniently expressed as restrictions on marginal and conditional densities via the decomposition
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yt = (v1t, v2t). For all j = 1, . . . ,M we may express the joint density for yt as

ηt( j) = fy j

(
yt|st = j,Wt

)
= fv1 j

(
v1t|st = j, v2t,Wt

)
fv2 j

(
v2t|st = j,Wt

)
.

This standard decomposition ensures that the densities of interest concern independent random
variables and may therefore be taken as an interpretation of assumption (ii) in Lemma 2 once the
conditions that we consider next are met.

To deal with assumption (i) we first of all require that the marginal density for v2t depends
only on s2t. That is, for all j = 1, . . . ,M:

fv2 j

(
v2t|st = j,Wt

)
= fv2 j2

(
v2t|s2t = j2,Wt

)
, j2 = 1, . . . ,M2. (A.14)

Concerning the conditional density for v1t the restrictions can be written as:

fv1 j

(
v1t|st = j, v2t,Wt

)
=

 fv1 j1

(
v1t|s1t = j1,Wt

)
if M2 > 1,

fv1 j1

(
v1t|s1t = j1, v2t,Wt

)
otherwise

(A.15)

for all j1 = 1, . . . ,M1 and j = 1, . . . ,M. In other words, the conditional density for v1t must be such
that it does not depend on s2t. If M2 > 1, then v2t varies with s2t and, hence, the density of v1t must
be invariant with respect to v2t. On the other hand, when M2 = 1, then by (A.14) we have that v2t
is invariant with respect to st and is therefore not otherwise required to be subject to a constraint.
The restrictions in (A.14) and (A.15) are more convenient than assumptions (i) and (ii) when we
attempt to determine the restrictions that a specific density function for yt must satisfy.

In fact, the conditions in Lemma 2 have even further implications:

Lemma 3. If and only if the conditions in Lemma 2 are satisfied, then

ξt|τ =
(
ξ(1)

t|τ ⊗ ξ
(2)
t|τ

)
, (A.16)

for all t, τ = 1, . . . ,T, with ξ(1)
t|τ and ξ(2)

t|τ being independent.

Proof. Let us first prove this for all τ < t. We have already established in Lemma 2 that ξ(1)
τ|τ

and ξ(2)
τ|τ

are independent for all τ. By equation (22.3.13) in Hamilton (1994) we have that ξt|τ =

(P′)t−τξτ|τ for τ = 1, . . . , t − 1. By independence of s1,t and s2,t and of ξ(1)
τ|τ

and ξ(2)
τ|τ

we obtain

ξt|τ = [(P(1)′)t−τξ(1)
τ|τ
⊗ (P(2)′)t−τξ(2)

τ|τ
] = (ξ(1)

t|τ ⊗ ξ
(2)
t|τ ), which are thus independent.

To show (A.16) for τ > t it is sufficient to consider τ = T since the algorithm for computing
smooth probabilities is valid for any τ > t. From Kim (1994) (see also (Lindgren, 1978; Hamilton,
1994)) we get

ξt|T = ξt|t �
[
P
(
ξt+1|T � ξt+1|t

)]
, t = 1, . . . ,T − 1, (A.17)

where�denotes element-by-element division. To show thatξt|T = (ξ(1)
t|T⊗ξ

(2)
t|T), withξ(l)

t|T independent

for l = 1, 2, we begin with t = T − 1. By Lemma 2 we have that ξT|τ = (ξ(1)
T|τ ⊗ ξ

(2)
T|τ) for τ = T,T − 1.

Accordingly, [
ξT|T � ξT|T−1

]
=

[(
ξ(1)

T|T � ξ
(1)
T|T−1

)
⊗

(
ξ(2)

T|T � ξ
(2)
T|T−1

)]
. (A.18)

27



Let ψ(l)
T ≡ P(l)(ξ(l)

T|T � ξ
(l)
T|T−1) for l = 1, 2. We then obtain

P
[
ξT|T � ξT|T−1

]
=

[
ψ(1)

T ⊗ ψ
(2)
T

]
≡ ψT. (A.19)

Hence, ξT−1|T = (ξT−1|T−1�ψT). With ξ(1)
t|T = [IM1 ⊗ ı

′

M2
]ξt|T it follows by Lemma 1 and Lemma 2 that

ξ(1)
T−1|T =

[(
IM1 ⊗ ψ

(2)′
T

)
ξT−1|T−1

]
� ψ(1)

T

= ψ(2)′
T ξ(2)

T−1|T−1

(
ξ(1)

T−1|T−1 � ψ
(1)
T

)
,

(A.20)

since ξT−1|T−1 = (ξ(1)
T−1|T−1 ⊗ ξ

(2)
T−1|T−1). From the definition of ψ(2)

T we find that

ψ(2)′
T ξ(2)

T−1|T−1 =
(
ξ(2)

T|T � ξ
(2)
T|T−1

)′
P(2)′ξ(2)

T−1|T−1

=
(
ξ(2)

T|T � ξ
(2)
T|T−1

)′
ξ(2)

T|T−1

=

M2∑
j2=1

ξ(2)
T|T( j2).

(A.21)

This is equal to unity and we thus get

ξ(1)
T−1|T = ξ(1)

T−1|T−1 �
[
P(1)

(
ξ(1)

T|T � ξ
(1)
T|T−1

)]
. (A.22)

Proceeding with ξ(2)
T−1|T, the above arguments imply that

ξ(2)
T−1|T = ξ(2)

T−1|T−1 �
[
P(2)

(
ξ(2)

T|T � ξ
(2)
T|T−1

)]
, (A.23)

and, hence, by Lemma 2, ξ(l)
T−1|T are independent for l = 1, 2 and ξT−1|T = (ξ(1)

T−1|T ⊗ ξ
(2)
T−1|T). For

the remaining t, backwards recursions, using the above arguments, implies the result. Necessity
follows by the arguments in Lemma 2. �

Notice that condition (i) of Lemma 2 is only sufficient in forecast situations. If st is serially
uncorrelated, then P′ = πı′M, with π being the vector of ergodic probabilities. Accordingly, for all
τ < t, ξt|τ = (P′)t−τξτ|τ = π since ı′Mπ = ı′qξτ|τ = 1. Hence, if s1,t and s2,t are independent and serially

uncorrelated, then ξt|τ = (ξ(1)
t|τ ⊗ ξ

(2)
t|τ ) = (π(1)

⊗ π(2)) for all τ < t.
This completes step one in the proof of Proposition 1. We have established necessary and

sufficient conditions for how the information used to predict st can be split into information
valuable for predicting s1,t but not s2,t, and vice versa, and when information can be “thrown
away” without affecting the regime predictions. Note that the conditions in Lemma 2 are very
general in the sense that they apply to any vector of density functions ηt. For example, the
functional form can vary over t as well as over states. The crucial underlying assumption is that
st conditional on st−1 is independent of information available at time t − 1. If this assumption is
violated, then the algorithms for computing regime predictions are no longer valid.

The assumption that s1,t and s2,t are independent, in fact, increases the level of generality of the
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results. For example, it allows M2 = 1 in which case ηt = ϕtη
(1)
t (with the scalarϕt being a marginal

density which is invariant with respect to st) is necessary and sufficient for regime predictions
based on the vector densities ηt and η(1)

t to be equivalent.
When M1,M2 ≥ 2 we allow for the possibility that two subsystems of the model can contain

information for predicting one independent regime process each but not the other regime process,
while a third subsystem is completely non-informative about regimes. By considering r independent
Markov chains, these results can be generalized further. For our purposes, however, the above
results are sufficient.

Now let us return to the MS-VAR with conditionally Gaussian residuals. Here we find that for
each j ∈ {1, . . . ,M} the joint log density is

ln
(
ηt( j)

)
= −

N
2

ln(2π) −
1
2

ln
(
det

[
Σ j

])
−

1
2
ε′t| jΣ

−1
j εt| j, (A.24)

where εt| j = yt−µ j−
∑p

k=1 A(k)
j yt−k. Let n1 and n2 be the number of v1,t and v2,t variables, respectively,

with n1 + n2 = N. The marginal density for v2,t, conditional on st = j and yt−1, is

ln
(
η(2)

t ( j)
)

= −
n2

2
ln(2π) −

1
2

ln
(
det

[
Σ22, j

])
−

1
2
ε′2,t| jΣ

−1
22, jε2,t| j. (A.25)

If this density is invariant with respect to s1,t, then (a) Σ22,( j1, j2) = Σ22, j2 , µ2,( j1, j2) = µ2, j2 , and
A(k)

2r,( j1, j2) = A(k)
2r, j2

for all j1 ∈ {1, . . . ,M1}, j2 ∈ {1, . . . ,M2}, r ∈ {1, 2}, and k ∈ {1, . . . , p}. For M2 = 1
these restrictions imply that the parameters in the marginal density for v2,t are constant across
states.

Under the restrictions in (a), the density for v1,t, conditional on st = j = j2 + M2( j1 − 1), v2,t, and
yt−1, is

ln
(
η(1)

t ( j)
)

= −
n1

2
ln(2π) −

1
2

ln
(
det

[
Σ̃11, j

])
+ ε′2,t| j2Σ

−1
22, j2

Σ′12, jΣ̃
−1
11, jε1,t| j

−
1
2
ε′1,t| jΣ̃

−1
11, jε1,t| j −

1
2
ε′2,t| j2Σ

−1
22, j2

Σ′12, jΣ̃
−1
11, jΣ12, jΣ

−1
22, j2

ε2,t| j2 ,

(A.26)

where Σ̃11, j ≡ Σ11, j − Σ12, jΣ
−1
22, j2

Σ′12, j. If this density function is invariant with respect to s2,t for

M2 ≥ 2, then (b) Σ11,( j1, j2) = Σ11, j1 , µ1,( j1, j2) = µ1, j1 , and A(k)
1r,( j1, j2) = A(k)

1r, j1
for all j1 ∈ {1, . . . ,M1},

j2 ∈ {1, . . . ,M2}, r ∈ {1, 2}, and k ∈ {1, . . . , p}; and (c) Σ12, j = 0 for all j ∈ {1, . . . ,M}. Under (i) to
(iii) we find that ηt = (η(1)

t ⊗ η
(2)
t ) for all t, with η(l)

t being the marginal density of vl,t conditional
on sl,t and yt−1. If these linear restrictions are not satisfied, then ηt cannot be decomposed into the
(Kronecker) product between a M1 and a M2 vector density. If M2 = 1, then condition (c) can, for
now, be dispensed with.

To satisfy the remaining condition in Lemma 2 we need to let s1,t and s2,t be independent. For
M2 ≥ 2 we have that η(1)

t and η(2)
t are vectors of densities for independent random variables (ε1,t|s1,t

and ε2,t|s2,t) from, in particular, restrictions (c), and for M2 = 1 this is not needed since ϕt is just a
scalar which cancels in (A.1). By Lemma 2 it then follows that

Pr
[
st = j|yt;θ

]
= Pr

[
s1,t = j1

∣∣∣v1,t,v2,t;ϑ1,P(1)
]

Pr
[
s2,t = j2

∣∣∣v1,t−1,v2,t;ϑ2,P(2)
]
,
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where θ = (ϑ1, ϑ2,P) and ϑi = {µi.sit ,Ai j.sit ,Σii,sit} for i = 1, 2 are the parameters for the density of
εit|sit. When M2 ≥ 2 it also follows that Pr[s1,t = j1|v1,t,v2,t;ϑ1] = Pr[s1,t = j1|v1,t,v2,t−1;ϑ1].

The final stage is now straightforward. v2,t is assumed to be predictively redundant for s1,t+1
and this regime process is not serially uncorrelated when (A2) has already been covered, it follows
that v2,t must not contain any information in addition to v1,t for predicting s1,t. This means that
the restrictions (c) must also hold for M2 = 1. Furthermore, we may also infer that: (d) A(k)

12, j1
= 0

for all j1 ∈ {1, . . . ,M1} and k ∈ {1, . . . , p} and for M2 ≥ 1. Hence, we have shown that

Pr
[
(s1,t, s2,t) = ( j1, j2)

∣∣∣yt;θ
]

= Pr
[
s1,t = j1

∣∣∣v1,t;ϑ1

]
Pr

[
s2,t = j2

∣∣∣yt;ϑ2

]
,

implies that (A1) is satisfied. To prove the reverse is straightforward. Q.E.D.

Proof of Proposition 2
Given that ut+1 is mean zero stationary we know that E[u2

t+1;θ] ≤ E[ũ2
t+1;θ] since (v1t,y3t) ⊂ yt for

all t. In particular,

E
[
ũ2

t+1;θ
]

= E
[
u2

t+1;θ
]

+ E
[(

E
[
y1,t+1

∣∣∣yt;θ
]
− E

[
y1,t+1

∣∣∣v1t,y3t;θ
])2

;θ
]
. (A.27)

Accordingly, the variances of ut+1 and ũt+1 are equal if and only if E[y1,t+1|yt;θ] = E[y1,t+1|v1t,y3t;θ]
for all t.

The prediction of y1,t+1 conditional on yt is given by

E
[
y1,t+1|yt;θ

]
= m̄1,t +

p∑
k=1

(
ā(k)

11,ty1,t+1−k + ā(k)
12,ty2,t+1−k + ā(k)

13,ty3,t+1−k + ā(k)
14,ty4,t+1−k

)
. (A.28)

The necessary and sufficient conditions for this expression to be invariant with respect to y4t are,
for all t, given by

(i) m̄1,t = E
[
m1,st+1

∣∣∣∣v1t,y3t;θ
]
,

(ii) ā(k)
1r,t = E

[
a(k)

1r,st+1

∣∣∣∣v1t,y3t;θ
]
, r ∈ {1, . . . , 4} and k ∈ {1, . . . , p},

(iii) ā(k)
14,t = 0, k ∈ {1, . . . , p}.

To prove the claim in Proposition 2 we therefore have to show that (i)–(iii) are equivalent to [(A1)
or (A3)].

Granger Noncausality⇒
[
(A1) or (A3)

]
From the definitions of m̄1,t and ā(k)

1r,t in both of the equations (17) we find that these random
matrices can be expressed as

m̄1,t =

M∑
i=1

M∑
j=1

m1, jpi j Pr
[
st = i

∣∣∣yt;θ
]
, (A.29)
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and

ā(k)
1r,t =

M∑
i=1

M∑
j=1

a(k)
1r, jpi j Pr

[
st = i

∣∣∣yt;θ
]
. (A.30)

From these two equations it can be seen that m̄1,t and ā(k)
1r,t depend on t, and thus potentially on y4t,

only via the filter probabilities Pr[st = i|yt;θ].
Suppose first that (m̄1,t, ā

(k)
1r,t) indeed varies with t. It now follows that Granger noncausality

implies that
Pr

[
(s1,t, s2,t) = (i1, i2)

∣∣∣yt;θ
]

= Pr
[
s1,t = i1

∣∣∣v1,t;θ
]

Pr
[
s2,t = i2

∣∣∣yt;θ
]
, (A.31)

must hold for all i1, i2, and t, while (m1,( j1, j2), a
(k)
1r,( j1 j2)) only depends on j2. By Lemma 3 and the

proof of Proposition 1 (see also Warne, 2000, Corollary 2) we know that equation (A.31) can only
be satisfied under (A1). The remaining parameter restrictions, pi j = p(1)

i1 j1
p(2)

i2 j2
, are also satisfied

under (A1).
Notice that the formulation in (A.31) covers the case when n2 = 1, i.e. when y3t is empty and all

auxiliary variables are located in y2t, as well as the cases when n2 ≥ 2. It is therefore more general
than one where Pr[s1,t = i1|v1,t;θ] is replaced with Pr[s1,t = i1|v1t,y3t;θ].

It remains to examine the case when (m̄1,t, ā
(k)
1r,t) is invariant with respect to t. From equations

(A.29)–(A.30) we now have that
∑M

j=1 m1, jpi j = m̄1,
∑M

j=1 a(k)
1r, jpi j = ā(k)

1r , with ā(k)
14 = 0 for all i, r, and k.

Hence, condition (A3) is satisfied.

[
(A1) or (A3)

]
⇒ Granger Noncausality

Evaluating equation (A.28) under (A1) and (A3), respectively, gives the result. Q.E.D.
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Statistical Appendix: Block Metropolis-Hastings Algorithm for MS-VARs with restrictions

This section describes all the constituting blocks that form the MCMC sampler.

B.1. Simulating Hidden Markov Process
The first drawn parameter is the vector representing the states of the economy, ST. Being a latent
variable, there are no prior distributions nor restrictions specified for ST. We first use a BLHK
filter and smoother (see Section 11.2 of Frühwirth-Schnatter, 2006, and references therein) and
obtain the probabilities Pr(st = i|yT, θ(l−1)), for t = 1, . . . ,T and i = 1, . . . ,M, and then draw S(l)

T , for
lth iteration of the algorithm. For the full description of the algorithm used in this work the reader
is referred to Droumaguet & Woźniak (2012).

B.2. Sampling Transition Probabilities
In this step of the MCMC sampler, we draw from the posterior distribution of the transition
probabilities matrix, conditioning on the states drawn in the previous step of the current iteration,
P(l)
∼ p(P|S(l)

T ). For the purpose of testing restriction (A2), we impose restrictions of identical
rows of P. Sims et al. (2008) provide a flexible analytical framework for working with restricted
transition probabilities, and the reader is invited to consult Section 3 of their paper for an exhaustive
description of the possibilities provided by the framework. We however limit the latitude given
by the reparametrization in order to ensure the stationarity of Markov chain ST.

Reparametrization. The transition probabilities matrix P is modeled with Q vectors w j, j = 1, · · · ,Q
and each of size d j ≤ M. Let all the elements of w j belong to the (0, 1) interval and sum up to
one, and stack all of them into the column vector w = (w

′

1, . . . ,w
′

Q)
′

of dimension d =
∑Q

j=1 d j.

Writing p = vec(P
′

) as a M2 dimensional column vector, and introducing the (M2
× d) matrix M,

the transition matrix is decomposed as:
p = Mw, (B.1)

where the M matrix is composed of the Mi j sub-matrices of dimension (M×d j), where i = 1, . . . ,M,
and j = 1, . . . ,Q:

M =


M11 . . . M1Q
...

. . .
MM1 MMQ

 ,
where each Mi j satisfies the following conditions:

1. For each (i, j), all elements of Mi j are non-negative.
2. ı

′

MMi j = Λi jı
′

d j
, where Λi j is the sum of the elements in any column of Mi j.

3. Each row of M has, at most, one non-zero element.
4. M is such that P is irreducible: for all j, d j ≥ 2.

The first three conditions are inherited from Sims et al. (2008), whereas the last condition assures
that P is irreducible, forbidding the presence of an absorbing state that would render the Markov
chain ST non-stationary. The lack of independence of the rows of P is described in Frühwirth-Schnatter
(2006, Section 11.5.5). Once the initial state s0 is drawn from the ergodic distribution π of P, direct
MCMC sampling from the conditional posterior distribution becomes impossible. However, a
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Metropolis-Hastings step can be set up to circumvent this issue, since a kernel of joint posterior
density of all rows is known: p(P|ST) ∝

∏Q
j=1Dd j(w j)π. Hence, the proposal for transition

probabilities is obtained by sampling each w j from the convenient Dirichlet distribution. The
priors for w j follow a Dirichlet distribution, w j ∼ Dd j(b1, j, . . . , bd j, j). We then transform the column
vector w into our candidate matrix of transitions probabilities using equation (B.1). Finally, we
compute the acceptance rate before retaining or discarding the draw.

Algorithm 1. Metropolis-Hastings step for the restricted transition matrix.

1. s0 ∼ π. The initial state is drawn from the ergodic distribution of P.
2. w j ∼ Dd j(n1, j+b1, j, . . . ,nd j, j+bd j, j) for j = 1, . . . ,Q. ni, j corresponds to the number of transitions

from state i to state j, counted from ST. The candidate transition probabilities matrix – in the
transformed notation – are sampled from a Dirichlet distribution.

3. Pnew = Mw. The proposal for the transitions probabilities matrix is reconstructed.
4. Accept Pnew if u ≤ (πnew/πl−1), where u ∼ U[0, 1]. πnew and πl−1 are the ergodic probabilities

of s(l)
0 that are computed from Pnew and Pl−1 respectively.

B.3. Sampling Second and Independent Hidden Markov Process
Regime inference from proposition (A1) involves two independent Markov processes. Equation
(13) decomposes the vector of observations into two sub-vectors. Equations contained within each
sub-vector are subject to switches from a different and independent Markov process. Sims et al.
(2008, section 3.3.3) cover a similar decomposition.

Adding a Markov process is trivial in the sense it involves repeating the steps of Section B.1
and Algorithm 1 subsequently for a second process, yielding two distinct transition probabilities
matrices P(1) and P(2). The transition probabilities matrix for the whole system is formed out of the
transition probabilities matrices of two independent hidden Markov processes, P = (P(1)

⊗ P(2)).

B.4. Sampling Correlation Coefficients and Standard Deviations
Adapting the approach proposed by Barnard et al. (2000) to Markov-switching models, we sample
from the full conditional distribution of unrestricted and restricted covariance matrices. We thus
decompose each covariance matrix of the MS-VAR process into a vector of standard deviations
(σst) and a correlation matrix (Rst) as in equation (24).This decomposition – statistically motivated
– enables the partition of the covariance matrix parameters into two categories that are well suited
for the restrictions we want to impose on the matrices. In a standard covariance matrix, restricting
a variance parameter to some value has some impact on the depending covariances, whereas here
variances and covariances (correlations) are treated as separate entities. The second and not the
least advantage of the approach of Barnard et al. (2000) lies in the employed estimation procedure,
the griddy-Gibbs sampler. The method introduced in Ritter & Tanner (1992) is well suited for
sampling from an unknown univariate density p(Xi|X j, i , j). This is done by approximating the
inverse conditional density function, which is done by evaluating p(Xi|X j, i , j) thanks to a grid of
points. Imposing the desired restrictions on the parameters, and afterwards iterating a sampler for
every standard deviation σi.st and every correlation R j.st , we are able to simulate desired posteriors
of the covariance matrices. While adding to the overall computational burden, the griddy-Gibbs
sampler gives us full latitude to estimate restricted covariance matrices of the desired form.
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Algorithm 2. Griddy-Gibbs for the standard deviations. The algorithm iterates on all the standard
deviation parameters σi.st for i = 1, . . . ,N and st = 1, . . . ,M. Similarly to Barnard et al. (2000)
we assume log-normal priors, log(σi.st) ∼ N(0, 2). The grid is centered on the residuals’ sample
standard deviation σ̂i.st and divides the interval (σ̂i.st − 3σ̂σ̂i.st

, σ̂i.st + 3σ̂σ̂i.st
) into G grid points. σ̂σ̂i.st

is an estimator of the standard error of the estimator of the sample standard deviation.

1. Regime-invariant standard deviations: Draw from the unknown univariate density

p
(
σi
∣∣∣yT,ST,P, β, σ−i,R

)
.

This is done by evaluating a kernel on a grid of points, using the proportionality relation, with
the likelihood function times the prior: σi|yT,ST,P, β, σ−i,R ∝ p(yT|ST, θ) · p(σi). Reconstruct
the c.d.f. from the grid through deterministic integration and sample from it.

2. Regime-varying standard deviations: For all regimes st = 1, . . . ,M, draw from the univariate
density

p
(
σi.st

∣∣∣yT,ST,P, β, σ−i.st ,R
)
,

evaluating a kernel thanks to the proportionality relation, with the likelihood function times
the prior: σi.st |yT,ST,P, β, σ−i.st ,R ∝ p(yT|ST, θ) · p(σi.st).

Algorithm 3. Griddy-Gibbs for the correlations The algorithm iterates on all the correlation parameters
Ri.st for i = 1, . . . , (N−1)N/2 and st = 1, . . . ,M. Similarly to Barnard et al. (2000), we assume uniform
distribution on the feasible set of correlations, Ri.st ∼ U(a, b), with a and b being the bounds that
keep the implied covariance matrix positive definite; see the aforementioned reference for details
of setting a and b. The grid divides interval (a, b) into G grid points.

1. Depending on the restriction scheme, set correlation parameters to 0.
2. Regime-invariant correlations: Draw from the univariate density

p
(
Ri

∣∣∣yT,ST,P, β, σ,R−i

)
,

evaluating a kernel thanks to the proportionality relation, with the likelihood function times
the prior: Ri|yT,ST,P, β, σ,R−i ∝ p(yT|ST, θ) · p(Ri).

3. Regime-varying correlations: For all regimes st = 1, . . . ,M, draw from the univariate density

p
(
Ri.st

∣∣∣yT,ST,P, β, σ,R−i.st

)
,

evaluating a kernel thanks to the proportionality relation, with the likelihood function times
the prior: Ri.st |yT,ST,P, β, σ,R−Ri.st

∝ p(yT|ST, θ) · p(Ri.st).

B.5. Sampling Vector Autoregressive Parameters
Finally, we draw the state-dependent autoregressive parameters, βst for st = 1, . . . ,M. The Bayesian
parameter estimation of finite mixtures of regression models when the realizations of states is
known has been precisely covered in Frühwirth-Schnatter (2006, Section 8.4.3). The procedure
consists of estimating all the regression coefficients simultaneously by stacking them into β =
(β0, β1, . . . , βM), where β0 is a common regression parameter for each regime, and hence is useful for
the imposing of restrictions of state invariance for the autoregressive parameters. The regression
model becomes:

yt = Ztβ0 + ZtDi.1β1 + · · · + ZtDi.MβM + εt, (B.2)
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εt ∼ i.i.N(0,Σst). (B.3)

We have here introduced the Di.st , which are M dummies taking the value 1 when the regime
occurs and set to 0 otherwise. A transformation of the regressors ZT also has to be performed in
order to allow for different coefficients on the dependent variables, for instance to impose zero
restrictions on parameters. In the context of VARs, Koop & Korobilis (2010, Section 2.2.3) detail
a convenient notation that stacks all the regression coefficients on a diagonal matrix for every
equation. We adapt this notation by stacking all the regression coefficients for all the states on
diagonal matrix. If zn.st.t corresponds to the row vector of 1+Np independent variables for equation
n, state st (starting at 0 for regime-invariant parameters), and at time t, the stacked regressor Zt
will be of the following form:

Zt = diag
(
z1.0.t, . . . , zN.0.t, z1.1.t, . . . , zN.1.t, . . . , z1.M.t, . . . , zN.M.t

)
.

This notation enables the restriction of each parameter, by simply setting zn.st.t to 0 where desired.

Algorithm 4. Sampling the autoregressive parameters. We assume normal prior for β, i.e. β ∼ N(0,Vβ)
.

1. For all Zts, impose restrictions by setting zn,st,t to zero accordingly.
2. β|yT,ST,P, σ,R ∼ N(β,Vβ). Sample β from the conditional normal posterior distribution,

with the following parameters:

Vβ =

V−1
β +

T∑
t=1

Z
′

tΣ
−1
st

Zt


−1

and

β = Vβ

 T∑
t=1

Z
′

tΣ
−1
st

yt

 .
B.6. Simulating Restrictions in the Form of Functions of the Parameters
Some of the restrictions for Granger noncausality presented in Section 3 will be in the form of
complicated functions of parameters. Suppose some restriction is in the form:

θi = g
(
θ−i

)
,

where g(.) is a scalar function of all the parameters of the model butθi. The restricted parameter, θi,
in this study may be one of the parameters from the autoregressive parameters, β. In such a case,
β|yT,ST,P,R, σ is no longer independent and need to be simulated with a Metropolis-Hastings
algorithm.

Restriction on the vector autoregressive parameters β. In this case, the deterministic function restricting
parameter βi will be of the following form:

βi = g(β−i, σ,R,P).

We draw from the full conditional distribution of the vector autoregressive parameters, p(β|yT,ST,P, σ,R),
using the Metropolis-Hastings algorithm:
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Algorithm 5. Metropolis-Hastings for the restricted vector autoregressive parameters β.

1. Form a candidate draw, βnew, using Algorithm 6.
2. Compute the probability of acceptance of a draw:

α(βl−1, βnew) = min
[
p(yT|ST,P, βnew, σ,R)p(βnew)
p(yT|ST,P, βl−1, σ,R)p(βl−1)

, 1
]
. (B.4)

3. Accept βnew if u ≤ α(βl−1, βnew), where u ∼ U[0, 1].

The algorithm has its justification in the block Metropolis-Hastings algorithm of Greenberg & Chib
(1995). The formula for computing the acceptance probability from equation (B.4) is a consequence
of the choice of the candidate generating distributions. For the parameters β−i, it is a symmetric
normal distribution, as in step 2 of Algorithm 4, whereas βi is determined by a deterministic
function.

Algorithm 6. Generating a candidate draw β.

1. Restrict parameter βi to zero. Draw all the parameters (β1, . . . , βi−1, 0, βi+1, . . . , βk)′ according
to the algorithms described in Section B.5.

2. Compute βi = g(β−i, σ,R,P).
3. Return the vector (β1, . . . , βi−1,g(β−i, σ,R,P), βi+1, . . . , βk)′
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Figures

Figure 1: Log-differenced monthly data on US money (M1) and income (industrial production) over the sample period
1959:1–2012:11.
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Figure 2: Estimated marginal posterior probabilities of regimes, Pr[st|yT], for the unrestricted MS-VAR model with 3
states and 3 lags over the sample period 1959:4–2012:11.
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Tables

Table 1: Summary statistics of the data for the sample period 1959:1–2012:11.

Variable Mean Median Standard Deviation Minimum Maximum

∆y 2.771 3.312 9.984 -50.553 71.977
∆m 5.29 4.764 8.279 -38.886 71.788

Note: Data Source: Citibase. ∆y is the US industrial production index and ∆m
is the US M1 money stock. Both series are seasonally adjusted, transformed into
log-returns and multiplied by 1200.
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Table 2: Model selection for VAR(p) models over the sample period 1959:1–2012:11.

Lags (p) 0 1 2 3 4 5 6 7 8
ln pMHM

(
yT |p

)
-4739.81 -4654.11 -4642.09 -4613.66 -4616.61 -4609.95 -4592.88 -4585.46 -4582.27

Lags (p) 9 10 11 12 13 14 15 16 17
ln pMHM

(
yT |p

)
-4581.74 -4584.36 -4556.16 -4553.18 -4551.15 -4544.68 -4546.68 -4549.14 -4546.53

Note: ln pMHM
(
yT |p

)
denotes the marginal data density using the modified harmonic mean estimator

suggested by Geweke (1999, 2005) and computed for VAR models with different lag order, p.
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Table 3: Bayesian Granger Noncausality Tests for VAR models with 14 lags over the sample 1959:1–2012:11.

M j ln pMHM(yT |M j) log10B j0

H0: Unrestricted VAR(14) model

M0 -4544.68 0

H1: Granger Noncausality from Money to Income

M1 -4518.43 11.4

Note: ln pMHM(yT |M j) denotes the marginal data density
using the modified harmonic mean estimator suggested
by Geweke (1999, 2005) and computed for the jth model,
M j, and log10B j0 denotes a logarithm of base 10 of the
Bayes factor of the jth model to model M0. Model M1

is the restricted VAR(14) model with the restrictions for
Granger noncausality hypothesis.
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Table 4: Model selection for MS-VAR models with M states and p lags over the sample 1959:1–2012:11.

Models with No. of states M = 2
Lags (p) 0 1 2 3 4 5 6 7
ln pMHM

(
yT |p,M

)
-4578.72 -4456.06 -4440.07 -4412.75 -4418.02 -4420.24 -4411.57 -4411.62

Models with No. of states M = 3
Lags (p) 0 1 2 3 4 5 6 7
ln pMHM

(
yT |p,M

)
-4567.22 -4415.06 -4402.98 -4384.28 -4390.89 -4392.09 -4387.6 -4390.79

Note: ln pMHM
(
yT |p,M

)
denotes the marginal data density using the modified harmonic mean

estimator suggested by Geweke (1999, 2005) and computed for MS-VAR models with different number
of states, M, and lag order, p.
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Table 6: Summary of regime inference and Granger noncausality restrictions on the parameters of MS-VAR models
with M = 3.

Condition (A1) # restrictions
M1 : µ1.st = µ1, A(l)

11.st
= A(l)

11, A(l)
12.st

= 0, for l = 1, . . . , p, and Σ11.st = Σ11, Σ12.st = 0 5p + 7

M2 : µ2.st = µ2, A(l)
21.st

= A(l)
21, A(l)

22.st
= A(l)

22, A(l)
12.st

= 0, for l = 1, . . . , p, and Σ22.st = Σ22, Σ12.st = 0 7p + 7

Condition (A2)
M3 : P = ı3π

′ 4

Condition (A3)
M4 : P = ı3π

′ , and
∑3

j=1 A(l)
12. jπ j = 0, for l = 1, . . . , p p + 4

M5 : P =

1 0
0 1
c 1 − c


[
p1·

p2·

]
,
∑3

j=1 µ1. j

(
p1 j − p2 j

)
= 0,

∑3
j=1 A(l)

11. j

(
p1 j − p2 j

)
= 0, and∑3

j=1 A(l)
12. jpi j = 0 for i = 1, 2 and l = 1, . . . , p 3p + 2

M6 : µ1.st = µ1, A(l)
11.st

= A(l)
11, and A(l)

12.st
= 0, for l = 1, . . . , p 5p + 2

Note: The parameters are as defined in the note of Table 5. Additinally, ın is a n-dimensional vector
of ones, pi· is the ith row of P, π is a vector of ergodic state probabilities, c is a parameter estimated by
maximizing the value of the full conditional posterior density of P.
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Table 7: Noncausality and regime inference testing in a MS-VAR models for US monthly data on money and income,
1959:1–2012:11.

M j Restrictions ln pMHM

(
yT|M j

)
log10B j0

H0: Unrestricted model

M0 MS(3)-VAR(3) -4384.28 0

H1: History of money has no effect on the regime forecast

M1 (A1) with M1 = 1,M2 = 3 -4441.32 -24.77
M2 (A1) with M1 = 3,M2 = 1 -4556.22 -74.68

(A1) -4442.01 -25.07

M3 (A2) -4422.07 -16.41

H2: Granger noncausality

M2 (A1) and M1 = 3,M2 = 1 -4556.22 -74.68

M4 (A3) and rank(P) = 1 -4430.35 -20.01
M5 (A3) and rank(P) = 2 -4488.47 -45.25
M6 (A3) and rank(P) = 3 -4391.57 -3.17

(A3) -4392.67 -3.64

Note: For the definition of ln pMHM

(
yT|M j

)
and log10B j0 see the note to

Table 3. For the exact restrictions on parameters for the restricted models
see Table 6.
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Table 8: Summary of Bayesian hypotheses testing on regime inference and Granger noncausality for US monthly data
on money and income, 1959:1–2012:11.

Hi Hypothesis Represented by models ln pMHM
(
yT |Hi

)
log10B j0

H0 Unrestricted model M0 -4384.28 0
H1 History of money does not impact

on the regime forecast of income
M1,M2,M3 -4423.17 -16.89

H2 Granger noncausality M2,M4,M5,M6 -4392.96 -3.77

Note: For the definition of ln pMHM

(
yT|M j

)
and log10B j0 see the note to

Table 3.
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Table 9: Bayesian hypothesis testing of Granger noncausality in mixture VAR models for US monthly data on money
and income, 1959:1–2012:11.

M j Restrictions ln p(yT |M j) log10B j0

H0: Unrestricted model

M3 mix(3)-VAR(3) -4422.07 0

H1: Granger noncausality from money to income

M4 (A3) rank(P) = 1 -4430.35 -3.60

Note: For the definition of ln pMHM

(
yT|M j

)
and log10B j0

see the note to Table 3. For the exact restrictions on
parameters for the restricted models see Table 6.
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